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Abstract

We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided

by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical

CSR wakes and to expand the analysis to the situations not explored before. It reduces calculations of the

impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the

radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite

length, and an infinitely long wiggler. All our formulas are benchmarked agains numerical simulations with

the CSRZ computer code.
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I. INTRODUCTION

Coherent synchrotron radiation (CSR) of short relativistic beams and its effect on beam dynamics

in modern accelerators has been an area of active research for more than two decades. Various

methods of calculation of the CSR wakefield were proposed in the literature. One of the first, and

the simplest, approaches [1] treats the beam as having negligible transverse dimensions (a line

charge model) and neglects the effect of the walls of the vacuum chamber (the free-space CSR

wakefield). While the results of this model are applicable for relatively long magnets, the model

is extremely useful for crude and quick estimates of the CSR effects in the system. A more

complicated model [2] takes into account the shielding effect of the vacuum chamber by

approximating the metal walls by two parallel conducting plates located on the opposite sides of

the beam circular orbit. Even more sophisticated approaches of Refs. [3, 4] solve the synchrotron

radiation and find the beam impedance in a toroidal vacuum chamber of rectangular cross section.

Analyses of Refs. [1–4] are limited to a circular trajectory of the beam. An important next step

has been made in Ref. [5], where the authors considered a bending magnet of finite length and

calculated the CSR wakefield for a trajectory consisting of an arc of a circle with incoming and

exiting straight lines. This model made it possible to study effects of CSR radiation in bunch

compressors of modern x-ray free electron lasers, where short bending magnets are separated by

long drift sections. A simplified version [6] of the CSR wake [5] valid in the limit v = c (v is the

particle velocity and c is the speed of light) is implemented in the computer code elegant [7]. In a

subsequent paper [8] the authors of [5] applied the same method to the calculation of the CSR

wake in an infinitely long undulator in free space. Modification of the CSR wakefield derived

in [8] for the limit v = c was carried out in [9].

In addition to various analytical approaches to the problem of CSR wakefield mentioned above,

there have been a consistent effort to develop numerical algorithms for computer codes that

calculate the wake in practically realistic situations. A good review of such codes can be found in

Ref. [10] with some latest additions to the list in Refs. [11–13]. While these codes are

indispensable in the design of accelerators, it is our opinion, that they do not eliminate the need

for further development of new analytical tools that allow for a quick evaluation of the CSR

effects in various conditions. In addition, the analytical approach usually provide the scalings of

the strength of the effect and a better understanding of the mechanisms that cause the wakes.

This, in turn, often allows find a solution that mitigates the adverse effect of the CSR wakefields.
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In this paper we develop a general model of CSR impedance with shielding provided by two

parallel conducting plates. This model reproduces all previous examples known from the

literature and expands the analysis to the situations not explored before. It reduces calculations of

the impedance to taking integrals along the trajectory of the beam. These integrals can often be

easily computed numerically with the help of Matlab or Mathematica.

The paper is organized as follows. In Section II, starting from the retarded potentials of a

relativistic beam in free space, we derive an expression for the radiation impedance in terms of

integrals taken along the beam orbit. In Section III, this expression is generalized to the case of

shielding with parallel conducting plates. In Section IV we give a brief description of the

computer code CSRZ that we use for benchmarking our analytical results. In Section V we

reproduce some known results: the CSR impedance of a circular orbit in free space and with

shielding, and the impedance of infinitely long wiggler in free space. In Section VI we derive the

impedance of a kink, that is an orbit consisting of two straight lines at a small angle. In

Sections VII, VIII and IX we derive the impedance of a bending magnet of finite length, a finite

length wiggler and an infinite wiggler, respectively. The results of the paper are summarized in

Section X. The paper has four appendices containing some details of the derivations.

We use the Gaussian system of units throughout this paper.

II. ENERGY CHANGE OF THE BEAM DUE TO COHERENT RADIATION

A. Derivation of the energy change using retarded potentials

We begin from the equation that describes the rate of change of energy E of a point charge e

moving in electric field E(r, t) with velocity v,

dE
dt

= ev · E. (1)

Expressing the electric field through the scalar potential φ(r, t) and the vector potential A(r, t),

E = −∇φ − c−1∂t A, it is easy to cast (1) into the following form,

d(E + eφ)
dt

= e
∂φ

∂t
− eβ ·

∂A
∂t
, (2)

where β = v/c and c is the speed of light. In Eq. (2) the full time derivative dφ/dt = ∂tφ + v · ∇φ

is taken along the particle orbit and gives the rate of change of φ as seen by the moving charge.
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Eqs. (1) and (2) are valid for a point charge. To apply them to a beam of charged particles, we

represent the latter as a cold fluid that is characterized by the charge density en(r, t) and the fluid

velocity v(r, t), where n(r, t) is the particle density. The current density in the beam is

j(r, t) = en(r, t)v(r, t). Note that in this description of the beam we neglect the effects of the beam

emittance and energy spread and at a given time t associate a unique value of the velocity v with

each location r within the bunch. With this new understanding of the velocity field v(r, t), Eq. (2)

can be written as

d(E + eφ)
dt

= e
∂(φ − β · A)

∂t
+ eA ·

∂β

∂t
= e

∂V
∂t

+ eA ·
∂β

∂t
, (3)

where V(r, t) = φ(r, t) − β(r, t) · A(r, t). The function V was first introduced into the calculation

of CSR wakefields in Ref. [1].

We will limit our consideration to the cases where the velocity v at a given location r does not

depend on time t, v = v(r), which is a good approximation for relativistic beams with a small

angular spread when all the particles at a given location are approximately moving in one

direction—the direction of the tangent vector to the trajectory of the reference particle. In this

case, the last term on the right-hand side of (3) can be neglected, and the rate of change of E + eφ

is given by the partial time derivative of V .

In free space, far from metal boundaries, φ and A are expressed in terms of n and v through the

retarded potentials [14],

φ(r, t) =
e
c

∫
d3r′

τ
n(r′, t − τ),

A(r, t) =
e
c

∫
d3r′

τ
β(r′)n(r′, t − τ), (4)

where τ = τ(r, r′) = |r − r′|/c. Correspondingly, for function V one finds

V(r, t) =
e2

c

∫
d3r′

τ
(1 − β · β′)n(r′, t − τ), (5)

where β = β(r) and β′ = β(r′). Note that the integrand in this expression has a singularity when

r′ → r because at this point τ = 0. This singularity however is integrable in three (and two)

dimensions, and the function V is finite.

Considerable simplifications can be achieved if one chooses a line charge model for the beam. In

this model, all the particles in the beam are moving on the same orbit r0(s) parametrized by the

arc length s measured along it. The vector β(s) is directed along the tangent vector to the orbit.
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The distribution function in 1D is denoted by λ(s, t); it gives the number of particles per unit s.

Eq. (5) is now written as a one-dimensional integral,

V(s, t) =
e2

c

∫ ∞

−∞

ds′

τ
(1 − β · β′)λ(s′, t − τ), (6)

where τ(s, s′) = |r0(s) − r0(s′)|/c is a function of s and s′, and β = β(s), β′ = β(s′) are defined on

the orbit. Note that, in general case, the singularity of the integrand in the limit s′ → s makes the

integral (logarithmically) divergent, unless the particles are moving with the speed of light1. In

this latter case, |β| = |β′| = 1 and in the limit s′ → s the term 1 − β · β′ tends to zero canceling the

vanishing τ. Hence, in what follows we assume |β| = 1, which means that all the particles in the

bunch are moving with the speed of light. In accordance with this assumption, the distribution

function λ is transported along the orbit without changing its shape and can be written as a

function λ(s − ct) of one argument s − ct. With this distribution function, Eq. (6) can be rewritten,

V(s, t) =
e2

c

∫ ∞

−∞

ds′

τ
(1 − β · β′)λ(s′ − c(t − τ)). (7)

Using Eq. (3) (in which we agreed to neglect the last term), we obtain

dE
dt

+ e
dφ
dt

=
∂V
∂t

= −e2
∫ ∞

−∞

ds′

τ
(1 − β · β′)λ′(s′ − c(t − τ)), (8)

where λ′ denotes the derivative of function λ with respect to its argument.

Our general setup for a class of problems considered in this paper consists of a region of space

occupied by time independent magnetic field (a bending magnet or a sequence of magnets, an

undulator, etc.). Before entering this region, and after exiting it, the beam travels along straight

lines. Our goal will be to calculate the energy loss ∆E(z) (where z is the longitudinal coordinate

inside the beam) of different slices of the beam after it propagates sufficiently far enough from the

exit (t → ∞), so that its electromagnetic field returns to a steady state (the same state the beam

had before entering the region, at t → −∞). In this calculation, we will assume that the potential

at each particle of the bunch in the final state is the same as initial,

∆φ = φ(t → ∞) − φ(t → −∞) = 0. This assumption is justified if the bunch is not focused

transversely or compressed longitudinally relative to its initial state after it passes through the

region of magnetic field. The effects of transverse focusing on φ in round pipes were studied in

Ref. [15]; in principle, they can be added to our formalism, but they are not a subject of this work.

1 A different approach to eliminate the singularity without the assumption v = c was used in [5, 8]: the term re-

sponsible for the singularity was called the space charge effect; it was isolated and discarded as not relevant to the

radiation wakefield.

5



Taking into account the condition ∆φ = 0, integration of (8) over time from minus to plus infinity

gives the energy change ∆E from the initial to the final state. Because of the full derivative dE/dt,

the integration has to be carried out along the particle trajectory s = z + ct, where z is an integral

of motion and is equal to the coordinate s of a slice in the beam at t = 0. Replacing s by z + ct on

the right-hand side of (8), we integrate it over time,

∆E(z) = −e2
∫ ∞

−∞

dt
∫ ∞

−∞

ds′

τ(z + ct, s′)
(1 − β(z + ct) · β(s′))λ′(s′ − ct + cτ(z + ct, s′))

= −
e2

c

∫ ∞

−∞

ds
∫ ∞

−∞

ds′

τ(s, s′)
(1 − β(s) · β(s′))λ′(s′ − s + z + cτ(s, s′)). (9)

In the last integral we replaced the integration over time by integration over s. Formula (9) gives

the total integrated energy change at coordinate z in the bunch.

We will also consider in the paper the two cases when the asymptotic trajectories at t → ±∞ are

not straight lines: these are the case of a circular motion [1, 2] and an infinitely long wiggler

[8, 9]. These two models represent a long enough region of the magnetic field, such that the

transient effects due to the entrance to and exit from it can be neglected. In these two cases the

relevant quantity is the energy loss per unit length (averaged over the wiggler period in the case

of the wiggler). For circular motion the integration over s in (9) is omitted and the formula gives

an energy loss per unit length. For an infinitely long wiggler the integration over s is replaced by

averaging over one period of the wiggler.

As was first pointed out in [1], and also in subsequent studies, for short bunches, the main

contribution to the integral (7) comes from the particles behind the observation point, that is

s′ < s. While Eqs. (6)–(9) are valid for arbitrary bunch length, in this paper, following [1], we

will limit our analysis to such short bunches and replace the infinite upper limit in the integral

over s′ by s:

∆E(z) = −
e2

c

∫ ∞

−∞

ds
∫ s

−∞

ds′

τ(s, s′)
(1 − β(s) · β(s′))λ′(s′ − s + z + cτ(s, s′)). (10)

In many subsequent equations of this section this assumption can be easily omitted and, if

needed, the original form (9) used instead of (10).

B. CSR wake and impedance

Instead of working with function ∆E(z) it is more convenient to introduce the radiation

longitudinal wake w(z) and impedance Z(k). The wake w(z) of a point charge is defined by the
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following relation (see, e.g., [16])

∆E(z) = −e2
∫ ∞

−∞

λ(z′)w(z − z′)dz′ = −e2
∫ ∞

−∞

λ(z − ζ)w(ζ)dζ, (11)

where ζ = z − z′. In this formula we do not assume that the wake is localized in front of or behind

the particle—an assumption often used in the standard wakefield theory. The sign of the wake w

is chosen so that a positive w corresponds to energy loss. The longitudinal impedance is defined

by

Z(k) =
1
c

∫ ∞

−∞

dzw(z)e−ikz. (12)

Following Ref. [17], we use here e−ikz because the coordinate z is measured in the direction of

motion (in contrast to the classical wakes where z is often measured in the opposite direction).

Combining Eqs. (11) and (12) we obtain

∆E(z) = −e2c
∫ ∞

−∞

dkZ(k)λ̂(k)eikz = −2e2cRe
∫ ∞

0
dkZ(k)λ̂(k)eikz, (13)

where

λ̂(k) =
1

2π

∫ ∞

−∞

dz′e−ikz′λ(z′) (14)

is the Fourier transform of the distribution function. Making the inverse Fourier transform of (13)

we express Z through ∆E

Z(k) = −
1

2πe2cλ̂(k)

∫ ∞

−∞

dz∆E(z)e−ikz. (15)

Substituting (10) into this equation, changing the integration variable from z to s = z + ct and

carrying out the integration over t gives the following result:

Z(k) =
ik
c2

∫ ∞

−∞

ds
∫ s

−∞

ds′

τ(s, s′)
(1 − β(s) · β(s′))eik(cτ(s,s′)−s+s′). (16)

We see that the distribution function λ̂ is disappears from the definition of Z, as expected. Being a

Fourier transform of the real function w (see Eq. (12)) the impedance has a property

Z(−k) = Z∗(k).

A useful formula for the total energy loss U of the bunch due to radiation can be obtained from

Eq. (13),

U ≡ −
∫ ∞

−∞

dz ∆E(z)λ(z) = 4πe2c
∫ ∞

0
dkZ(k)|λ̂(k)|2. (17)
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III. DIVERGENCE OF FREE-SPACE IMPEDANCE AND NECESSITY OF SHIELDING

Eq. (16) gives a general formula for calculation of the impedance for arbitrary beam trajectory.

As we show in Section V, it can easily be applied to an infinitely long wiggler and a circular orbit

(in the latter case the integration over s in (16) is dropped), and reproduces the known results.

Unfortunately, the integral over s diverges for the trajectories that begin and end as straight lines.

This statement will be proved in Appendix B for the case of a bending magnet; it also follows

from the expression for the CSR wake derived in Ref. [6]. There is a simple physical mechanism

behind this divergence: it is due to the edge radiation [18] of the beam at the entrance and the exit

from the magnet. Indeed, the spectral energy at a given frequency ω of the edge radiation of a

relativistic particle is proportional to ln γ and tends to infinity when γ → ∞. At the same time,

the spectral energy loss of the beam due to radiation at this frequency is proportional to the real

part of Z(ω/c), see Eq. (17); this explains the divergence of Z in the limit γ → ∞. In many

practical cases, the circumstance that makes the energy of the edge radiation finite is the presence

of metal walls of the vacuum chamber surrounding the orbit, or shielding.

The simplest model that takes into account the shielding and at the same time allows for

analytical results consists of two parallel perfectly conducting plates with the orbit located in the

middle as shown in Fig. 1. We will assume that the plates are located at y = ±1
2a with a being the

full gap between the plates.

The derivation of ∆E(z) and Z(k) from the previous section can be easily generalized to include

the boundary conditions at the metal plates. These conditions require zero tangential electric field

on the surface of the plates and can be satisfied by introducing image charges and currents to the

system [2]. With account of these image charges and currents, Eqs. (4) are replaced by

φ(r, t) =
e
c

∞∑
m=−∞

∫
d3r′

τ
nm(r′, t − τ),

A(r, t) =
e
c

∞∑
m=−∞

∫
d3r′

τ
βm(r′)nm(r′, t − τ). (18)

Here index m marks the images with the charge density

enm(r, t) = (−1)men0(r − maŷ, t), (19)

where ŷ is the unit vector in y direction and n0(r, t) is the density distribution of the “real” beam.

The normalized velocity of the m-th image is

βm,x(r) = β0,x(r − maŷ), βm,y(r) = (−1)mβ0,y(r − maŷ), βm,z(r) = β0,z(r − maŷ). (20)
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FIG. 1. Parallel plates located at y = ± 1
2 a and a plane orbit in the mid-plane shown by black. The coordinate

system is chosen so that the orbit lies in the xz plane and the z-axis is directed along the tangent vector to

the trajectory at x = z = 0.

In what follows, we consider plane orbits lying in the y = 0 plane. For such orbits β0,y = 0 and

Eqs. (20) are simplified,

βm(r) = β0(r − maŷ). (21)

Substituting (19) and (21) into (18) and changing the integration variable r′ −maŷ→ r′ we obtain

φ(r, t) =
e
c

∞∑
m=−∞

(−1)m
∫

d3r′

τm
n0(r′, t − τm),

A(r, t) =
e
c

∞∑
m=−∞

(−1)m
∫

d3r′

τm
β0(r′)n0(r′, t − τm), (22)

where cτm(r, r′) = |r − r′ + maŷ|. Replacing Eqs. (4) by Eqs. (22) and repeating the derivation of

the impedance Z(k) from the previous Section with the new expressions for the potentials, we

obtain a generalization of Eq. (16) that includes the effect of shielding by parallel plates:

Z(k) =
ik
c2

∫ ∞

−∞

ds
∫ s

−∞

ds′
∞∑

m=−∞

(−1)m 1 − β(s) · β(s′)
τm(s, s′)

eik(cτm(s,s′)−s+s′), (23)

where cτm(s, s′) =
√
|r0(s) − r0(s′)|2 + m2a2 and we replaced β0 by the original notation β. Our

previous result (16) of the impedance in free space is contained in this formula as a summand

with m = 0.
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While Eq. (23) looks like a viable starting point for practical calculations, there are two

difficulties associated with it. The first one is that the summation over m cannot be interchanged

with the integration, because, as mentioned above, the integration in the term m = 0 diverges in

the case of straight orbits. The second difficulty is due to a slow convergence of the sum over m

with the subsequent summands changing sign. These two difficulties can be overcome through a

transformation in which the summation over m is carried out. This transformation is described in

Appendix A; it replaces (23) by the following formula,

Z(k) = −
2πk
ac

∞∑
p=0

∫ ∞

−∞

ds
∫ s

−∞

ds′H(1)
0

(
ckτ(s, s′)

√
1 − (2p + 1)2π2/k2a2

)
× (1 − β(s) · β(s′))e−ik(s−s′), (24)

where H(1)
0 is the Hankel function of the first kind.

We now make too simplifying assumptions. We first assume that

ka � 1, (25)

that is the reduced wavelength o = λ/2π that can be associated with the bunch length is much

smaller than the gap a between the plates. With the sum over p rapidly converging, this allows us

to treat π(2p + 1)/ka is a small parameter. Second, we assume that ckτ in the argument of the

Hankel function in the region of integration that makes a dominant contribution to the integral is

much greater than one. This typically means that

kρ � 1, (26)

or the reduced wavelength is much smaller than the characteristic bending radius in the system.

With these two assumptions we Taylor expand the square root in the argument of H(1)
0 in (24) and

use the asymptotic expansion for the Hankel function in the limit of large argument,

H(1)
0 (z) ≈ (1 − i)

√
1
πz

eiz. (27)

We then obtain

Z(k) ≈ (i − 1)
2
√
πk

ac

∞∑
p=0

∫ ∞

−∞

ds
∫ s

−∞

ds′
1 − β(s) · β(s′)
√
|r0(s) − r0(s′)|

exp
(
−icτ(s, s′)

(2p + 1)2π2

2ka2

)
× exp

[
ik(cτ(s, s′) − s + s′)

]
. (28)
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One more approximation can be made if we assume that the trajectory is at a small angle with a

straight line. We then choose a Cartesian coordinate system with coordinate z directed along this

line and approximate cτ(s, s′) = |r0(s) − r0(s′)| ≈ z − z′ in (28):

Z(k) = (i − 1)
2
√
πk

ac

∞∑
p=0

∫ ∞

−∞

dz
∫ z

−∞

dz′
1 − β(z) · β(z′)
√

z − z′
exp

(
−i(z − z′)

(2p + 1)2π2

2ka2

)
× exp

[
ik(cτ(z, z′) − s(z) + s(z′))

]
. (29)

Note that replacing cτ by its approximation z − z′ in two places of the integrand in (28) we do not

do this in the last exponent. The reason for that is that, as we mentioned above, ckτ is a large

number, and even small corrections to it can lead to a large phase error in the last exponential

function. A more accurate approximation for this term will be used in subsequent sections.

IV. COMPUTER CODE CSRZ

To verify the validity of approximations that were made in the derivation of the radiation

impedance, in the following sections of the paper we make a comparison of our analytical results

with a computer code CSRZ that uses a numerical algorithm to find electromagnetic field of a

relativistic bunch and calculate the longitudinal wake and impedance. The details of the

algorithm implemented in the code can be found in Ref. [19]. Here we give its brief description.

The code solves the parabolic equation [20–22] in the frequency domain in a curvilinear

coordinate system x, y, s,

∂E⊥
∂s

=
i

2k

(
∇2
⊥E⊥ − 4πe∇⊥ n +

2k2x
ρ(s)

E⊥
)
, (30)

where E⊥ = (Ex, Ey) is the transverse electric field and k = ω/c is the wavenumber. The boundary

conditions for the field correspond to a metal surface of a rectangular cross section with a given

aspect ratio b/a (where a is the size of the rectangle along y and b is along x). The beam has

transverse charge distribution en(x, y) that is independent of s. In calculations presented in this

paper we used a bi-Gaussian transverse distribution with the rms sizes of a few tens of microns in

the vertical and a few hundreds of microns in the horizontal directions. The radius of curvature of

the reference orbit ρ(s) is allowed to arbitrary vary along s. Specifying different functions ρ(s)

enables the code to simulate a broad range of practical devices, such as a single bending magnet,

a series of bending magnets connected by straight chambers, or even an undulator or a wiggler.
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With paraxial approximation [22], the longitudinal electric field is found to be

Es =
i
k

(
∇⊥ · E⊥ −

4π
c

js

)
, (31)

where js = enc is the current density. Then longitudinal radiation impedance is calculated by

directly integrating Es over s

Z‖(k) = −
1
Q

∫ ∞

−∞

Es(xc, yc, s)ds, (32)

where (xc, yc) denotes the center of the beam in the transverse plane and Q is the charge of the

beam.

While the code calculates the impedance assuming a metallic vacuum chamber of rectangular

cross section, our analytical theory deals with two parallel metal plates. To be able to do a

comparison between the two approaches we set the vertical dimension of the vacuum chamber in

the code equal to the gap between the plates. At the same time, to minimize the effect of the

vertical walls of the chamber, we choose a large aspect ratio b/a. This positions the vertical walls

far from the beam orbit and suppresses their effect on the impedance. Experimenting with various

aspect ratios, we found that a good agreement with the parallel plates model can be achieved if

the aspect ratio b/a & 3. Below we indicate in the text the aspect ratio used in each particular

simulation.

V. REPRODUCING KNOWN RESULTS

In this section we will show how some of the known analytical results for the CSR impedance

can be easily obtained from the general formalism developed in the Section III.

A. Circular orbit

We first consider a circular orbit of radius ρ and calculate the CSR impedance Z per unit length.

The coordinate system and the orbit are shown in Fig. 2.

For large values of the wavenumber, k � 1/ρ, the dominant contribution to the integrals (16)

comes from distances much smaller then ρ, and we can use approximate formulas for the orbit:

x0(z) =
1

2ρ
z2, y0(z) = 0. (33)
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FIG. 2. A part of a circular orbit with coordinate system.

Within the same approximation, vector β is given by

β⊥(z) = x̂
z
ρ
, βz = 1 −

1
2ρ2 z2. (34)

We now express τ

cτ =
√

(z − z′)2 + (x0(z) − x0(z′))2 ≈ |z − z′| +
1

8ρ2|z − z′|
(z2 − z′2)2, (35)

and the factor 1 − β · β′,

1 − β · β′ = 1 −
(
1 −

1
2ρ2 z2

) (
1 −

1
2ρ2 z′2

)
−

1
ρ2 zz′ ≈

1
2ρ2

(
z − z′

)2 , (36)

as functions of z and z′. Finally, integrating the relation for the arc length

ds
dz

=

√
1 +

(
dx0

dz

)2

≈ 1 +
1

2ρ3 z2, (37)

we obtain

s(z) ≈ z
(
1 +

1
6ρ2 z2

)
. (38)

For unshielded CSR impedance (corresponding to the gap between the conducting plates a→ ∞)

we can use Eq. (16), in which, as discussed in Section II A, we drop the integration over s; this

gives the impedance per unit length of the trajectory. We also replace integration over s′ by

integration over z′, ds′ ≈ dz′ and take into account that z′ < z which means that the wake acting

on a given particle in the bunch is determined by the particles behind it. For τ in the denominator

of (16) we use τ ≈ (z − z′)/c, while more accurate expressions (35) and (38) are substituted into

the exponent. The result is:

Z(k) =
1
2

ik
cρ2

∫ z

−∞

dz′(z − z′) exp
(
−ik

1
24ρ2 (z − z)′3

)
=

1
31/3 (i +

√
3)Γ

(
2
3

)
k1/3

cρ2/3 , (39)
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where Γ is the gamma-function. Note that the main contribution to the integral comes from the

distance z − z′ ∼ `‖, with `‖ = (24ρ2/k)1/3; this distance is interpreted as the formation length of

the radiation with the wavelength 2π/k. Eq. (39) fully agrees with the wakefield first derived

in [1] (and our derivation to some extent repeats the derivation in that paper).

It is also very easy to derive the shielded CSR impedance of a circular orbit between parallel

conducting plates, and reproduce the result of Ref. [2]. For this we use Eq. (29) again dropping

the integration over z to obtain the impedance per unit length,

Z(k) = (i − 1)

√
πk

acρ2

∞∑
p=0

∫ z

−∞

dz′
(
z − z′

)3/2 exp
(
−i(z − z′)

(2p + 1)2π2

2ka2 − i
k

24ρ2 (z − z)′3
)
. (40)

To improve the convergence of the integral we change the integration variable from z′ to t with

t = eiπ/6(k/24ρ2)1/3(z − z′) which corresponds to the rotation of the integration path in the

complex plane of the variable z − z′. As a result we arrive at the expression for the impedance in

the form first obtained in Ref. [2],

Z(k) =
4
√

2π
c

32/3eiπ/6 k1/3

αρ2/3

∞∑
p=0

∫ ∞

0
t3/2dt exp

(
−t3 − t

(2p + 1)2π2

2α2

)
, (41)

where

α =
e−iπ/6k2/3a
21/231/6ρ1/3 . (42)

We see that the impedance, apart from a general scaling factor, depends on one dimensionless

variable k2/3a/ρ1/3 which can be interpreted as a ratio of a to the transverse coherence (or

formaion) size of the radiation `⊥ ∼ ρ1/3/k2/3. Analysis shows that in the limit a � `⊥ the

shielded impedance (41) approaches the unshielded result (39). In the opposite limit, a � `⊥, the

shielded impedance becomes much smaller that (39).

B. Infinitely long wiggler in free space

CSR wake of an infinitely long wiggler in free space was first calculated in Ref. [5]. The

complicated general analytical expressions derived in that paper were somewhat simplified in

Ref. [6] in the limit v = c and assuming the wiggler parameter K � 1. It was then used in the

study of the beam instability in damping rings in [23]. We will now show how the result of [6]

can be straightforwardly obtained from the method developed in this work. The derivation below

is much simpler than the approach used in Ref. [23].
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Consider a long plane wiggler that is characterized by the wiggler parameter K � 1 and period

λw. In this analysis we neglect the contribution to the impedance from the transient regions at the

entrance to and the exit from the wiggler. The trajectory of a relativistic particle with the Lorentz

factor γ in such a wiggler is given by

x0(z) = −
θ0

kw
cos kwz, y0(z) = 0, (43)

with the velocity

β⊥(z) = θ0 x̂ sin kwz, βz = 1 −
1
2
θ2

0 sin2 kwz, (44)

where kw = 2π/λw, θ0 = K/γ and we assume that θ0 � 1. Note, that we take the limit γ → ∞

after we have introduced θ0; the angle θ0 is considered as a small, but finite number. Using the

smallness of θ0 it is easy to derive approximate expressions for all the factors that enter Eq. (16)

as was done for a circular orbit in the previous section. We find (z′ < z)

cτ =
√

(z − z′)2 + (x0(z) − x0(z′))2 ≈ z − z′ +
θ2

0

2k2
w(z − z′)

(cos kwz − cos kwz′)2,

1 − β · β′ ≈
1
2
θ2

0
(
sin kwz − sin kwz′

)2 , s(z) ≈ z
(
1 +

1
4
θ2

0

)
−

θ2
0

8kw
sin 2kwz. (45)

We now substitute these expressions into Eq. (16) and replace the integration over s and s′ by the

integration over z and z′ using ds ≈ dz and ds′ = dz′. We limit the integration over z by one

wiggler period and divide the result by λw; this gives the impedance per unit length averaged over

the undulator period. Finally, we replace the integration variable z′ by ζ = z − z′. The result is2,

Z(k) =
4iqkw

πc

∫ λw

−λw

dz
∫ ∞

0

dζ
ζ

sin2
(
kw
ζ

2

)
cos2

(
kwz −

kwζ

2

)
× exp

[
−iq

(
kwζ − sin(kwζ) cos(2kwz − kwζ) −

8
kwζ

sin2
(
kwζ

2

)
sin2

(
kwz −

kwζ

2

))]
, (46)

where

q =
kθ2

0

4kw
. (47)

Analysis of this formula (which we do not present here) shows that this expression coincides with

the result of Ref. [9]. Note that parameter q is equal to the ratio of the frequency ck to the

fundamental radiation frequency of the wiggler ≈ 4ckwγ
2/K2.

2 The requirement K � 1 comes from the following consideration. If one does not take the limit v = c in (16), the

exponential factor cτ(s, s′) should be replaced by vτ(s, s′). Tracing this term to Eq. (46) gives an addition phase

term ikζ(1 − v/c) ≈ ikζ/2γ2 in the exponential factor. To be able to neglect this term in comparison with ikθ2
0ζ/4

we should require θ0 � 1/γ that is K � 1.
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The limiting case q � 1 deserves a special attention—this is the case when the wavelength 2π/k

is much longer the the wiggler fundamental wavelength of radiation. To calculate the real part of

the impedance in this limit, Eq. (46) can be simplified taking into account that the integral

converges at distances ζ ∼ o/θ2
0 � 1, so that we can neglect terms on the order of 1 and ∼ 1/kwζ

in the phase and replace cos2 (kwz − kwζ/2) by its averaged value 1
2 ,

Re Z(k) =
k
c
θ2

0

∫ ∞

0

dζ
ζ

sin2
(
kwζ

2

)
sin

(
1
4
θ2

0kζ
)

=
πk
4c
θ2

0. (48)

Similarly, for the imaginary part we find

Im Z(k) =
k
c
θ2

0

∫ ∞

0

dζ
ζ

sin2
(
kwζ

2

)
cos

(
1
4
θ2

0kζ
)

= −
k
2c
θ2

0 ln
(

1
4kw

θ2
0k

)
. (49)

These results are also in agreement with [9].

VI. IMPEDANCE OF A KINK ORBIT

We now proceed to the calculation of the radiation impedance for several types of orbits that have

not been studied before in the literature.

One of the simplest cases is presented by a short dipole magnet that deflects the beam by angle

θ0 � 1. In our analysis we neglect the length of the magnet and consider the orbit consisting of

two straight lines with the second one rotated by a small angle θ0 relative to the first: x0(z) = 0 for

z < 0 and x0(z) = θ0z for z > 0, see Fig. 3. Radiation of a point charge moving on such an orbit is

�

�

θ�

FIG. 3. Kink orbit shown in blue corresponds to a short magnet that deflects the orbit by a small angle

θ0 � 1.

studied in the textbook [24]—it can be related to the low-frequency limit of the bremsstrahlung

radiation. A more complicated case where the finite length of the magnet is taken into account is

considered in the next Section.
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We will use Eq. (29) assuming a gap a between the parallel conducting plates. It is clear that the

integrand is not equal to zero only if z > 0 and at the same time z′ < 0, because otherwise

1 − β(z) · β(z′) = 0. Using the smallness of angle θ0, for z > 0 and z′ < 0, we find

cτ(z, z′) ≈ z − z′ +
1

2(z − z′)
θ2

0z2, s − s′ =

√
z2 + θ2

0z2 − z′ ≈ z − z′ +
1
2
θ2

0z,

1 − β · β′ =
1
2
θ2

0. (50)

This gives the following expression for the impedance

Z(k) ≈ (i − 1)

√
πk

ac
θ2

0

∞∑
p=0

∫ ∞

0
dz

∫ ∞

z

dζ
√
ζ

exp
(
−ik

1
2
θ2

0z + ik
1
2ζ
θ2

0z2 − iζ
(2p + 1)2π2

2ka2

)
, (51)

with ζ = z − z′. Changing the order of integration in (51), and using the relation∫ ζ

0
dz exp

(
−ik

1
2
θ2

0z + ik
1
2ζ
θ2

0z2
)

= −

√
π

2
(i + 1)e−it2/4erf

(
i − 1

2
√

2
t
) √

2ζ
kθ2

0

, (52)

where t =

√
ζkθ2

0/2 and erf(x) is the error function, we arrive at the following equation

Z(k) =
8π

ackθ0

∞∑
p=0

∫ ∞

0
tdt exp

(
−it2 (2p + 1)2π2

k2a2θ2
0

)
e−it2/4erf

(
i − 1

2
√

2
t
)
. (53)

Using w = kaθ0 we can write this equation in the following form

Z(w)
Z0

=
2
w

∞∑
p=0

∫ ∞

0
tdt exp

(
−it2

[
(2p + 1)2π2

w2 +
1
4

])
erf

(
i − 1

2
√

2
t
)
, (54)

where Z0 = 4π/c is the impedance of free space. The integral on the right-hand side can be easily

calculated numerically as a function of parameter w; the sum can also be calculated analytically

Z(w)
Z0

=
1

2π

[
ψ(0)

(
1
2

+
iw
4π

)
+ ψ(0)

(
1
2
−

iw
4π

)
− 2ψ(0)

(
1
2

)]
, (55)

where ψ(0)(x) = Γ′(x)/Γ(x) is the polygamma function of order zero and Γ(x) is the gamma

function. The plot of this function is shown in Fig. 4. As it turns out, the impedance (54) is purely

real, Im Z = 0.

Let us consider the limiting cases of large and small values of w. For w � 1, assuming p ∼ 1, the

main contribution to the integral comes from the region t ∼ w � 1. In this region the error

function can be replaced by its asymptotic values for t � 1, erf(x) ≈ 2x/
√
π. We then obtain,

Z(w)
Z0
≈

2(i − 1)

w
√

2π

∞∑
p=0

∫ ∞

0
t2dt exp

(
−it2 (2p + 1)2π2

w2

)
=

w2

2π3

∞∑
p=0

1
(2p + 1)3 =

7w2

16π3 ζ(3), (56)
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FIG. 4. Impedance of a kink as a function of parameter w = kaθ0.

where ζ(x) is the Riemann zeta function. In the opposite limit, w � 1, from the asymptotic

approximation of the polygamma function, it follows that Z(w)/Z0 ∼ ln w.

Note that in the limit a→ ∞ the impedance of a kink diverges because this limit corresponds to

w→ ∞. Hence, the radiation impedance of a kink is not defined in free space (which formally

corresponds to a = ∞). This is of course a consequence of our assumption v = c.

The physical mechanism behind the radiation impedance of a kink can be attributed to the edge

radiation of the beam, as discussed in Section III. Given that the minimal transverse wavenumber

k⊥ in y direction is equal to π/a, we conclude that the bulk of the edge radiation energy is

localized at angles θ ∼ k⊥/k ∼ π/ak. There are two cones of radiation: the first one is localized

around the initial direction of motion, the z axis, and the second one is around the deflected

direction of motion at angle θ0. The regime w � 1 corresponds to the overlapping of the edge

radiation cones from the incoming and outgoing directions. The opposite regime, w � 1,

corresponds to the case when the cones are well separated in space.

Understanding the physical mechanism behind the impedance allows us to estimate the formation

length l f of the radiation—the distance after which radiation decouples from the charge. As

usually l f is estimated at l f ∼ 1/kθ2 where θ is the angular spread of the radiation; this gives

l f ∼ a2k. Requiring the formation length to be larger than the reduces wavelength 1/k we obtain

the condition when our analysis is correct, ak � 1, which we have already formulated in

Eq. (25). In the opposite limit, one cannot truncate the integration over s′ by replacing the upper
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infinite limit by finite s, as was done in transition from (9) to (10).

In Fig. 5 we compare the analytical result obtained with Eq. (55) with the numerical simulation
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FIG. 5. Comparison of the analytical theory (dots) and numerical simulations (solid lines) for the case of a

kink orbit. The blue line shows the real part and the red line shows the imaginary part of Z computed by the

code. The dots show Re Z computed using Eq. (54) (the imaginary part is equal to zero and is not shown).

carried out with the CSRZ code. With the code we simulated a short bending magnet of length

L = 1 cm and the bending radius of ρ = 1 m. The vertical size of the vacuum chamber is a = 2

cm and the aspect ratio b/a = 5. In analytical calculations we used the same a = 2 cm and the

bending angle θ0 = L/ρ = 0.01. The last point on the plot corresponds to the dimensionless

parameter w = kaθ0 = 2. Note that the numerical simulation shows a small imaginary part of Z;

in this regard it slightly deviates from the analytical model that predicts Im Z = 0. The simulated

real part of the impedance agrees very well with the analytical one.

VII. BENDING MAGNET OF FINITE LENGTH WITH SHIELDING

We now consider a bending magnet of length L and bending radius ρ. The magnet occupies the

region 0 < z < L. The orbit is located in the midplane of two shielding parallel plates with the

gap a and consists of a straight line that enters the magnet at z = 0, a circular arc inside the

magnet, and a straight line exiting the magnet; see Fig. 6. We assume that the bending angle

θ0 ≈ L/ρ is small, θ0 � 1.
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FIG. 6. The orbit for a bending magnet of length L consists of straight line z < 0, a circular arc occupying

the region 0 < z < L and a straight line in the region z > L tilted at angle θ0. Panes a), b), c) and d) show

four different situations for relative locations of the leading point z (shown by the red dot) and that of the

trailing point z′ (shown by the blue dot). The beam moves from left to right.

Using Eq. (29) for the calculation of the impedance and remembering that z′ < z we will have

four situations where the analytical expressions for the integrand in (29) have different forms.

They are: both z and z′ are located inside the magnet as shown in Fig. 6 a; both z and z′ are

located outside of the magnet as shown in Fig. 6 b; z is inside and z′ is outside, Fig. 6 c; z is

outside and z′ is inside, Fig. 6 d. We denote the corresponding contributions to the impedance by

Z1, Z2, Z3 and Z4, respectively; they are derived in Appendix B and given by Eqs. (B3), (B8),

(B13) and (B17). For each region we find approximate expressions for τ(z, z′), s − s′ and

1 − β · β′ in terms of z and z′. It turns out that one of the integrations in (29) can be carried out

analytically and the result is expressed through either elementary or special functions. The

resulting expression for the impedance consists of a sum over p of one dimensional integrals that

can be computed numerically.

In Appendix B, we also show through a direct calculation that in free space (a = ∞) the

contribution Z4 diverges at the upper limit and the radiation impedance is infinite. This proves the

statement made in Section III.

To demonstrate the capabilities of the analytical method, in Fig. 7, we benchmark our formulas
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with numerical simulations. The left pane shows the impedance for the bending magnet with
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FIG. 7. Comparison of analytical calculations (shown by dots) with computer simulations (shown by solid

lines): Re Z (blue) and Im Z (red).

L = 20 cm, ρ = 5 m, a = 2 cm, and the right pane shows the impedance for a magnet with L = 55

cm, ρ = 12.94 m, a = 2 cm. The second magnet has parameters of the magnets in the second

bunch compressor of the LSLS-II free electron laser project [25]. In numerical calculations we

used the aspect ratio 5 for the first case and 4 for the second one. The plots show an excellent

agreement between the analytical and numerical results. A slight discrepancy at very large values

of k at the second pane is likely due to inaccuracy associated with the parabolic equation

approximation.

VIII. RADIATION IMPEDANCE OF A WIGGLER OF FINITE LENGTH

We now consider a plane wiggler that has Nw periods (Nw is an integer) with the period length λw

and the undulator parameter K � 1. As in Section V B, we introduce θ0 = K/γ � 1 and

kw = 2π/λw. Particle orbits inside the wiggler, 0 < z < Nwλw, are given by the following equations

x0(z) = θ0k−1
w (1 − cos(kwz)), y0(z) = 0

β⊥(z) = θ0 x̂ sin(kwz), βz = 1 −
1
2
θ2

0 sin2(2kwz); (57)

outside of the wiggler we have x0(z) = y0(z) = 0. In comparison with Eqs. (43) and (44) we added

inside the wiggler a constant shift θ0k−1
w to x to eliminate a jump in the first derivative of the orbit

in the transition from the straight sections. The orbit is sketched in Fig. 8.
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FIG. 8. Wiggler of length Lw = Nwλw with the orbit shown by blue line.

Calculating the impedance with Eq. (29) we split the contributions to Z into three parts: first, Z1,

when 0 < z, z′ < Lw; second, Z2, when −∞ < z′ < 0 and 0 < z < Lw; and third, Z3, corresponding

to the integration 0 < z′ < Lw and Lw < z < ∞. The details of the calculations can be found in

Appendix C with the resulting expression for the impedances given by Eqs. (C7), (C11)

and (C15).

Comparison of analytical calculations with numerical simulations for a wiggler is shown in

Fig. 9. The wiggler has one period, Nw = 1, the period length λw = 1 m and the angle
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FIG. 9. Wiggler impedance: comparison of analytical calculations (shown by dots) with computer simula-

tions (shown by solid lines). Re Z is shown by blue color and Im Z is red.

θ0 = 1.6× 10−2. The gap is a = 2 cm and the aspect ratio b/a = 5. In another run we also used the

aspect ratio b/a = 10—the result was the same as for b/a = 5. We find an excellent agreement

between the numerical and analytical calculations in this case too.
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IX. WIGGLER OF INFINITE LENGTH WITH SHIELDING

For a long wiggler with many periods one can use an approximation Nw → ∞ and calculate the

impedance averaged over one period, as it was done in Section V B for an infinitely long wiggler

in free space. This calculation is carried out in Appendix D, with the impedance given by

Eq. (D4).

To test Eq. (D4) we calculated the radiation impedance for NSLS-II damping wigglers [26]. The

wiggler has the following parameters: Nw = 70, λw = 10 cm, K = 16.8. With the NSLS-II beam

energy of 3 GeV the maximal deflection angle is θ0 = 1.86 × 10−3. The vertical transverse size of

the vacuum chamber a = 11.5 mm was used for the gap between the parallel conducting plates in

the analytical model. In numerical calculations the horizontal size of the vacuum chamber was

taken to be three times larger than the vertical one, b = 3a. The impedance calculated with

Eq. (D4) and with the code CSRZ is shown in Fig. 10. As one can see from this figure, the
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FIG. 10. Comparison of analytical calculations (left pane) with computer simulations (right pane) for NSLS-

II wiggler impedance: Re Z (blue) and Im Z (red).

impedance is dominated by sharp, resonant-like spikes at several frequencies. The locations of

the spikes is explained by the synchronicity between waveguide modes of the rectangular vacuum

chamber with the wiggling trajectory of the beam [27]. The resonant values of k are defined by

the following equation,

k − kw =

√
k2 −

π2n2

a2 −
π2m2

b2 , (58)

where n is an odd and m is an even number, and a and b are the dimensions of the rectangular
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cross section. From the analysis of this equations if follows that the twelve spikes on the right

plot of Fig. 10 are all explained by the resonances with n = 1, 3 and m ≤ 12. In the parallel plates

model, formally b = ∞, and the resonant modes are given by (58) with m = 0. The two spikes on

the left plot of Fig. 10 are the n = 1, 3 resonances.

While impedances in the left and the right plots look very different, it is remarkable that at a short

distance they correspond to the same wakefield. This is illustrated by Fig. 11 in which the blue

and black lines show two wakefields, numerical and analytical, calculated from the impedances

shown in Fig. 10 for a Gaussian bunch with rms length of 0.5 mm. We see that the complicated
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FIG. 11. Wakefields for a Gaussian bunch with σz = 0.5 mm (the bunch profile is shown by red dotted

line): calculated with CSRZ (blue line) and with the analytical model (red line) using impedances shown

in Fig. 10. The dashed magenta shows the numerically calculated wake for the aspect ratio b/a = 16. The

bunch head is to the right; positive wake corresponds to the energy loss.

resonant structure of the impedances causes deviation of the wakes at distances z . −0.2 cm,

while for z & −0.2 cm we have an excellent agreement between the wakes computed with both

methods. In Fig. 11 we also show another numerically calculated wakefield, for an aspect ratio

b/a = 16 (the dashed magenta line). As expected, this wake agrees much better with the

analytical wake (the black line) of the parallel plates model.
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X. SUMMARY

In this paper, we presented general expressions, Eqs. (24) and (29), for the radiation impedance

of a relativistic beam moving on an arbitrary plane orbit between two parallel conducting plates.

In the derivation of these expressions we assumed that the transverse size of the beam is infinitely

small and the particles move with v = c. Eq. (29) additionally assumes a short bunch and an orbit

that does not deviate much from the direction of the z axis.

We showed that all known in the literature analytical results for the radiation impedance can be

straightforwardly obtained from these expression. New analytical results were derived for the

radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler

of finite length, and an infinitely long wiggler. All our formulas are benchmarked agains

numerical simulations with the CSRZ code.
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Appendix A: Calculation of infinite sum in Eq. (23)

The infinite sum in Eq. (23) can be written as

S =

∞∑
m=−∞

(−1)m 1√
q2 + m2a2

exp
[
ik

√
m2a2 + q2

]
, (A1)

where q = cτ(s, s′) = |r0(s) − r0(s′)|. We first introduce an infinite sum of the delta functions and

add an integration over a continuous variable t,

S =

∫ ∞

−∞

dt
∞∑

m=−∞

δ(t − m)
cos(πt)√
q2 + t2a2

exp
[
ik

√
t2a2 + q2

]
. (A2)

We then use the identity

∞∑
m=−∞

δ(t − m) =

∞∑
p=−∞

e2πipt (A3)

to obtain

S =

∫ ∞

−∞

dt
∞∑

p=−∞

e2πipt cos(πt)√
q2 + t2a2

exp
[
ik

√
t2a2 + q2

]
=

1
a

∞∑
p=−∞

∫ ∞

−∞

dt√
q2/a2 + t2

e(2p+1)iπt exp
[
ika

√
t2 + q2/a2

]
. (A4)

This can also be written as

S =
4
a

∞∑
p=0

∫ ∞

0
dt

cos[(2p + 1)πt]√
q2/a2 + t2

exp
[
ika

√
t2 + q2/a2

]
. (A5)

Using the integrals 3876.1 and 3876.2 from Ref. [28] we find that∫ ∞

0

cos(px)√
x2 + q2

exp(ik
√

x2 + q2)dx = i
π

2
H(1)

0 (q
√

k2 − p2), (A6)

where H(1)
0 is the Hankel function of the first kind. Returning now to Eq. (A5) we finally obtain

S =
2π
a

i
∞∑

p=0

H(1)
0

(
q
√

k2 − (2p + 1)2π2/a2
)
. (A7)

Substituting this expression for S (see Eq. (A1)) into (23) gives (24).
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Appendix B: Bend of finite length with shielding

1. Contribution Z1 from region 0 < z′ < z < L

A formula for Z1 can be easily obtained from (40) if we restore integration over z (that was

omitted in (40)) and change the integration interval for z′ from (−∞, z) to (0, z),

Z1(k) = (i − 1)

√
πk

acρ2

∞∑
p=0

∫ L

0
dz

∫ z

0
dz′

(
z − z′

)3/2 exp
(
−i(z − z′)

(2p + 1)2π2

2ka2

)
× exp

(
−ik

1
24ρ2 (z − z)′3

)
. (B1)

Replacing the integration variables z′ and z by ξ = (z − z′)k1/3/241/3ρ2/3 and τ = zk1/3/241/3ρ2/3,

respectively, we obtain

Z1 = (i − 1)
27/237/6√πρ1/3

ack2/3

∞∑
p=0

∫ l

0
dτ

∫ τ

0
dξ ξ3/2 exp

[
−iξ3 − iξQ(2p + 1)2

]
, (B2)

where Q = 31/3π2ρ2/3/a2k4/3 and l = Lk1/3/241/3ρ2/3. Finally, changing the order of integration

allows one to take the integral over τ giving

Z1 = (i − 1)
27/23

√
Q

c
√
π

∞∑
p=0

∫ l

0
dξ (l − ξ)ξ3/2 exp

[
−iξ3 − iξQ(2p + 1)2

]
. (B3)

The parameter Q is the shielding parameter ka3/2/ρ1/2 to the power −4/3. The parameter l is

equal to the ratio of L to the formation length of the radiation with wavenumber k.

In the limit l � 1 the factor l − ξ in (B3) is replaced by l, and the impedance becomes

proportional to L. In this limit, the impedance per unit length Z1/L reduces to an expression that

is equal to (41).

2. Contribution Z2 from region z′ < 0 and L < z

A simple geometrical analysis gives the following expressions for τ, s and s′ as functions of z and

z′,

cτ ≈ ζ +
1
2ζ
θ2

0

(
z −

1
2

L
)2

, s ≈ (z − L)
(
1 +

1
2
θ2

0

)
+ L

(
1 +

1
6
θ2

0

)
, s′ = z′, (B4)

where ζ = z − z′. We also have 1 − β(s) · β(s′) = 1
2θ

2
0. In these expressions we used the smallness

of θ0 and neglected terms of order higher than θ2
0.
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With account of these relations Eq. (29) becomes

Z2 = (i − 1)θ2
0

√
πk

ac

∞∑
p=0

∫ ∞

L
dz

∫ 0

−∞

dz′
√
ζ

exp
(
−iζ

(2p + 1)2π2

2ka2

)

× exp
ik  1

2ζ
θ2

0

(
z − L +

1
2

L
)2

−
1
2
θ2

0(z − L) −
1
6
θ2

0L
 . (B5)

We now change the integration variables from z′ and z to ξ = 1
2kθ2

0(z − z′) and τ = 1
2kθ2

0(z − L),

respectively, to obtain

Z2 = (i − 1)
23/2√π

kacθ0
e−iu/3

∞∑
p=0

∫ ∞

0
dτe−iτ

∫ ∞

τ+u

dξ
√
ξ

exp
−iξq + i

1
ξ

(
τ +

1
2

u
)2 , (B6)

where u = 1
2kθ2

0L and q = (2p + 1)2π2/k2a2θ2
0. The internal integral can be expressed through the

error function erf(x) and erfc(x) = 1 − erf(x) using the following identity

F(a, b, c) =

∫ ∞

c

dξ
√
ξ

exp
(
i
a
ξ
− ibξ

)
=

√
π

2
√

ib
e−2

√
ab

erf
 √−ia −

√
ibc

√
c

 + e4
√

aberfc
 √−ia +

√
ibc

√
c

 + 1
 , (B7)

which gives

Z2 = (i − 1)
23/2√π

kacθ0
e−iu/3

∞∑
p=0

∫ ∞

0
dτe−iτF

(τ +
1
2

u
)2

, q, τ + u
 . (B8)

If the upper limit of integration over z in Eq. (B5) is not infinity by some finite value L + Z, it is

easy to check that Eq. (B8) is replaced by the following one

Z2 = (i − 1)
23/2√π

kacθ0
e−iu/3

∞∑
p=0

∫ uZ

0
dτe−iτF

(τ +
1
2

u
)2

, q, τ + u
 , (B9)

where uZ = 1
2kZθ2

0.

3. Contribution Z3 from region z′ < 0 and 0 < z < L

In this region, the following expressions for τ, s, s′ and 1 − β · β′ are valid,

cτ ≈ ζ +
1
2ζ

1
4L2 θ

2
0z4, s ≈ z +

1
6L2 θ

2
0z3, s′ = z′, 1 − β · β′ =

1
2L2 θ

2
0z2. (B10)

Substituting them into (29) gives

Z3(k) = (i − 1)

√
πkθ2

0

acL2

∞∑
p=0

∫ L

0
z2dz

∫ 0

−∞

dz′
√
ζ

exp
(
−iζ

(2p + 1)2π2

2ka2

)
exp

[
ik

(
θ2

0z4

8ζL2 −
θ2

0z3

6L2

)]
. (B11)
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We now change the integration variables from from z′ and z to ξ = 1
2kθ2

0(z − z′) and τ = 1
2kθ2

0z,

respectively, which gives

Z3(k) ≈ (i − 1)
23/2√π

d2kacθ0

∞∑
p=0

∫ u

0
τ2dτ exp

(
−

iτ3

3d2

) ∫ ∞

τ

dξ
√
ξ

exp
(

iτ4

4ξd2 − iqξ
)
, (B12)

where u = 1
2kθ2

0L, d = 1
2kθ3

0ρ and q = (2p + 1)2π2/k2a2θ2
0. We then use function F defined by (B7)

to obtain

Z3(k) ≈ (i − 1)
23/2√π

d2kacθ0

∞∑
p=0

∫ u

0
τ2dτ exp

(
−

iτ3

3d2

)
F

(
τ4

4d2 , q, τ
)
. (B13)

4. Contribution Z4 from region 0 < z′ < L and L < z

In this region we have,

cτ ≈ ζ
1 +

1
2ζ2 θ

2
0

(
z −

1
2

L −
1

2L
z′2

)2 , s ≈ (z − L)
(
1 +

1
2
θ2

0

)
+ L

(
1 +

1
6
θ2

0

)
,

s′ = z′ +
1
6
κ2z′3, 1 − β · β′ ≈

1
2
κ2(L − z′)2. (B14)

Using Eq. (29) we obtain

Z4(k) ≈ (i − 1)

√
πk

acρ2 exp
(
1
3

ikθ2
0L

) ∞∑
p=0

∫ L

0
(L − z′)2dz′

×

∫ ∞

L

dz
√
ζ

exp

−1
2

ikθ2
0z + i

kz′3

6ρ2 + i
kθ2

0

2ζ

(
z −

1
2

L −
z′2

2L

)2

− iζ
(2p + 1)2π2

2ka2

 . (B15)

Changing the integration variables from z and z′ to τ = 1
2kθ2

0(L − z′) and ξ = 1
2kθ2

0(z − z′) after

simple transformations we obtain

Z4(k) ≈ (i − 1)
23/2√π

d2kacθ0
e−iu/3

∞∑
p=0

∫ u

0
τ2dτ exp

(
iτ + i

(u − τ)3

3d2 − i
τ2

d

) ∫ ∞

τ

dξ
√
ξ

exp
(

iτ4

4ξd2 − iqξ
)
,

(B16)

where u = 1
2kθ2

0L, d = 1
2kθ3

0ρ and q = (2p + 1)2π2/k2a2θ2
0. Again, using (B7) we reduce Z4 to a

one-dimensional integral

Z4(k) ≈ (i − 1)
23/2√π

d2kacθ0
e−iu/3

∞∑
p=0

∫ u

0
τ2dτ exp

(
iτ + i

(u − τ)3

3d2 − i
τ2

d

)
F

(
τ2

4d2 , q, τ
)
. (B17)
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If the upper limit of integration over z in Eq. (B15) is not infinity but some finite value L + Z, it is

easy to check that Eq. (B17) is replaced by the following one

Z4(k) ≈ (i − 1)
23/2√π

d2kacθ0
e−iu/3

∞∑
p=0

∫ u

0
τ2dτ exp

(
iτ + i

(u − τ)3

3d2 − i
τ2

d

)
×

[
F

(
τ2

4d2 , q, τ
)
− F

(
τ2

4d2 , q, τ + uZ

)]
. (B18)

where uZ = 1
2kθ2

0Z.

Using Eqs. (B14) we can now show that the contribution from this region does not converge if

one uses Eq. (16) (that is the impedance for free space) instead of (29). Indeed, comparing these

two expressions we see that, apart from a factor, (16) can be obtained from (29) by omitting the

term −iζ(2p + 1)2π2/2ka2 in the exponential function, replacing
√
ζ → ζ in the denominator, and

dropping the summation over p,

Z(no shield)
4 (k) ∝

∫ L

0
(L − z′)2dz′

∫ ∞

L

dz
z − z′

exp

−1
2

ikθ2
0z + i

kz′3

6ρ2 + i
kθ2

0

2(z − z′)

(
z −

1
2

L −
z′2

2L

)2 .
(B19)

In the limit z→ ∞ the exponential function in the integrand tends to a constant value and the

integral over z diverges logarithmically at the upper limit.

Appendix C: Wiggler of finite length

1. Contribution Z1 from region 0 < z′ < z < Lw

In this region Eqs. (45) are valid. Substituting them into (29) we obtain

Z1(k) = (i − 1)θ2
0

√
πk

ac

∞∑
p=0

∫ Lw

0
dz

∫ z

0

dz′
√
ζ

(
sin(kwz) − sin(kwz′)

)2 exp
(
−iζ

(2p + 1)2π2

2ka2

)

× exp
[
ik

(
θ2

0

2k2
wζ

(cos(kwz) − cos(kwz′))2 −
1
4
θ2

0ζ +
θ2

0

8kw
(sin 2kwz − sin 2kwz′)

)]
. (C1)

Using dimensionless variables, ξ = kwz, ν = kwζ and replacing the integration over z′ by

integration over ζ we rewrite (C1) as

Z1(k) = (i − 1)θ2
0

√
πk

k3/2
w ac

∞∑
p=0

∫ u

0
dξ

∫ ξ

0

dν
√
ν

(sin ξ − sin(ξ − ν))2 exp
(
−iν

(2p + 1)2π2

2kkwa2

)

× exp
[
i
kθ2

0

kw

(
1
2ν

(cos ξ − cos(ξ − ν))2 −
1
4
ν +

1
8

(sin 2ξ − sin 2(ξ − ν))
)]
, (C2)
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where u = kwLw = 2πNw.

While direct numerical integration in (C2) is possible, it is slow due to the oscillating nature of

the integrand. The following transformation makes is faster. We first change the order of

integration
∫ u

0
dξ

∫ ξ

0
dν =

∫ u

0
dν

∫ u

ν
dξ. We then use the expansion

eia cos φ =

∞∑
n=−∞

Jn(a)ein(π/2−φ) (C3)

and rewrite (C2) as follows using the notation r = kθ2
0/kw

Z1(k) = (i − 1)θ2
0

2
√
πk

k3/2
w ac

∞∑
p=0

∞∑
n=−∞

∫ u

0

dν
√
ν

∫ u

ν

dξ sin2 ν

2
(1 + cos (2ξ − ν)) exp

(
−iν

(2p + 1)2π2

2kkwa2

)
× exp

[
ir

(
1
ν

sin2 ν

2
−

1
4
ν

)]
Jn

(
1
4

r sin ν −
r
ν

sin2 ν

2

)
ein(π/2−2ξ+ν). (C4)

Integration over ξ can be carried out with the help of the following

G(ν, n, u) =

∫ u

ν

dξ (1 + cos (2ξ − ν)) ein(π/2−2ξ+ν) (C5)

=
1

2n
(
n2 − 1

) [
in+1e−iνn

((
n2 − 1

) (
e2iνn − 1

)
+ n2 cos(ν)

(
e2iνn − 1

)
− in sin(ν)

(
e2iνn + 1

))]
,

where u = 2πm with m integer. For n = 0 the integral is G(ν, 0, u) = u − ν − sin ν and for n = 1 it

is equal to

G(ν,±1, u) = ±
1
8

e−2iν
(
−4ie2iν(ν − u) + 4eiν − 4e3iν − e4iν + 1

)
. (C6)

Hence Eq. (C4) can be replace by

Z1(k) = −(1 − i)θ2
0

2
√
πk

k3/2
w ac

∞∑
p=0

∞∑
n=−∞

∫ u

0

dν
√
ν

G(ν, n, u) sin2 ν

2
exp

(
−iν

(2p + 1)2π2

2kkwa2

)
× exp

[
ir

(
1
ν

sin2 ν

2
−

1
4
ν

)]
Jn

(
1
4

r sin ν −
r
ν

sin2 ν

2

)
, (C7)

where the double integral is replaced by a sum (over n) of single integrals.

2. Contribution Z2 from region −∞ < z′ < 0 and 0 < z < Lw

In this region we have

cτ ≈ ζ +
θ2

0

2k2
wζ

(cos(kwz) − 1)2

1 − β · β′ = 1 −
(
1 −

1
2
θ2

0 sin2(kwz)
)

=
1
2
θ2

0 (sin(kwz))2 , (C8)

32



and

cτ − s(z) + s(z′) =
θ2

0

2k2
wζ

(cos(kwz) − 1)2 −
1
4
θ2

0z +
θ2

0

8kw
sin 2kwz. (C9)

Substituting these relations into (29) we obtain

Z2(k) = (i − 1)θ2
0

√
πk

ac

∞∑
p=0

∫ Lw

0
dz

∫ 0

−∞

dz′
√
ζ

(sin(kwz))2 exp
(
−iζ

(2p + 1)2π2

2ka2

)

× exp
[
ik

(
θ2

0

2k2
wζ

(cos(kwz) − 1)2 −
1
4
θ2

0z +
θ2

0

8kw
sin 2kwz

)]
. (C10)

Using dimensionless variables ξ = kwz, ν = kwζ and replacing integration over z′ by integration

over ζ we find

Z2(k) = (i − 1)θ2
0

√
πk

k3/2
w ac

∞∑
p=0

∫ u

0
dξ exp

[
i
kθ2

0

kw

(
−

1
4
ξ +

1
8

sin 2ξ
)]

(sin ξ)2

×

∫ ∞

ξ

dν
√
ν

exp
(
−iν

(2p + 1)2π2

2kkwa2

)
exp

[
i
kθ2

0

kw

1
2ν

(cos ξ − 1)2
]
. (C11)

where u = kwLw = 2πNw.

3. Contribution Z3 from region 0 < z′ < Lw and Lw < z < ∞

In this region we have

cτ ≈ ζ +
θ2

0

2k2
wζ

(1 − cos(kwz′))2

1 − β · β′ = 1 −
(
1 −

1
2
θ2

0 sin2(kwz′)
)

=
1
2
θ2

0
(
sin(kwz′)

)2]

s = z +
1
4
θ2

0Lw, (C12)

which gives

cτ − s(z) + s(z′) =
θ2

0

2k2
wζ

(1 − cos(kwz′))2 −
1
4
θ2

0Lw +
1
4
θ2

0z′ −
θ2

0

8kw
sin 2kwz′. (C13)

Substituting this into Eq. (29) we find

Z3(k) = (i − 1)θ2
0

√
πk

ac

∞∑
p=0

∫ Lw

0
dz′ exp

[
ik

(
−

1
4
θ2

0Lw +
1
4
θ2

0z′ −
θ2

0

8kw
sin 2kwz′

)] (
sin(kwz′)

)2

×

∫ ∞

Lw−z′

dζ
√
ζ

exp
(
−iζ

(2p + 1)2π2

2ka2

)
exp

[
ik

θ2
0

2k2
wζ

(1 − cos(kwz′))2
]
. (C14)
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Using dimensionless variables ξ = kwz′, ν = kwζ and replacing the integration over z by

integration over ζ we obtain

Z3(k) = (i − 1)θ2
0

√
πk

k3/2
w ac

∞∑
p=0

∫ u

0
dξ exp

[
i
kθ2

0

kw

(
1
4

(ξ − u) −
1
8

sin 2ξ
)]

(sin ξ)2

×

∫ ∞

u−ξ

dν
√
ν

exp
(
−iν

(2p + 1)2π2

2kkwa2

)
exp

[
i
kθ2

0

kw

1
2ν

(cos ξ − 1)2
]
, (C15)

where u = kwLw = 2πNw.

Appendix D: Infinitely long wiggler

To calculate the impedance of an infinitely long wiggler we use Eq. (C2) that corresponds to the

integration over the orbit inside the wiggler. In this equation, we replace integration over the

whole undulator by averaging over one period

Z(k) = (i − 1)θ2
0

√
πk

k3/2
w λwac

∞∑
p=0

∫ 2π

0
dξ

∫ ∞

0

dν
√
ν

(sin ξ − sin(ξ − ν))2 exp
(
−iν

(2p + 1)2π2

2kkwa2

)

× exp
[
i
kθ2

0

kw

(
1
2ν

(cos ξ − cos(ξ − ν))2 −
1
4
ν +

1
8

(sin 2ξ − sin 2(ξ − ν))
)]
. (D1)

Using standard trigonometric identities we cast (D1) into the following form

Z(k) = (i − 1)θ2
0

2
√
πk

k3/2
w λwac

∞∑
p=0

∫ 2π

0
dξ

∫ ∞

0

dν
√
ν

sin2 ν

2
(1 + cos (2ξ − ν)) exp

(
−iν

(2p + 1)2π2

2kkwa2

)

× exp
[
i
kθ2

0

kw

(
1
ν

sin2 ν

2
(1 − cos (2ξ − ν)) −

1
4
ν +

1
4

sin ν cos(2ξ − ν)
)]
. (D2)

We now change the order of integration and expand the integrand into the series of the Bessel

functions using (C3),

Z(k) = (i − 1)θ2
0

2
√
πk

k3/2
w λwac

∞∑
p=0

∞∑
n=−∞

∫ 2π

0
dξ

∫ ∞

0

dν
√
ν

sin2 ν

2
(1 + cos (2ξ − ν)) exp

(
−iν

(2p + 1)2π2

2kkwa2

)
× exp

[
ir

(
1
ν

sin2 ν

2
−

1
4
ν

)]
Jn

(
1
4

r sin ν −
r
ν

sin2 ν

2

)
ein(π/2−2ξ+ν), (D3)

where r = kθ2
0/kw. Integration over ξ selects J1 and J−1,

Z(k) = (i − 1)θ2
0

4π
√
πk

k3/2
w λwac

∞∑
p=0

∫ ∞

0

dν
√
ν

sin2 ν

2
exp

(
−iν

(2p + 1)2π2

2kkwa2

)
× exp

[
ir

(
1
ν

sin2 ν

2
−

1
4
ν

)] [
J0

(
1
4

r sin ν −
r
ν

sin2 ν

2

)
+ iJ1

(
1
4

r sin ν −
r
ν

sin2 ν

2

)]
. (D4)
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This expression can be integrated and summed numerically.

It is interesting to consider the limit of low frequencies, r � 1, and large gaps, a→ ∞. In this

limit Eq. (D4) should reproduce the low-frequency results of Section V B. Analysis shows that

the main contribution to (D4) in this limit comes from the region ν � 1, and we can simplify the

integrand replacing the Bessel functions J0 → 1, J1 → 0, and also

exp
[
ir

(
1
ν

sin2 ν

2
−

1
4
ν

)]
→ exp

[
−ir

1
4
ν

]
. (D5)

At the same time, due to large a, we replace the summation over p by integration

∞∑
p=0

→

∫ ∞

0
dp. (D6)

As a result, we obtain

Z(k) = (i − 1)θ2
0

4π
√
πk

k3/2
w λwac

∫ ∞

0

dν
√
ν

sin2 ν

2
exp

(
−ir

1
4
ν

) ∫ ∞

0
dp exp

(
−iν

(2p + 1)2π2

2kkwa2

)
≈ iθ2

0
k
c

∫ ∞

0

dν
ν

sin2 ν

2
exp

(
−ir

1
4
ν

)
, (D7)

which reproduces Eqs. (48) and (49).
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