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We studied the coupled beam motion in a storage ring between the transverse and longitudinal
directions introduced by crab cavities. Analytic form of the linear decoupling transformation is
derived. The equilibrium bunch distribution in an electron storage ring with a crab cavity is given,
including contribution to the eigen-emittance induced by the crab cavity. Application to the short
pulse generation scheme using crab cavities [1] is considered.
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I. INTRODUCTION

Crab cavities (also known as transverse deflecting cav-
ities) have found major applications in storage rings. In
colliders, they are used to rotate the colliding bunches
at the collision point to create head-on collisions while
the trajectories of the two beams cross at an angle (crab
crossing) [2]. In electron storage rings, it has been pro-
posed to use crab cavities to tilt a long bunch in the y-z
plane in order to select a short X-ray pulse from the ra-
diation generated by the beam with a vertical slit [1, 3].
A crab cavity gives the beam a time-dependent trans-

verse kick. The kick is typically in the horizontal plane
for the crab crossing application and in the vertical
plane for the short pulse application. By virtue of the
Panofsky-Wenzel theorem, the crab cavity also gives the
beam a longitudinal kick that is dependent on the trans-
verse offset. Naturally the crab cavity couples the trans-
verse direction to the longitudinal direction. The nature
of the linear coupled motion between the y-z or x-z direc-
tions is the same as the linear x-y coupling introduced by
a skew quadrupole. Therefore it can be likewise studied.
In some earlier work, the effects of the crab cavity on

the beam are described as creating a z-dependent closed
orbit [1, 4]. Although it can lead to useful results, such
a physics picture may be incorrect. Because a particle
with a z-offset will undergo synchrotron motion, it does
not stay on the orbit.
In this paper we study the coupled motion due to crab

cavities in a storage ring through the transfer matrix. A
matrix perturbation method is applied to find the lin-
ear transformation that block diagonalizes the one-turn
transfer matrix. Analytic formulas for the decoupling lin-
ear transformation are derived. By applying the matrix
perturbation technique to the Ohmi envelope equation [5]
and considering the quantum diffusion of the beam with
a tilted distribution on the y-z directions, the equilib-
rium phase space distribution in an electron storage ring
with crab cavities is also obtained. These results are ap-
plied to the short pulse generation scheme [1]. The short
pulse performance is calculated and its functional depen-
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dence on crab cavity and lattice parameters is revealed .
It is shown that the vertical eigen-emittance due to the
crab cavity induced tilt in bending magnets is a dom-
inant factor that limits the achievable minimum pulse
duration. Numeric example and simulation results for
the short pulse generation application for SPEAR3 are
presented.

In section II we study the decoupling transformation
for a vertical crab cavity. In section III we first show the
connection between the second order moment matrix of
the original and decoupled coordinates. Then we derive
the changes to the equilibrium distribution due to the
crab cavity and calculate the short pulse performance for
the short pulse generation scheme. A brief description of
the procedure for decoupling the motion by a horizontal
crab cavity is given in section IV. Numeric examples and
particle tracking are shown in section V. The conclusion
is given in section VI.

II. LINEAR COUPLING BY A VERTICAL

CRAB CAVITY

For a conventional crab cavity working at the TM110
mode, assuming the transverse deflection is on the verti-
cal direction, the E-M fields are given by

Ez = E0ky cosωt, cBx = E0 sinωt, (1)

where E0/c gives the amplitude of the magnetic induc-
tion, k = ω/c the angular wave number, ω = 2πf the
angular frequency, and c the speed of light. In crab cav-
ity applications, the beam arrives at around t = 0, where
kick-to-time slope is the maximum. Correspondingly the
kicks to the beam in linearized form are

∆y′ =
eV

E
kz, ∆δ =

eV

E
ky, (2)

where δ is the momentum deviation of the particle, E is
the beam energy and V =

∫

gap E0 sin(ωt)cdt is the de-

flecting voltage. The linear motion through a crab cavity
can be expressed via a transfer matrix of the coordinates
X = (x, x′, y, y′, z, δ)T . For a thin vertical crab cavity,
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the transfer matrix is given by

Tc =





I 0 0

0 I ǫW
0 ǫW I



 , (3)

where I in this paper is the identity matrix of the appro-
priate size, 2× 2 in this case, ǫ = eV k

E , and

W =

(

0 0
1 0

)

. (4)

When a crab cavity is inserted into the ring lattice, the
one-turn transfer matrix will be changed. Assuming the
crab cavity is located at point 2, the one-turn transfer
matrix at point 1 is

T1 = T12TcT21, (5)

where T21 is the transfer matrix from point 1 to 2 and
T12 the transfer matrix from point 2 to 1. Using nota-
tions as defined in Ref. [6], the transfer matrix T21 can
be written

T21 =





Mx,21 0 E21

0 My,21 0

F21 0 L21



 , (6)

where each element is a 2 × 2 matrix block. Transfer
matrix T12 can be likewise expressed. Working out Eq.
(5), we found

T1 = T
(0)
1 + ǫT̃1, (7)

with

T̃1 =





0 E12WMy,21 0

My,12WF21 0 My,12WL21

0 L12WMy,21 0



 ,(8)

where T
(0)
1 is the one-turn matrix at point 1 without the

crab cavity,

T
(0)
1 = T12T21 =





Mx 0 E

0 My 0

F 0 L0



 . (9)

In writing Eq. (9) we have neglected the synchrobetatron
coupling effect that would be present if the RF cavity is
located in a dispersive region [6]. This should not im-
pact the results below as it usually only causes a small
correction. The usual dispersion decoupling matrix is

U =





I 0 D1

0 I 0

−D
+
1 0 I



 , (10)

where D1 = (0,d1), d1 = (D1, D
′
1)

T , and the symplectic
conjugate of matrix D1 is D+

1 = J
T
2 D

T
1 J2, with

J2 =

(

0 1
−1 0

)

. (11)

Applying the transformation U to T1, we get a new
transfer matrix for the betatron coordinates X =
(xβ , x

′
β , y, y

′, z, δ)T

T1,n = U
−1

T1U

= T
(0)
1,n + ǫT̃1,n, (12)

where xβ = x − D1δ, x
′
β = x′ − D′

1δ, T
(0)
1,n is a block-

diagonal matrix,

T
(0)
1,n =





Mx 0 0

0 My 0

0 0 L



 (13)

and

T̃1,n =





0 T̃xy 0

T̃yx 0 T̃yz

0 T̃zy 0



 . (14)

It has be shown that

T̃xy = −Mx,12D2WMy,21, (15)

T̃yx = My,12D
T
2 (M

−1
x,21)

T
J2, (16)

T̃yz = My,12WL21,n, (17)

T̃zy = L12,nWMy,21, (18)

where L21,n is longitudinal transfer matrix from point 1
to 2 with the (1,2) element replaced with η̄21 as defined
in Eq. (19) of Ref. [6] and likewise for L12,n.
From Eqs. (14-18) it is seen that the longitudinal mo-

tion and the vertical motion are coupled through the ver-
tical crab cavity via the off-diagonal blocks T̃yz and T̃zy.
In addition, when the vertical crab cavity is located at
a dispersive region (with nonzero horizontal dispersion
D2 = (D2, D

′
2)

T ), the horizontal and vertical motion are
also coupled through the crab cavity.
The x-y coupling and the y-z coupling in Eq. (12) can

be simultaneously diagonalized. Analytic form of the de-
coupling transformation can be derived with a matrix
perturbation approach. Let the transformation be de-
noted by the matrix V, i.e., V−1

T1,nV is block diagonal.
Because the matrixT1,n deviates from the block diagonal

matrix T
(0)
1,n by only a small amount that is proportional

to ǫ, we expect the deviation of V from the identity ma-
trix to be proportional to ǫ, too, i.e.,

V = I+ ǫṼ. (19)

We use a trial form of Ṽ

Ṽ =





0 C1 0

−C
+
1 0 C2

0 −C
+
2 0



 . (20)

It is easy to verify that the symplecticity of the matrix V

is satisfied to first order of ǫ with Ṽ as given in Eq. (20).
The transfer matrix after applying the V transformation
is

V
−1

T1,nV ≈ (I− ǫṼ)(T
(0)
1,n + ǫT̃1,n)(I+ ǫṼ)

= T
(0)
1,n + ǫ(T̃1,n − ṼT

(0)
1,n +T

(0)
1,nṼ) +O(ǫ2). (21)
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For the transfer matrix V
−1

T1,nV to be block diagonal
to first order of ǫ, we can require

T̃1,n − ṼT
(0)
1,n +T

(0)
1,nṼ = 0, (22)

because the diagonal blocks of the l.h.s. of Eq. (22) are
calculated to be all zeros. In fact, Eq. (22) is equivalent
to

T̃xy −C1My +MxC1 = 0, (23)

T̃yx +C
+
1 Mx −MyC

+
1 = 0, (24)

T̃yz −C2L+MyC2 = 0, (25)

T̃zy +C
+
2 My − LC

+
2 = 0. (26)

From Eqs. (23-24) one can solve for C1, and similarly
from Eqs. (25-26) for C2. The solutions are

C1 = −
T̃xy + T̃+

yx

Tr(Mx −My)
, (27)

C2 = −
T̃yz + T̃+

zy

Tr(My − L)
, (28)

where Tr(·) denotes taking the trace of a matrix. The
solution for C2 would be the same if we had block diag-
onalized the y-z plane only, ignoring the x-y coupling in
Eq. (12). This indicates that the indirect x-z coupling in
Eq. (12) is a second order effect. It is worth noting that
Eqs. (27-28) agree with the result of Ref. [7] to first order
of ǫ.

Inserting Eqs. (17-18) into Eq. (28), and expressing
the related vertical and longitudinal transfer matrices in
terms of the beta functions and phase advances, the four
elements of

C2 =

(

C11 C12

C21 C22

)

(29)

can be calculated and the results are

C11 =
1
2ǫ
√
β1β2

cos 2πνs − cos 2πνy

(

cosΨs,12 sin(2πνy −Ψ12) + cos(2πνs −Ψs,12) sinΨ12

)

, (30)

C12 =
1
2ǫβs

√
β1β2

cos 2πνs − cos 2πνy

(

sinΨs,12 sin(2πνy −Ψ12)− sin(2πνs −Ψs,12) sinΨ12

)

, (31)

C21 =
1
2ǫ
√

β2/β1

cos 2πνs − cos 2πνy

(

cos(2πνs −Ψs,12)(cosΨ12 − α1 sinΨ12)− cosΨs,12(cos(2πνy −Ψ12) + α1 sin(2πνy −Ψ12))
)

,

(32)

C22 =
1
2 ǫβs

√

β2/β1

cos 2πνs − cos 2πνy

(

sin(2πνs −Ψs,12)(cosΨ12 − α1 sinΨ12) + sinΨs,12(cos(2πνy −Ψ12) + α1 sin(2πνy −Ψ12))
)

,

(33)

where Ψs,12 is the synchrotron phase advance from point
2 to 1, βs is the longitudinal beta function, νs is the
synchrotron tune, νy is the vertical tune, α1 and β1 are
the vertical Courant-Snyder functions at point 1, Ψ12

is the vertical betatron phase advance from point 2 to
1, and β2 is the vertical beta function at point 2. Be-
cause the longitudinal motion is slow, it can be ignored
to simplify the results. The results under this assump-
tion can be obtained from the exact formulas by using
the approximations cos 2πνs ≈ 1 and βs sin 2πνs ≈ η̄,
with η̄ = −

∮

D/ρds. The simplified expressions for the

C2 matrix elements are found to be

C11 = ǫ

√
β1β2

2 sinπνy
cos(πνy −Ψ12), (34)

C12 = ǫ
η̄
√
β1β2

2 sinπνy

[ sinΨ12

2 sinπνy
− η̄12

η̄
cos(πνy −Ψ12)

]

, (35)

C21 = ǫ

√

β2/β1
2 sinπνy

[sin(πνy −Ψ12)− α1 cos(πνy −Ψ12)] ,

(36)

C22 = ǫ
η̄
√

β2/β1
2 sinπνy

[ 1

2 sinπνy
(cosΨ12 − α1 sinΨ12)

− η̄12
η̄

(sin(πνy − Ψ12)− α1 cos(πνy − Ψ12))
]

, (37)

It is worth noting that

||C2|| =
1

8

ǫ2β2η̄

sin2 πνy tanπνy
, (38)
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which is a constant all around the ring.
In the above we showed that a vertical crab cavity

causes y-z coupling, and additionally x-y coupling if it is
located at a dispersive region. The coupled motioned can
be decoupled with a linear transformation. The transfor-
mation for the y-z coupling is given by Eqs. (19),(20),
and (34-37).

III. EQUILIBRIUM DISTRIBUTION IN AN

ELECTRON STORAGE RING WITH CRAB

CAVITY

A. Beam distribution changes due to a crab cavity

The decoupled coordinates Xd are related to the orig-
inal coordinates X through X = UVXd. The second
order moment matrices of a particle distribution in X

and Xd coordinates, defined as

Σ =< XX
T >, Σd =< XdX

T
d >, (39)

are related through

Σ = UVΣdV
T
U

T , (40)

where < · > denotes taking average over the particle dis-
tribution and we have assumed the distribution is cen-
tered on the reference orbit. The moment matrices are
symmetric. Matrix Σd is block diagonal. The two ma-
trices Σ and Σd may be written as

Σ =





Σxx Σxy Σxz

Σ
T
xy Σyy Σyz

Σ
T
xz Σ

T
yz Σzz



 (41)

and

Σd =





Σx 0 0

0 Σy 0

0 0 Σz



 . (42)

Inserting Eqs. (10,19-20) into Eq. 40, the block matrices
in Eqs. (41-42) are related. It is found that the changes
to the diagonal blocks of Σ due to the crab cavity are
second order effects, i.e., of the order O(ǫ2), for example

Σyy = C
+
1 Σx(C

+
1 )

T +Σy +C2ΣzC
T
2 . (43)

Therefore, it may be inferred that the deviation of the di-
agonal block matrices in Σd from the case when the crab
cavity is off (e.g., assuming it was adiabatically turned
on) is also a second order effect. In other words, we as-
sume

Σx ≈ Σx0 = ǫx

(

βx −αx

−αx γx

)

, (44)

Σy ≈ Σy0 = ǫy

(

βy −αy

−αy γy

)

, (45)

Σz ≈ Σz0 =

(

σ2
z 0
0 σ2

δ

)

, (46)

where ǫx,y are original horizontal and vertical emittances,
αx,y, βx,y, and γx,y are the Courant-Snyder functions
for the horizontal and vertical directions, with γx,y =
(1 + α2

x,y)/βx,y, and σz and σδ are original bunch length
and momentum spread, respectively. This assumption is
validated in the next subsection with the Ohmi envelope
approach. In Eq. (46) we have assumed αs = 0, i.e.,
there is no tilt between the z-δ directions. The deviation
of matrix block Σxz from the original case without crab
cavity is also of the second order. Only Σxy and Σyz

have first order dependence over the crab cavity strength
parameter ǫ,

Σxy = −Σx(C
+
1 )

T + (C1 −D1C
+
2 )Σy +D1ΣzC

T
2 ,(47)

Σyz = C
+
1 Σx(D

+
1 )

T −Σy[(C
+
2 )

T +C
T
1 (D

+
1 )

T ]

+C2Σz . (48)

We are interested in the tilt across the y-z planes intro-
duced by the crab cavity. In an electron storage ring, if
originally there is no horizontal to vertical coupling, typ-
ically Σy0 ≈ 0. Also, because the horizontal emittance is
typically much smaller than the longitudinal emittance,
unless the horizontal and vertical motions are near a res-
onance, normally the contribution from the Σx term in
Eq. (48) is much smaller than the last term. Keeping
only the last term, we obtain

Σyz =

(

σyz σyδ
σy′z σy′δ

)

≈ C2Σz =

(

C11σ
2
z C12σ

2
δ

C21σ
2
z C22σ

2
δ

)

.(49)

From Eq. (49) we see that the crab cavity causes a
tilt of the beam distribution between the vertical and
longitudinal directions. The tilt is not only between the
vertical coordinates and the z-coordinate, but also the
δ-coordinate.

B. First order perturbation to the equilibrium

distribution by a crab cavity

In an electron storage ring, the beam reaches an equi-
librium distribution determined by the balance between
quantum excitation and radiation damping. The equilib-
rium distribution at a location of the ring can be found
by solving Ohmi’s envelope equation [5],

T0Σ0T
T
0 + B̄0 = Σ0, (50)

where T0 is the one-turn transfer matrix (including
damping), Σ0 is the second order moment matrix as de-
fined in Eq. (41), and B̄0 is the one-turn integrated dif-
fusion matrix

B0(s0) =

∫ s0+C

s0

Ts0+C,s′B(s′)T T
s0+C,s′ds

′, (51)

where Ts0+C,s′ is the transfer matrix from s′ to s0 + C,
C is the ring circumference, and B(s′) is the diffusion
matrix at location s = s′. In Eqs. (50-51) subscript 0
indicates the case without the crab cavity.



5

When the crab cavity is introduced to the ring, all
quantities in Eq. (50) are changed. Suppose we are con-
cerned of a point immediately downstream of the crab
cavity, the envelope equation becomes

TΣT
T + B̄ = Σ, (52)

with the new one-turn transfer matrix and new inte-
grated diffusion matrix being

T = TcT0, (53)

B̄ = TcB̄0T
T
c . (54)

Multiplying T−1
c and (TT

c )
−1 from the left and right sides

to Eq. (52), respectively, and inserting B̄0 from Eq. (50),
we get

T0(Σ−Σ0)T
T
0 = T

−1
c Σ(TT

c )
−1 −Σ0. (55)

Rewriting Tc from Eq. (3) as

Tc = I+ ǫW̃, W̃ =





0 0 0

0 0 W

0 W 0



 . (56)

The inverse matrices of Tc and its transpose are

T
−1
c = I− ǫW̃, (57)

(TT
c )

−1 = I− ǫW̃T , (58)

with which Eq. (55) becomes

T0∆T
T
0 −∆ = −ǫ(W̃Σ+ΣW̃

T ) + ǫ2(W̃ΣW̃
T ),

(59)

where we have used the definition

∆ = Σ−Σ0. =





∆xx ∆xy ∆xz

∆
T
xy ∆yy ∆yz

∆
T
xz ∆

T
yz ∆zz



 . (60)

Changes of the equilibrium distribution caused by the
crab cavity can be found by solving Eq. (59) for ∆.
For results to first order of the strength parameter ǫ,

on the r.h.s. of Eq. (59) Σ can be replaced by the original
second order moment matrix, Σ0 = UΣd0U

T , with Σd0

a block diagonal matrix as in Eq. (42), and the ǫ2 term
can be dropped. In this case, among the 2×2 sub-blocks
of the r.h.s of Eq. (59), only the x−y and y−z blocks and
their symmetric counterparts are nonzero. Therefore the
elements in the sub blocks ∆xx, ∆yy, ∆zz, and ∆xz are
solutions of a linear homogeneous equation set. In gen-
eral this equation set is non-degenerate (the T0 matrix
includes damping). Therefore these blocks are all zeros
to the first order of ǫ, which verifies the assumption we
made in the previous subsection.
When the crab cavity is located in a dispersion region,

the elements of ∆xy and ∆yz blocks are coupled in an
inhomogeneous linear equation set,

My∆
T
xyM

T
x +My∆yzE

T −∆
T
xy =

(−ǫ)
(

−Σx0(D
+
1 )

T
W

T +D1Σz0W
T
)

, (61)

Mx∆
T
xyF

T +My∆yzL
T −∆yz =

(−ǫ)
(

WΣz0 +WD
+
1 Σx0(D

+
1 )

T +Σy0W
T
)

, (62)

where Σx0, Σy0, and Σz0 are diagonal blocks of Σd0. For
electron storage rings initially without x-y coupling, the
original vertical emittance is zero and hence Σy0 = 0.
Eqs.(61-62) can be solved for elements of ∆xy and ∆yz.
The coupling terms due to dispersion are on the order
of O(Hx/βs), which is usually very small, where H§ =
(D2+(αxD+βxD

′)2)/2βx is the dispersion invariant. For
example, SPEAR3 has βs ≈ 6.2 m and at the standard
straight sections H = 1.0 mm. Ignoring the coupling
terms, the solution for elements of ∆yz is,

Σyz = ∆yz = C2Σz0

≈ ǫσ2
z

2 sinπνy

(

βy cosπνy 0

sinπνy − αy cosπνy
η̄γ2

s

2 sinπνy

)

,(63)

where γs = σz/σδ. This result is the same as given by
Eqs. (49,34-37) for the location just downstream of the
crab cavity.

C. Vertical eigen-emittance due to crab cavity

When solving the Ohmi envelope equation, Eq. (52),
for the equilibrium beam distribution with first order
perturbation, we found that normal mode distributions
don’t change. However, because the longitudinal dimen-
sion of bunched beams in storage rings is usually much
larger than the transverse dimensions, second order terms
involving the longitudinal dimension may also be impor-
tant. In fact, numeric solutions of Eq. (52) show that the
normal mode distributions do have changes of order ǫ2.
Notably, there is a finite vertical normal mode emittance
(i.e., eigen-emittance) and the bunch length changes.
Because coupling with the horizontal direction is small,

we can consider only the vertical and longitudinal direc-
tions. Assuming the original vertical emittance is zero,
Σy0 = 0, and using

∆zz =

(

∆σzz ∆σzδ
∆σzδ ∆σδδ

)

, ∆yz =

(

σyz σyδ
σy′z σy′δ

)

,

∆yy =

(

σyy σyy′

σyy′ σy′y′

)

, (64)

the coupled matrix equations from Eq. (59) are given by

L∆zzL
T −∆zz = (−ǫ)

(

0 σyz
σyz 2σyδ − ǫσyy

)

(65)

My∆yzL
T −∆yz = (−ǫ)

(

0 σyy
σzz σzδ + σyy′ − ǫσyz

)

(66)

My∆yyM
T
y −∆yy = (−ǫ)

(

0 σyz
σyz 2σy′z − ǫσzz

)

, (67)

where σzz = σ2
z = σ2

z0 + ∆σzz , σzδ = ∆σzδ , and σz0 is
the original bunch length.
In principle, solving Eqs. (65-67) for matrix elements

in Eq. (64) gives the equilibrium distribution, from which
one can calculate the eigen-emittances. Although the
general solution has not been found, approximate results
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can be derived from these equations. From Eqs. ( 65)
and (66) we obtain

∆σzz − β2
s∆σδδ = σyzǫβs cotψs, (68)

σyz ≈ σzz
ǫ

2

βy
cosψs − cosψy

. (69)

Numeric solutions indicate that β2
s∆σδδ ≪ ∆σzz . Ignor-

ing the β2
s∆σδδ term, we obtain

σz ≈ σz0
(

1− ǫ2

2
βsβy cotψs

sinψy

cosψs − cosψy

)−1/2
.(70)

The projected distribution on the (z, δ) plane, Σzz, and
the longitudinal normal mode distribution, Σz, are ap-
proximately equal (their difference is a small term ∝ ǫ2ǫy,
where ǫy is the vertical eigen-emittance). Therefore, the
longitudinal eigen-emittance is

ǫz ≈ σzσδ0, (71)

where σz is given in Eq. (70) and σδ0 is the original
momentum spread.
A different approach has been taken to obtain the ver-

tical eigen-emittance due to the crab cavity. In an elec-
tron storage ring, the source of finite emittances is the
stochastic photon emission in magnetic fields. The crab
cavity causes a tilt across the longitudinal and vertical
planes. Consequently, the energy loss of an electron due
to photon emission will cause a random shift of vertical
coordinates relative to its ”ideal orbit”, which gives rise
to the vertical eigen-emittance.
From Eq. (49) we find the correlation of the y, y′

coordinates with momentum deviation δ,

ryδ =
σyδ
σyσδ

= C12, ry′δ =
σy′δ

σy′σδ
= C22. (72)

The equivalent vertical coordinate displacements for an
energy loss ∆δ are thus

∆y = C12∆δ, ∆y′ = C22∆δ, (73)

and the quandratic term of the Courant-Snyder invariant
change is

∆Jy = Hc∆δ
2, (74)

where we defined crab cavity dispersion invariant

Hc =
1

βy

(

C2
12 + (αyC12 + βyC22)

2
)

. (75)

The increase of vertical emittance due to photon emission
in a tilted bunch is the same as due to vertical dispersion,
except here the vertical dispersion invariant is replaced
with the quantity Hc.
Using Eqs. (31, 33), and integrating Hc over the ring,

we obtain the average crab cavity dispersion invariant

< Hc > =
ǫ2η̄2β2
12

2 + cos 2πνy
(cos 2πνs − cos 2πνy)2

, (76)

where we have assumed the synchrotron phase advance
is linearly proportional to distance traveled in bending
magnets. Similar to vertical emittance due to the usual
vertical dispersion [8], the vertical eigen-emittance for an
isomagnetic storage ring due to crab cavity is given by

ǫy = Cq
γ2 < Hc >

Jyρ
, (77)

where Cq = 3.83 × 10−13 m, γ is the Lorentz energy
factor, Jy = 1 is the vertical damping partition, and ρ is
bending radius.

D. Prediction of short pulse performance

For the crab cavity application of generating short
pulses, an important task is to estimate the expected
short pulse performance, such as the minimum pulse du-
ration and the fraction of flux accepted by a slit with
certain aperture. This can be done if we know the beam
distribution at the source point and the photon beam
optics between the source point and the slit.
The normal mode distributions for the longitudinal

and vertical planes are Gaussian. Their projections onto
the y-z plane or y′-z plane are hence also Gaussian. Be-
cause the slit is usually placed far away from the source
point, the tilt of the photon beam is primarily determined
by the y′-z tilt at the source point. The distribution func-
tion for the y′-z projection can be written as

ρ(y′, z) =
1

2πǫy′z
exp

(

−
σ2
zy

2 − 2σy′zy
′z + σ2

y′z2

2ǫ2y′z

)

,(78)

where ǫy′z =
√

σ2
zσ

2
y′ − σy′z is the projected emittance.

An ellipse that represents the y′-z distribution is shown
in FIG. 1. The intercept with the z-axis signifies the
minimum bunch length. It is given by

σzm =
ǫy′z

σy′

= σz

√

1−
σ2
y′z

σ2
zσ

2
y′

. (79)

With a finite vertical eigen-emittance, the y-z and y-
y blocks of the sigma matrix are related to the normal
mode distribution through

Σyz = C2Σz −Σy(C
+
2 )

T , (80)

Σyy = C2ΣzC
T
2 +Σy. (81)

For simplicity we assume that at the source point αy = 0,
as this is usually the case. From Eqs. (80-81), we obtain

σy′z = C21σ
2
z + C12

ǫy
βy
, (82)

σy′y′ = C2
21σ

2
z + C2

22σ
2
δ +

ǫy
βy

+ σ2
θ , (83)

where we have added the contribution of radiation diver-
gence, σθ, to σy′y′ , such that Eqs. (82-83) are for the
photon beam distribution at the source point.
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FIG. 1. The projected y′-z ellipse.

Ignoring small terms, the projected emittance on the
y′-z plane is given by

ǫy′z = σz
(

C2
22σ

2
δ +

ǫy
βy

+ σ2
θ

)1/2
. (84)

The minimum pulse duration is thus

σzm = σz

( C2
22σ

2
δ +

ǫy
βy

+ σ2
θ

C2
21σ

2
z + C2

22σ
2
δ +

ǫy
βy

+ σ2
θ

)1/2

≈ 1

C21

√

ǫy
βy

+ σ2
θ , (85)

where the approximate equality is valid when the σ2
δ term

is negligible. For hard X-ray sources, the radiation diver-
gence term may also be negligible. In this case, if there
is no other sources of vertical emittance, the minimum
pulse duration is independent of the strength of the crab
cavity. With a low deflecting voltage, the y-z tilt of the
photon beam at the slit is small, which requires a small
slit aperture for a given accepted flux. Of course, in
reality a reasonable deflecting voltage is needed to over-
come the contribution of the finite vertical emittance due
to spurious vertical dispersion and horizontal to vertical
coupling and the finite radiation divergence. An optimal
deflecting voltage is probably achieved when the term of
the crab cavity induced eigen-emittance is a few times of
the contributions of original vertical emittance and ra-
diation divergence. The longitudinal distribution of the
short pulse accepted by a given slit aperture is calculated
from the distribution function ρ(y′, z) with

λ(z; ya) =

∫ ya/La

−ya/La

dy′ρ(y′, z), (86)

where ya is the half aperture, La is the distance from the
slit to the source point, and we have ignored the finite
vertical size of the electron beam at the source point.

The percentage of total flux in the accepted pulse can be
calculated with

F (ya) =

∫

dzλ(z; ya), (87)

and the pulse duration σzp can be obtained from

σ2
zp(ya) =

∫

dzz2λ(z; ya)
∫

dzλ(z; ya)
. (88)

IV. COUPLED MOTION BY A HORIZONTAL

CRAB CAVITY

Because of the lack of vertical dispersion, the coupling
due to a horizontal crab cavity generally does not involve
the vertical plane. Therefore we only need to study the
4D phase space coordinates, (x, x′, z, δ). The transfer
matrix for the crab cavity is

Tc = I+ ǫWx, W̃x =

(

0 W

W 0

)

. (89)

Assuming the crab cavity is located at point 2, the one-
turn transfer matrix at point 1 is

T1 = T12TcT21 = T
(0)
1 + ǫT̃1, (90)

with

T̃1 =
(

E12WM21 +M12WF21 E12WE21 +M12WL21

L12WM21 + F12WF21 L12WE21 + F12WF21

)

,

(91)

where we dropped subscript x for M12 and M21. Then
the dispersion decoupling transformation (the U matrix)
can be applied, followed by a second decoupling trans-
formation V. The same procedure can be carried out
as for the vertical crab cavity case. It is noted that if
the crab cavity location (point 2) is dispersion free, then
the decoupling transfer matrix V is the same as the y-z
plane for the vertical case. Eqs. (28-37 ) are valid with
the y-plane parameters replaced by the horizontal coun-
terparts.

V. NUMERIC EXAMPLE AND SIMULATION

We use the SPEAR3 storage ring lattice to work out a
numeric example in order to illustrate the results derived
in the previous sections. Table I lists a few related pa-
rameters of the machine. The method of using two crab
cavities with different frequencies to tilt the beam in the
y-z plane for the generation of short X-ray pulse is consid-
ered [1]. For example, if the frequencies of the two crab
cavities are 6 and 6.5 times of the RF frequency of the
ring, respectively, and the deflecting voltages are prop-
erly matched, the tilting effects of the two crab cavities
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cancel for half of the buckets. For the other half buckets,
the tilting effects add up. For a bunch in a tilted bucket,
the linear dynamics is not different from the case with
one crab cavity - only that the strength parameter now
is the sum of the two crab cavities, ǫ = e(V1k1+V2k2)/E0,
where V1,2 and k1,2 are the deflecting voltage and angular
wave number for the two crab cavities, respectively.

TABLE I. Selected Parameters of SPEAR3

Parameters Value Unit

Energy 3 GeV

Circumference 234.1 m

Tune νx,y 14.106, 6.177

RF frequency frf 476.3 MHz

Bunch length σz 6.0 mm

Momentum spread σδ 0.001

Momentum compaction αc 1.62 × 10−3

Synchrotron tune νs 0.010

In the following we consider only one crab cavity, with
a deflecting voltage of V = 2 MV and the frequency is
f1 = 6frf = 2857.8 MHz. The strength parameter is thus
ǫ = −0.0399, where there is a negative sign due to the
choice of crab cavity phase. The crab cavity is located in
one of the matching straight section, where βy = 2.803 m,
αy = −0.348, Dx = 0.085, and D′

x = −0.001.

We consider an observation point at the center of a
standard straight section (13S), where βy = 4.860 m,
αy = 0.0, Dx = 0.10, D′

x = 0.0, and the vertical betatron
phase advance from the crab cavity to 13S is ∆Ψy =
2.2345 rad modulo 2π. The one-turn transfer matrix at
this point is

T13S =


















0.7860 5.4926 0.002 −0.0213 0.001 0.019

−0.0699 0.7838 0.000 −0.0007 0.000 0.007

0.0010 −0.0137 0.439 4.3579 0.116 −0.014

−0.0002 0.0022 −0.189 0.4430 −0.019 0.002

−0.0067 −0.0224 −0.003 0.0346 0.997 −0.379

0.0 −0.0008 0.013 −0.1329 0.010 0.999



















.

Following the equations in section II, the matrices C1

and C2 are calculated as

C1 = ǫ

(

−0.0452 −0.2162

0.0083 0.0109

)

,

C2 = ǫ

(

0.3799 1.0904

0.7146 0.0268

)

,

and the new transfer matrix is

V
−1

U
−1

T13SUV =


















0.7860 5.4926 0.0 0.0 0.0001 0.0

−0.0699 0.7838 0.0 0.0 0.0 0.0

0.0 0.0 0.440 4.3526 0.0002 0.0

0.0 0.0 −0.185 0.4439 −0.0002 0.0

0.0 0.0 0.0 0.0002 0.9963 −0.379

0.0001 0.0 −0.0 −0.0008 0.0138 0.998



















.

The off-diagonal blocks of the new transfer matrix are
substantially reduced toward zero, which verifies the re-
sults in section II.
We also performed particle tracking simulation to de-

termine the equilibrium distribution with the crab cavity
in the lattice. There is no x-y coupling in the model
originally without the crab cavity. Simulation is done
with the tracking code Accelerator Toolbox [9], with new
functions added to model the crab cavity and quantum
excitation. The code Elegant [10] is also used for track-
ing and good agreement is found between the two codes.
All particles are launched with zero coordinate offsets
and tracked for 30000 turns, which are 7.5 times of the
longitudinal damping time and 4.4 times of the vertical
damping time.
The projection of the phase space volume onto the y-z

and y′-z planes are shown in FIG. 2 for the 13S obser-
vation point. Also plotted in the figure are the ellipses
for the corresponding second order moments calculated
with Eqs. (80-81) and Eqs. (70,77)). The area of the el-
lipses are 6 times of the respective projected emittances.
Ellipses derived with numeric Ohmi envelope calculation
are not shown since they overlap almost exactly with
the ones calculated with formulas. There is an excellent
agreement between the tracked particle distribution and
the prediction based on the decoupling matrix for the y-z,
y′-z planes, except deviation at the tails of the distribu-
tion caused by the nonlinearity of the sinusoidal wave on
the crab cavity.
To check the formulas for bunch length (Eq. (70)) and

vertical eigen-emittance (Eq. (77)), we did numeric cal-
culation of Ohmi envelope while varying the vertical tune
of the lattice. The results are compared to calculations
by the formulas and are shown in FIG. 3. It is seen that
the semi-empirical formula, Eq. (70), agrees with nu-
meric calculations for large tune separation between the
vertical and longitudinal directions, but deviates from
numeric results as the vertical tune approaches the syn-
chrotron tune. However, the analytic formula Eq. (77)
agrees with numeric results excellently in the entire pa-
rameter range.
The minimum pulse duration is typically dominated

by the vertical eigen-emittance term in Eq. (85). The
percentage of flux for short pulses accepted by a slit as
a function of pulse duration is plotted in FIG. 4 for vari-
ous deflecting voltages. No original vertical emittance or
radiation divergence is assumed. In this case, indeed a
higher deflecting voltage does not reduce the minimum
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FIG. 2. The projection of equilibrium particle distribution
(blue dots) at 13S onto the y-z plane (top) and y′-z plane (bot-
tom) are compared to calculated ellipses (red) with Eqs. (80-
81) and Eqs. (70,77)) (with ellipses covering 6σ of the Gaus-
sian distribution).

pulse duration, although it helps reduce the pulse dura-
tion for a given percentage of flux.
Because the vertical eigen-emittance due to the crab

cavity is strongly dependent on the momentum com-
paction factor (see Eqs. (76-77)), the minimum pulse
duration is expected to be sensitive to momentum com-
paction factor changes. FIG. 5 compares the minimum
pulse duration vs. vertical tune for two SPEAR3 lattices
with crab cavity parameters, crab cavity and source point
locations as given in the above example. Parameters for
the “low emittance” lattice are listed in Table I. The
“achromat” lattice has a nominal vertical tune νy = 6.22,
a momentum compaction factor αc = 1.18× 10−3, and a
nominal bunch length of σz = 5.0 mm. Clearly lowering
the momentum compaction factor helps reduce the pulse
duration, by a factor more than the reduction of nominal
bunch length. Increasing the vertical tune reduces the
minimum pulse duration, although the return diminishes
as the tune shifts up.

VI. CONCLUSION

We studied the linear coupling between the transverse
and longitudinal directions introduced by a crab cavity in
a storage ring. A matrix perturbation method is applied
to derive the transformation that decouples the 6D one-
turn transfer matrix. Analytic formulas are given for the
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FIG. 3. Bunch length (top) and vertical eigen-emittance (bot-
tom) from numeric Ohmi envelope calculation is compared to
formulas (Eq. (70) for bunch length and Eq. (77) for vertical
eigen-emittance).
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FIG. 4. Percentage of flux vs. pulse duration for various
deflecting voltages.

coefficients of the decoupling transformation. The equi-
librium particle distribution in an electron storage ring is
also derived by applying the perturbation method to the
Ohmi envelope equation [5]. Considering the quantum
excitation in bending magnets for a beam distribution
with tilt across the y-z directions, we derived the verti-
cal eigen-emittance due to crab cavities. Application to
the short pulse generation scheme using crab cavities is
considered. Numeric example and particle tracking are
shown to demonstrate the analytic results.
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FIG. 5. Minimum pulse duration vs. vertical tune for the low
emittance lattice and the achromat lattice of SPEAR3. Filled
markers indicate nominal tunes for the lattices.
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