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Abstract

QCD is well understood at short distances where perturbative calculations are feasible. Establishing an explicit
analytic connection between the short-distance regime and the large-distance physics of quark confinement has been
a long-sought goal. A major challenge is to relate the scale Λs underlying the evolution of the QCD coupling in
the perturbative regime to the masses of hadrons. We show here how new theoretical insights into the behavior of
QCD at large distances leads to such a relation. The resulting prediction for Λs in the MS scheme agrees well with
experimental measurements. Conversely, the relation can be used to predict the masses of hadrons composed of light
quarks with the measured value of Λs as the sole parameter. We also use “light-front holography” to determine the
analytic form of αs(Q2) at small Q2.

Keywords: QCD, Λs, Strong coupling αs, Hadron spectrum, AdS/CFT, Light Front holography.

1. Introduction

The masses of hadrons composed of light quarks such
as the proton and ρ meson are understood to originate
from the energy of the confining interactions of QCD;
however, it is unclear why the typical hadron mass scale
is of order 1 GeV. One would expect this mass scale to
be explicitly present in the QCD Lagrangian. However,
the only scale in LQCD are the quark masses, which for
the up and down quarks, are evidently too small to be
relevant: mq ∼ 10−3 GeV. A relevant mass scale, Λs,
however, does exist. It controls the strength of the cou-
pling of quarks when they interact at short distances.
Its precise definition emerges when one renormalizes
the QCD coupling αs(Q2). The results presented in this
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talk can be discussed in any choice of renormalization
scheme, but we will use here the value of Λs defined
in the MS (modified minimal subtraction) renormaliza-
tion scheme. The value of the parameter Λs = ΛMS
can be determined to high precision from experimental
measurements of high-energy, short-distance processes
where the strength of QCD is small because of asymp-
totic freedom [1, 2] and perturbative QCD (pQCD) is
thus applicable. One long-sought goal in QCD is to find
an explicit relation between the hadron masses and Λs.

In this talk we present such relation [3], which leads
to the prediction of the value of Λs from a hadronic
mass. Conversely, one can obtain the hadronic spec-
trum using Λs. To establish this relation, we use the
QCD effective coupling αs computed at small-distance
using pQCD and at long distance using the formalism
of QCD on the Light Front which allows, under rea-
sonable approximations, non-perturbative calculations.
We will also use “light-front holography” to determine
the precise form of αs(Q2) at small Q2. The small and
large distance regimes of QCD overlap, a phenomenon
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related to “quark-hadron duality” [4]. This allows us to
match the two descriptions and obtain the behavior of
αs(Q2) at any scale. This in turn leads to an analytical
relation between Λs and hadron masses.

2. Light-Front QCD

The light-front (LF) quantization procedure is based
on the “Front Form” invented by Dirac [5], where the
time evolution variable is τ = t + z/c; i.e, time along
the light-front. The resulting LF Hamiltonian and its
eigensolutions are Lorentz frame-independent [6].

One can derive a one-dimensional “light-front
Schrödinger equation” (LFSE) in QCD describing the
valence Fock state of color-singlet qq̄ mesons for light
quarks, analogous to the Schrödinger equation describ-
ing hydrogenic atoms in QED [7]. Unlike the QED
form, the LFSE is relativistic and frame-independent.
The radial variable for the LFSE, the invariant separa-
tion between the q and q̄ is ζ = b⊥

√
x(1 − x), where

ζ2 is conjugate to the LF kinetic energy k2
⊥/(x(1 − x)),

the invariant mass squared of the qq̄. Here b⊥ is the
transverse impact parameter and x is the LF momentum
fraction x = k+/P+ = (k0 + kz)/(P0 + Pz). The LFSE in-
corporates color confinement and other essential spec-
troscopic and dynamical features of hadron physics, in-
cluding a massless pion for zero quark mass and lin-
ear Regge trajectories with the same slope in the radial
quantum number n and internal orbital angular momen-
tum L.

The form of the LF potential V(ζ2) entering the LFSE
-its sole unspecified component- becomes uniquely de-
termined as a harmonic oscillator V(ζ2) = κ4ζ2 when
one extends the formalism of de Alfaro, Fubini and
Furlan (dAFF) [8] to light-front Hamiltonian theory [9].
This discovery by dAFF, in the context of 1 + 1 quan-
tum mechanics, allows for the emergence in the theory
of a mass scale κ without it appearing explicitly in the
Lagrangian. That is, enforcing the conformal symmetry
of QCD fully determines the confinement potential κ4ζ2

in the LFSE underlying the hadron spectrum.
The harmonic oscillator form of the LF potential

corresponds to a linear potential for bound states of
heavy quarks in the usually employed instant-form [10].
This links a semi-classical approximation to light-front
QCD, based on the underlying conformality of QCD
in the limit of zero quark masses, to lattice gauge the-
ory and other approaches to heavy quark effective the-
ory. The parameter κ is obtained from a hadron mass,
e.g. κ = Mρ/

√
2 [11]. This provides a rather model-

independent tractable formalism for addressing the non-
perturbative QCD bound-state problem at leading order.

3. LF holography

We have stressed the importance of the confor-
mal symmetry for QCD. The conformal group in four
dimensions is geometrically represented by the five-
dimensional AdS5 space. It is holographically dual to
3+1 spacetime using light-front time τ. In this corre-
spondence the LF variable ζ can be identified with the
fifth AdS dimension. For hadrons probed at short dis-
tances ζ ∼ 1/Q2, with Q2 the 4-momentum squared ex-
changed between the hadron and a beam particle.

Remarkably, the same confining LF potential V(ζ2) =

κ4ζ2 and the same LFSE for mesons of arbitrary spin
J can be derived [12] from the “soft-wall model” [13]
modification of AdS5 space assuming the specific “dila-
ton profile” e+κ2z2

. Using LF Holography, one can iden-
tifies the fifth dimension coordinate z of AdS5 space
with the light-front coordinate ζ. This correspondence,
often called AdS/QCD, is well established: there exists
a one-to-one mapping between LF and AdS wavefunc-
tions. Furthermore, the expressions for the electromag-
netic and gravitational form factors of hadrons in AdS5
are the same as the Drell-Yan West formula in 3+1 space
using LF time [14]. All in all, the AdS/QCD correspon-
dence provides an excellent description of hadrons of
arbitrary spin, incorporating many of observed spectro-
scopic and dynamical features [7, 9, 11, 12, 14].

4. Determining αs at all scales

4.1. αs at small Q2 from LF Holography
One can derive the explicit form for αs(Q2) from LF-

QCD using AdS/QCD. As noted above, the forces that
bind quarks are related in AdS/QCD to the modifica-
tion of the AdS space curvature, the dilaton profile e+κ2z2

encoding confinement dynamics [9]. This modification
of the AdS geometry is constrained by the form of the
potential dictated by the dAFF mechanism. The same
constraint also prescribes the form of αs at small Q2.

In pQCD, the effective coupling αs(Q2) is defined at
high Q2 by folding short-distance quantum effects into
its evolution. Analogously, as we will show, the Q2-
dependence of the AdS/QCD effective coupling stems
from the effects of the large-distance forces folded into
the coupling constant [15].

To determine αAdS
g1

, consider first the AdS action. It
has the same form as General Relativity’s action:

S ∝
∫

d4x
√

det(gµν)
R

GN
, (1)

but with R, the Ricci scalar, and GN , Newton’s con-
stant, replaced by their QCD-analogs. Thus

√
R is
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replaced by the gluon field F,
√

GN corresponds to
the gauge coupling gAdS , and the metric determinant is√

det(gAdS
µν ) eκ

2z2
, which includes the eκ

2z2
dilaton profile.

The 5-dimensional AdS action is thus:

S =
1
4

∫
d5x

√
det(gAdS

µν ) eκ
2z2 1

g2
AdS

F2. (2)

In pQCD, αs ≡ g2
s/4π acquires its Q2-dependence

from short-distance quantum effects. Similarly, the ini-
tially constant AdS coupling αAdS ≡ g2

AdS /4π is re-
defined to absorb the effects of the AdS deformation:
g2

AdS → g2
AdS eκ

2z2
. Transforming to momentum space

yields [15]

αAdS
g1

(Q2) = π exp
(
−Q2

4κ2

)
. (3)

Here, αAdS
g1

(Q2), the effective charge in the g1-scheme
defined from the Bjorken sum rule [16, 17], is normal-
ized to π at Q2 = 0 due to fulfill straightforward kine-
matical constraints [18, 19]. This coupling can serve as
the QCD-analog of the Gell-Mann-Low coupling α(Q2)
of QED [15]. Since LF-holography neglects quantum
effects, the short-distance phenomena which lead to the
pQCD evolution of the running of pQCD coupling are
not incorporated in αAdS . Indeed, the Gaussian form of
Eq. (3) falls much faster than the pQCD prediction at
large Q2.

4.2. Behavior of αs at large Q2

The large Q2-dependence of αs(Q2) is well
known [20]. Its evolution is given by the QCD
renormalization group equation where the logarithmic
derivative of the coupling defines the β function. If αs

is small, one can use the perturbative expansion:

Q2dαs/dQ2 = −(β0α
2
s + β1α

3
s + β2α

4
s + · · ·). (4)

The βi for i ≥ 2 are scheme-dependent and are known
up to order β3 in the MS renormalization scheme [20].
Eq. (4) thus yields αMS (Q2) at high Q2. In addition,
α

pQCD
g1 (Q2) can be expressed as a perturbative expansion

in αMS (Q2) [16, 17]. Thus, pQCD predicts the form of
αg1 (Q2) at large Q2:

α
pQCD
g1 (Q2) = π

[
αMS /π + a1

(
αMS /π

)2
+

a2

(
αMS /π

)3
+ a3

(
αMS /π

)4
+ · · ·

]
. (5)

The coefficients ai are known up to order a3 [21].
Eqs. (3) and (5) thus provide αg1 (Q2) in the large and

small distance regimes, respectively.
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Figure 1: The strong coupling obtained from the analytic matching
of perturbative and non-perturbative QCD regimes.

5. Relation between ΛMS and hadron masses

The existence at moderate values of Q2 of a dual de-
scription of QCD in terms of either quarks and gluons
versus hadrons (“quark-hadron duality” [4]) is consis-
tent with the matching of αpQCD

g1 to αAdS
g1

at intermediate
values of Q2. This matching can be done by impos-
ing continuity of both αg1 (Q2) and their derivatives, as
shown in Fig. 1. The unique solution for the result-
ing two equalities determines Λs from κ, and fixes the
scale Q0 characterizing the transition between the large
and short-distance regimes of QCD. At leading-order,
the system can be solved analytically. It yields:

ΛMS = Mρe−(a+1)/
√

a, (6)

with a = 4
( √

ln(2)2 + 1 + β0/4 − ln(2)
)
/β0. For n f = 3

quark flavors, a ' 0.55. The system was solved nu-
merically at higher orders. The result at order β3, the
same order to which the experimental value of ΛMS is
extracted, is ΛMS = 0.341 ± 0.024 GeV for n f = 3.
The uncertainty stems from the extraction of κ from the
ρ or proton masses and from a small contribution from
ignoring the quark masses.

This theory uncertainty is less or comparable to that
of the measurements, which combine to ΛMS = 0.339±
0.016 GeV [20]. In Fig. 2 we compare our calculation
with the best measurements, recent lattice results and
their average, ΛMS = 0.340 ± 0.008 GeV [20]. In Fig.
3, the AdS/QCD prediction of αAdS

g1
(Q2) (3) is plotted

together with data [18, 19]. Even though it has no ad-
justable parameters, the predicted Gaussian form for the
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Figure 2: Comparison between our result and determinations of
αMS (MZ ) from the high precision experimental and lattice measure-
ments. The world average [20] is shown as the vertical band.

behavior of αAdS
g1

(Q2) at Q2 . 1 GeV2 agrees well with
data [15]. Also shown in this figure is the very small de-
pendence of αpQCD

g1 (Q2) on the βn and αMS orders used
in Eqs. (4) and (5), respectively.

The matching of the soft and hard domains of the
running coupling αg1 (Q2) also determines the transition
scale Q0. At order β3, Q2

0 ' 1.25 ± 0.19 GeV2. This
value is similar to the traditional lower limit Q2 > 1
GeV2 used for pQCD. An approximate value similar to
ours was found in Ref. [22], which terminates the evo-
lution of αs(Q2) near Q ' 1 GeV in order to enforce
quark-hadron duality for the proton structure function
F2(x,Q2) measured in deep-inelastic experiments.

6. Determination of the hadron spectrum

Instead of predicting ΛMS from κ, one can, con-
versely, predict the hadron mass spectrum using the
world average ΛMS = 0.340 ± 0.008 GeV [20] as the
only input. One obtains Mρ = 0.777 ± 0.051 GeV,
in near perfect agreement with the measured Mρ =

0.775 ± 0.000 GeV [20]. The theory uncertainty stems
from the truncation of the series, Eq. (5), from the
uncertainty on ΛMS [20], and from the truncation of
the β series, Eq. (4). The computed proton and neu-
tron masses, however, are 2σ higher than the averaged
experimental values, MN = 1.092 ± 0.073 GeV com-
pared to 0.939 ± 0.000 GeV. Other meson and baryon
masses are calculated as orbital and radial excitations
of the LF-QCD Schroedinger equation [11, 12]. The
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Figure 3: The dependence of αg1 on the orders of the β and αMS
series. The continuous black line is αAdS

g1
. The continuous colored

lines are the matched αpQCD
g1 for all available orders in the αMS series

(the order of the β series was kept at β3). The dash-dotted colored
lines are the matched α

pQCD
g1 at different orders in the β series (the

order of the series was kept at α5
MS

). The comparison between αAdS
g1

and the data is shown in the embedded figure. This comparison is
shown within the range of validity of AdS/QCD.

predictions are shown in Figs. 4 and 5 for the vector
mesons. Thus, using ΛMS as the only input, the hadron
mass spectrum is calculated self-consistently within the
holographic QCD framework.

7. Summary

We have presented an explicit relation between
the quark-confining nonperturbative dynamics of QCD
at large-distances and the short-distance dynamics of
pQCD; we thus can link the pQCD scale Λs to the ob-
served hadron masses. The predicted value ΛMS =

0.341 ± 0.024 GeV agrees well with the experimen-
tal average 0.339 ± 0.016 GeV and the lattice average
0.340±0.008 GeV. Conversely, we can predict the value
of κ and the hadron mass spectrum for light quarks using
the experimental value of Λs as the sole input parameter.

We have used an effective theory which encodes the
underlying conformality of QCD and the emergence of
a scale through the dAFF procedure. Together with
light-front holography, the duality between AdS5 space
and physical 3 + 1 space at fixed LF time τ allow us
to determine both the color confining potential in the
Light-Front Schrödinger Equation U(ζ2) = κ4ζ2 and
the analytic form of the running coupling αs(Q2)/π =
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Figure 4: The predicted mass spectrum for the light vector mesons as
a function of the internal orbital angular momentum L and the radial
excitation n for unflavored mesons. The red dots are the experimental
values. The dark lines represent the results discussed here and the gray
bands the uncertainty. The only parameter entering this determination
is the world average ΛMS = 0.340 ± 0.008 GeV. The decay widths of
the mesons are not accounted for in the calculation.
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Figure 5: Same as Fig. 4 but for strange mesons. Only two parame-
ters, the strange quark mass and ΛMS are used to obtain this spectrum.

exp
(
−Q2/4κ2

)
at small Q2. The predicted Gaussian

form agrees remarkably with the running of the effec-
tive charge determined from measurements of the Q2

dependence of the Bjorken sum rule, in effect, without
any free parameters.

It should be emphasized that QCD has no knowledge
of conventional units of mass such as GeV; thus only
ratios can be predicted from QCD alone. The value of
κ in GeV never needs to be determined. Consequently
our work predicts ratios such as Λs/κ and Λs/MH where
MH is any hadron mass. For the same reason, only the
ratio ΛMS /Fπ is evaluated in Ref. [23].
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