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F. Martinez-Vidal and A. Oyanguren
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain



5

J. Albert, Sw. Banerjee, A. Beaulieu, F. U. Bernlochner, H. H. F. Choi, G. J. King, R. Kowalewski,

M. J. Lewczuk, T. Lueck, I. M. Nugent, J. M. Roney, R. J. Sobie, and N. Tasneem
University of Victoria, Victoria, British Columbia, Canada V8W 3P6

T. J. Gershon, P. F. Harrison, and T. E. Latham
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

H. R. Band, S. Dasu, Y. Pan, R. Prepost, and S. L. Wu
University of Wisconsin, Madison, Wisconsin 53706, USA

We study the lepton forward-backward asymmetry AFB and the longitudinal K∗ polarization FL,
as well as an observable P2 derived from them, in the rare decays B → K∗ℓ+ℓ−, where ℓ+ℓ− is either
e+e− or µ+µ−, using the full sample of 471 million BB events collected at the Υ (4S) resonance
with the BABAR detector at the PEP-II e+e− collider. We separately fit and report results for the
K∗0(892)ℓ+ℓ− and K∗+(892)ℓ+ℓ− final states, as well as their combination K∗ℓ+ℓ−, in five disjoint
dilepton mass-squared bins. An angular analysis of B+

→ K∗+ℓ+ℓ− decays is presented here for
the first time.

PACS numbers: 13.20.He, 12.15.-y, 11.30.Er

I. INTRODUCTION

The decays B → K∗(892)ℓ+ℓ−, where K∗ → Kπ
(hereinafter, unless explicitly stated otherwise, K∗ refers
generically to the K∗(892)) and ℓ+ℓ− is either an e+e−

or µ+µ− pair, arise from flavor-changing neutral-current
(FCNC) processes, which are forbidden at tree level in
the Standard Model (SM). The lowest-order SM pro-
cesses contributing to these decays are the photon pen-
guin, the Z penguin and theW+W− box diagrams shown
in Fig. 1. Their amplitudes are expressed in terms of
hadronic form factors and perturbatively-calculable ef-
fective Wilson coefficients, Ceff

7 , Ceff
9 and Ceff

10 , which
represent the electromagnetic penguin diagram, and the
vector part and the axial-vector part of the linear combi-
nation of the Z penguin and W+W− box diagrams, re-
spectively [1–7]. Non-SM physics may add new penguin
and/or box diagrams, as well as possible contributions
from new scalar, pseudoscalar, and/or tensor currents,
which can contribute at the same order as the SM dia-
grams, modifying the effective Wilson coefficients from
their SM expectations [8–17]. An example of a non-SM
physics loop process is shown in Fig. 2; other possible
processes could involve e.g., non-SM Higgs, charginos,
gauginos, neutralinos and/or squarks. As a function of
dilepton mass-squared q2 = m2

ℓ+ℓ−
, the angular distri-

butions in B → K∗ℓ+ℓ− decays are notably sensitive to
many possible sources of new physics, with several collab-
orations presenting results over the past few years [18–

∗Now at: University of Tabuk, Tabuk 71491, Saudi Arabia
†Now at: Laboratoire de Physique Nucléaire et de Hautes Energies,
IN2P3/CNRS, F-75252 Paris, France
‡Now at: University of Huddersfield, Huddersfield HD1 3DH, UK
§Deceased
¶Now at: University of South Alabama, Mobile, Alabama 36688,
USA
∗∗Also at: Università di Sassari, I-07100 Sassari, Italy

25].

q q

b st,c,u

W −

γ , Z

l +

l −

q q

b st,c,u

W +W − ν

l − l +

FIG. 1: Lowest-order SM Feynman diagrams for b → sℓ+ℓ−.

At any particular q2 value, the kinematic distribution
of the decay products of B → K∗ℓ+ℓ− and the CP -
conjugate B → K∗ℓ+ℓ− process depends on six transver-
sity amplitudes which, neglecting CP -violating effects
and terms of order m2

ℓ and higher, can be expressed as
a triply differential cross-section in three angles: θK , the
angle between the K and the B directions in the K∗

rest frame; θℓ, the angle between the ℓ+(ℓ−) and the
B(B) direction in the ℓ+ℓ− rest frame; and φ, the angle
between the ℓ+ℓ− and Kπ decay planes in the B rest
frame. From the distribution of the angle θK obtained
after integrating over φ and θℓ, we determine the K∗ lon-
gitudinal polarization fraction FL using a fit to cos θK of
the form [6]

1

Γ(q2)

dΓ

d(cos θK)
=

3

2
FL(q

2) cos2 θK +

3

4
(1− FL(q

2))(1 − cos2 θK) . (1)

We similarly determine the lepton forward-backward
asymmetry AFB from the distribution of the angle θℓ



6

b sq∼

χ∼  −

h
0

µ +

µ −

FIG. 2: Feynman diagram of a non-SM Higgs penguin pro-
cess.

obtained after integrating over φ and θK , [6]

1

Γ(q2)

dΓ

d(cos θℓ)
=

3

4
FL(q

2)(1− cos2 θl) +

3

8
(1− FL(q

2))(1 + cos2 θl) +

AFB(q
2) cos θl . (2)

We ignore here possible contributions from non-resonant
S-wave B → Kπℓ+ℓ− events. The rate for such events
has been shown to be consistent with zero [26], with an
upper limit (68% CL) across the entire dilepton mass-
squared range of < 4% of the B → K∗(Kπ)ℓ+ℓ− branch-
ing fraction [21]. The presence of an S-wave component
at this level was shown to lead to a relatively small abso-
lute bias on the order of 0.01 for FL and AFB; this small
bias is ignored here given the relatively larger magnitude
of our statistical and systematic uncertainties. Essen-
tially no contributions from low-mass tails of the higher
K∗ resonances are expected in the K∗(892) mass region
considered here.
We ignore small q2-dependent theory corrections in

the large-recoil q2 <∼ 2GeV2/c4 region given the current
experimental uncertainties on the angular observables,
which are relatively large compared to these small cor-
rections in the underlying SM theory expectations [2].
We determine FL and AFB in the five disjoint bins of q2

defined in Table I. We also present results in a q2 range
1.0 < q20 < 6.0GeV2/c4, the perturbative window away
from the q2 → 0 photon pole and the cc resonances at
higher q2, where theory uncertainties are considered to
be under good control. An angular analysis of the de-
cays B+ → K∗+ℓ+ℓ− is presented here for the first time.
We additionally present results for an observable derived
from FL and AFB , P2 = (−2/3)∗AFB/(1−FL), with less
theory uncertainty, and hence greater sensitivity to non-
SM contributions, than either FL or AFB alone [28, 29].

II. EVENT SELECTION

We use a data sample of ∼ 471 million BB pairs, corre-
sponding to 424.2± 1.8 fb−1 [30], collected at the Υ (4S)

resonance with the BABAR detector [31] at the PEP-II
asymmetric-energy e+e− collider at the SLAC National
Accelerator Laboratory. Charged particle tracking is pro-
vided by a five-layer silicon vertex tracker and a 40-layer
drift chamber in a 1.5 T solenoidal magnetic field. We
identify electrons and photons with a CsI(Tl) electro-
magnetic calorimeter, and muons using an instrumented
magnetic flux return. We identify charged kaons using a
detector of internally reflected Cherenkov light, as well
as dE/dx information from the drift chamber. Charged
tracks other than identified e, µ and K candidates are
treated as pions.
We reconstruct B → K∗ℓ+ℓ− signal events in the

following final states (charge conjugation is implied
throughout unless explicitly noted):

• B+ → K∗+(→ K0
S
π+)µ+µ−;

• B0 → K∗0(→ K+π−)µ+µ−;

• B+ → K∗+(→ K+π0)e+e−;

• B+ → K∗+(→ K0
S
π+)e+e−;

• B0 → K∗0(→ K+π−)e+e−.

We do not include the decays B+ → K∗+(→
K+π0)µ+µ− and B0 → K∗0(→ K0

S
π0)ℓ+ℓ− in our anal-

ysis. The expected signal-to-background ratio for these
final states relative to the five chosen signal modes listed
above is very poor, with ensembles of pseudo-experiments
showing that inclusion of these extra modes would yield
no additional sensitivity.
We require K∗ candidates to have an invariant mass

0.72 < m(Kπ) < 1.10GeV/c2. Electron and muon can-
didates are required to have momenta p > 0.3GeV/c in
the laboratory frame. The muon and electron misiden-
tification rates determined from high-purity data control
samples are, respectively, ∼ 2% and <

∼ 0.1% [31], and
backgrounds from particle misidentification are thus sig-
nificant for B → K∗µ+µ− candidates only. We combine
up to three photons with an electron candidate when
the photons are consistent with bremsstrahlung from the
electron. We do not use electrons that are associated

TABLE I: Definition of the q2 bins used in the analysis. The
nominal B and K∗ invariant masses [27] are given by mB and
mK∗ , respectively.

q2 bin q2 min (GeV2/c4) q2 max (GeV2/c4)

q21 0.10 2.00
q22 2.00 4.30
q23 4.30 8.12
q24 10.11 12.89
q25 14.21 (mB −mK∗)2

q20 1.00 6.00
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with photon conversions to low-mass e+e− pairs. We
reconstruct K0

S
candidates in the π+π− final state, re-

quiring an invariant mass consistent with the nominal
K0 mass, and a flight distance from the e+e− interaction
point that is more than three times the flight distance
uncertainty. Neutral pion candidates are formed from
two photons with Eγ > 50MeV, and an invariant mass
between 115 and 155MeV/c2. In each final state, we uti-

lize the kinematic variables mES =
√

E2
CM/4− p∗2B and

∆E = E∗
B−ECM/2, where p

∗
B and E∗

B are the B momen-
tum and energy in the Υ (4S) center-of-mass (CM) frame,
and ECM is the total CM energy. We reject events with
mES < 5.2GeV/c2.
To characterize backgrounds from hadrons misidenti-

fied as muons, we studyK∗h±µ∓ candidates, where h is a
charged track with no particle identification requirement
applied. We additionally use a K∗e±µ∓ sample, where
no signal is expected because of lepton-flavor conserva-
tion, to model the combinatorial background from two
random leptons. For both e+e− and µ+µ− modes, we
veto the J/ψ (2.85 < mℓ+ℓ− < 3.18GeV/c2) and ψ(2S)
(3.59 < mℓ+ℓ− < 3.77GeV/c2) mass regions. These ve-
toed events provide high-statistics control samples of de-
cays to final states identical to the signal modes here that
we use to validate our fitting procedures.
Random combinations of leptons from semileptonic

B and D decays are the predominant source of back-
grounds. These combinatorial backgrounds occur in both
BB events (“BB backgrounds”) and e+e− → qq con-
tinuum events (“qq backgrounds”, where q = u, d, s, c),
and are suppressed using eight bagged decision trees
(BDTs) [32] trained for suppression of:

• BB backgrounds in e+e− modes at low q2;

• BB backgrounds in e+e− modes at high q2;

• BB backgrounds in µ+µ− modes at low q2;

• BB backgrounds in µ+µ− modes at high q2;

• qq backgrounds in e+e− modes at low q2;

• qq backgrounds in e+e− modes at high q2;

• qq backgrounds in µ+µ− modes at low q2;

• qq backgrounds in µ+µ− modes at high q2,

where low (high) q2 is defined as the mass-squared region
below (above) the vetoed J/ψ region. In order to treat
theK∗e±µ∓ control sample equivalently to the e+e− and
µ+µ− datasets, we similarly train four BDTs for BB and
qq background suppression in the low and high q2 regions,
using a high-statistics sample of simulated B → K∗e±µ∓

events. The µ+µ− BDTs are used to characterize the
K∗h±µ∓ dataset.
Each of the above BDTs uses a subset of the following

observables as its input parameters:

• the B candidate ∆E;

• the ratio of Fox-Wolfram moments R2 [33] and
the ratio of the second-to-zeroth angular moments
of the energy flow L2/L0 [34], both of which are
event shape parameters calculated using charged
and neutral particles in the CM frame;

• the mass and ∆E of the other B meson in the event
computed in the laboratory frame by summing the
momenta and energies of all charged particles and
photons that are not used to reconstruct the signal
candidate;

• the magnitude of the total transverse momentum
of the event;

• the χ2 probability of the vertex fitted from all the
B candidate tracks;

• the cosines of four angles, all defined in the CM
frame: the angle between the B candidate momen-
tum and the beam axis, the angle between the event
thrust axis and the beam axis, the angle between
the thrust axis of the rest of the event and the beam
axis, and the angle between the event thrust axis
and the thrust axis of the rest of the event. The
thrust T of an event comprised of N particles, or
analogously for a subset of particles in an event, is
defined as [35]

T =

N
∑

i=1

|~pi · t̂|

N
∑

i=1

|~pi|

,

where the thrust axis t̂ maximizes the magnitude
of the thrust T , up to a two-fold ambiguity in di-
rection (forward and backward are equivalent).

As an example, Fig. 3 shows histograms of BDT output
normalized to unit area for simulated K0

S
π+e+e− and

K0
S
π+µ+µ− signal and combinatorial background events

in the q21 bin. The BDT outputs for the other final states
and q2 bins demonstrate similar discriminating power.
Backgrounds from B → D(→ K(∗)π)π hadronic de-

cays occur if two hadrons are misidentified as leptons,
which happens at a non-negligible rate only in dimuon
final states. These events are vetoed by requiring the in-
variant mass of the K∗π system to be outside the range
1.84− 1.90GeV/c2 after assigning the pion mass hypoth-
esis to the muon candidates. Residual muon misiden-
tification backgrounds remaining after this selection are
characterized using the K∗h±µ∓ dataset.
For the last steps in the event selection, we adopt

(a) the ∆E regions used in our recent related analy-
ses of rates and rate asymmetries in exclusive B →
K(∗)ℓ+ℓ− and inclusive B → Xs ℓ

+ℓ− decays [26, 36],
−0.1(−0.05) < ∆E < 0.05GeV for e+e− (µ+µ−) modes;
and (b) the qq BDT > 0.4 selection used in the inclusive
B → Xs ℓ

+ℓ− analysis [26]. After all other selection cri-
teria have been imposed, this qq BDT selection removes
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FIG. 3: BDT outputs normalized to unit area for simulated signal (solid blue line) and background (red dashed line) q21 events.

most qq background events with only trivial decreases in
signal efficiencies.
At the conclusion of the event selection process, some

events have multiple reconstructed B candidates which
typically differ by one charged or neutral pion in the
hadronic system. The signal candidate multiplicity aver-
aged across final states and q2 bins is ∼ 1.4 (∼ 1.1) candi-
dates per event in dielectron (dimuon) modes. In events
with multiple signal candidates, the candidate with the
∆E value closest to zero is selected.

III. ANGULAR OBSERVABLES EXTRACTION

METHOD

A. General Strategy

We extract the angular observables FL and AFB from
the data using a series of likelihood (LH) fits which pro-
ceed in several steps:

• In each q2 bin, for each of the five signal modes
separately and using the full mES > 5.2GeV/c2

dataset, an initial unbinned maximum LH fit of
mES, m(Kπ) and a likelihood ratio (LR, defined
below in Eq. 3) that discriminates against random
combinatorial BB backgrounds is performed. Af-
ter this first fit, all normalizations and the mES-
dependent, m(Kπ)-dependent and LR-dependent
probability density function (pdf) shapes are fixed.

• Second, in each q2 bin and for each of the five signal
modes separately, mES, m(Kπ) and LR pdfs and
normalizations are defined for mES > 5.27GeV/c2

events (the “mES angular fit region”) using the re-
sults of the prior three-dimensional fits. Only mES

angular fit region events and pdfs are subsequently
used in the fits for FL and AFB.

• Next, cos θK is added as a fourth dimension to the
likelihood function, in addition tomES,m(Kπ) and
LR, and four-dimensional likelihoods with FL as
the only free parameter are defined formES angular
fit region events. As above, each q2 bin and each
of the five signal modes has its own separate 4-d
LH function. However, a common value of FL is
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shared among all of the 4-d LH functions in any
given q2 bin. Thus, by combining LH functions
from multiple final states, it becomes possible to
extract FL and AFB for arbitrary combinations of
the five final states here. In particular, we quote
results using three different sets of our five signal
modes:

– B+ → K∗+ℓ+ℓ−, comprised of

B+ → K∗+(→ K0
S
π+)µ+µ−,

B+ → K∗+(→ K+π0)e+e−,

B+ → K∗+(→ K0
S
π+)e+e−,

– B0 → K∗0ℓ+ℓ−, comprised of

B0 → K∗0(→ K+π−)µ+µ−,

B0 → K∗0(→ K+π−)e+e−.

– B → K∗ℓ+ℓ−, comprised of

B+ → K∗+(→ K0
S
π+)µ+µ−,

B0 → K∗0(→ K+π−)µ+µ−,

B+ → K∗+(→ K+π0)e+e−,

B+ → K∗+(→ K0
S
π+)e+e−,

B0 → K∗0(→ K+π−)e+e−.

• In the final step, we use the fitted value of FL from
the previous fit step as input to a similar 4-d fit for
AFB, in which cos θℓ replaces cos θK as the fourth
dimension in the LH function, in addition to mES,
m(Kπ) and LR.

As mentioned above, we define a likelihood ratio LR

as the third dimension in the initial fit,

LR ≡
Psig

Psig + Pbkg
, (3)

where Psig and Pbkg are probabilities calculated from the

BB BDT output for signal and BB backgrounds, respec-
tively. Psig and Pbkg are modeled using several differ-
ent functional forms depending on q2 bin and final state.
After the multiple candidate selection described at the
conclusion of the preceding section and before fitting a
dataset, a final requirement of LR > 0.6 is made. This
drastically reduces the number of background events at
the cost of a relatively small loss, dependent on final state
and q2 bin, in signal efficiency. Table II shows final sig-
nal efficiencies in the mES angular fit region for each final
state and q2 bin.

The initial 3-d fit is an unbinned maximum likelihood
fit with minimization performed by MINUIT [37]. Each
angular result is subsequently determined by direct con-
struction and examination of the negative log-likelihood
(NLL) curves resulting from a scan across the entire FL

or AFB parameter space, including unphysical regions
which provide a statistically consistent description of the
data.

TABLE II: Final signal efficiencies in the mES angular fit
region by mode and q2 bin.

Mode q20 q21 q22 q23 q24 q25

K0
Sπ

+µ+µ− 0.143 0.130 0.146 0.145 0.143 0.108
K+π−µ+µ− 0.184 0.152 0.185 0.195 0.194 0.157
K+π0e+e− 0.121 0.105 0.124 0.121 0.110 0.075
K0

Sπ
+e+e− 0.182 0.160 0.185 0.174 0.151 0.109

K+π−e+e− 0.230 0.195 0.233 0.229 0.209 0.151

B. Event Classes

We characterize mES, m(Kπ), LR, cos θK and cos θℓ
probability density functions in our likelihood fit model
for several classes of events:

• correctly reconstructed (“true”) signal events;

• misreconstructed (“crossfeed”) signal events, from
both the five signal modes as well as from other
b→ sℓ+ℓ− decays;

• random combinatorial backgrounds;

• backgrounds from J/ψ and ψ(2S) decays which es-
cape the dilepton mass veto windows;

• for the µ+µ− modes only, backgrounds from
hadronic decays in which there is muon misidenti-
fication of hadrons (this background is negligible in
e+e− final states due to the much smaller, relative
to muons, electron misidentification probability).

1. True and Crossfeed Signal Events

True signal events have all final state daughter particles
correctly reconstructed. The true signal normalization
for each final state in each q2 bin is a free parameter in
the initial 3-d fits. For each final state, themES signal pdf
is parameterized as a Gaussian with a mean and width
fixed to values obtained from a fit to the vetoed J/ψ data
events in the same final state. Similarly, for the resonant
K∗ lineshape in each final state, the signal m(Kπ) pdf
uses a relativistic Breit-Wigner (BW) with width and
pole mass fixed from the vetoed J/ψ data events in the
same final state. True signal LR pdfs for each final state
in each q2 bin are derived from simulated signal events.
There is good agreement between the LR shapes derived
from simulated events and the LR shapes observed in the
charmonium control sample data.
Equations 1 and 2, showing the dependence of FL and

AFB on cos θK and cos θℓ respectively, are purely theoret-
ical expressions which must be modified to take into ac-
count the experimental acceptance. We characterize the
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angular acceptance using simulated signal events to ob-
tain parameterizations of the cos θK and cos θℓ efficiency
for each final state in each q2 bin.

Signal crossfeed typically occurs when a low-energy
π± or π0 is swapped, added or removed from the set of
daughter particles used to reconstruct an otherwise cor-
rectly reconstructed signal candidate. There can be self-
crossfeed within one signal mode, feed-across between
two different signal modes with the same final state par-
ticle multiplicity, or (up) down crossfeed from (lower)
higher multiplicity sℓ+ℓ− modes. Simulated signal events
are used to model these types of decays, with normaliza-
tion relative to the fitted true signal yield. Averaged over
the five signal modes and disjoint q2 bins q21−q

2
5 , the frac-

tion of crossfeed events relative to correctly reconstructed
signal decays is∼ 0.4 for events in themES > 5.27GeV/c2

angular fit region. Generator-level variations in the pro-
duction of cross-feed events are considered as part of the
study of systematic uncertainties related to the modeling
of signal decays.

2. Combinatorial Backgrounds

The largest source of background is from semileptonic
B and D decays, where leptons from two such decays
and a K∗ candidate combine to form a B candidate.
The mES pdf for the combinatorial background is mod-
eled with a kinematic threshold function [38] whose single
shape parameter is a free parameter in the fits. Events in
the lepton-flavor violating (LFV) modes K∗e±µ∓, which
are forbidden in the SM and for which stringent exper-
imental limits exist [27], are reconstructed and selected
analogously to the final event selection in order to char-
acterize the combinatorial background m(Kπ) and LR

pdfs. We obtain the angular pdfs for the combinatorial
backgrounds in the mES angular fit region using events in
the mES sideband region 5.2 < mES < 5.27GeV/c2. The
LFV events additionally provide an alternative model for
the combinatorial angular pdfs, which is used in the char-
acterization of systematic uncertainties in the angular
fits.

3. Charmonium and Other Physics Backgrounds

Some misreconstructed charmonium events escape the
charmonium vetoes and appear in our q2 bins. This typ-
ically occurs through bremsstrahlung by electrons, fol-
lowed by incorrect recovery of the missing energy. The
pdfs for this residual charmonium background are mod-
eled using simulated charmonium signal events.

In order to use the vetoed charmonium events as a data
control sample, we construct a set of pdfs equivalent to
those used in the B → K∗ℓ+ℓ− angular fits but which
are appropriate for J/ψ and ψ(2S) events inside, rather
than outside, their respective vetoed mass windows. The

BDTs in the low (high) q2 bin are used to calculate LR

for events within the J/ψ (ψ(2S)) mass window.
Gamma conversions from B → K∗γ events and Dalitz

decays (π0, η) → e+e−γ of hadronic B decay daughters
give rise to small backgrounds in q21 . However, since less
than a single event from these sources is expected in the
final angular fits, we do not include them in our fit model.

4. Muon Misidentification Backgrounds

In dimuon modes only, some events pass the final selec-
tion but have misidentified hadron(s) taking the place of
one or both muon candidates. To model these events, we
follow a procedure similar to that described in Ref. [39]
by selecting a sample of K∗µ±h∓ events requiring that
the µ± candidate be identified as a muon and the h∓

candidate fail identification as an electron. Using weights
obtained from data control samples where a charged par-
ticle’s species can be identified with high precision and
accuracy without using particle identification informa-
tion, the K∗µ±h∓ dataset is weighted event-by-event to
characterize expected contributions in our fits due to the
presence of misidentified muon candidates. The pdfs for
these events are implemented as a sum of weighted his-
tograms, with normalizations obtained by construction
directly from the weighted control sample data.

C. Initial mES, m(Kπ) and LR Fit

As discussed above, the initial three-dimensional fits
to mES, m(Kπ) and LR are done using events in the
full mES > 5.2GeV/c2 range; each final state in each q2

bin is separately fit in order to establish the normaliza-
tions and pdf shapes subsequently used in extracting the
angular observables from the mES > 5.27GeV/c2 angu-
lar fit region. Table III gives the resulting fitted signal
yields along with statistical uncertainties for the three
different combinations of particular final states for which
the angular observables are extracted. As examples of
typical fits, Fig. 4 shows fit projections in each of the
three initial fit dimensions for B0 → K+π−e+e− and
B0 → K+π−µ+µ− in the q25 bin. Validation of the ini-
tial 3-d fit model is done using events in the J/ψ and
ψ(2S) dilepton mass veto windows, where we find good
agreement between our fit results and the nominal PDG
values for the B → J/ψK∗ and B → ψ(2S)K∗ branching
fractions [27] into our final states.

D. Angular Fit Results

Prior to fitting the B → K∗ℓ+ℓ− angular data, we
validate our angular fit model by using it to extract the
K∗ longitudinal polarization FL for B → J/ψK∗ and
B → ψ(2S)K∗ decays into our signal final states, and
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TABLE III: Fitted signal yields with statistical uncertainties.

Mode q20 q21 q22 q23 q24 q25

B → K∗ℓ+ℓ− 40.8 ± 8.4 31.7 ± 7.1 11.9 ± 5.5 21.3 ± 8.5 31.9 ± 9.2 33.2 ± 7.8
B+

→ K∗+ℓ+ℓ− 17.7 ± 5.2 8.7± 4.1 3.8 ± 4.0 7.7 ± 5.6 9.0± 4.8 9.4± 4.2
B0

→ K∗0ℓ+ℓ− 23.1 ± 6.6 22.9 ± 5.8 8.1 ± 3.8 13.7 ± 6.4 22.8 ± 7.8 23.8 ± 6.6
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(f) LR: B0 → K+π−µ+µ−.

FIG. 4: Initial 3-d fit projections for B0
→ K+π−e+e− (top row) and B0

→ K+π−µ+µ− (bottom row) in q25 . The plots show
the stacked contributions from each event class: combinatorial (magenta long dash), charmonium (black dots), crossfeed (red
short dash), total pdf (solid blue) and, in the bottom row of plots only, muon mis-identification (blue dash dots). The signal
pdf is represented by the area between the dash red and solid blue lines.

comparing our results to previously reported PDG val-
ues [27]. We also perform similar validation fits for AFB,
which is expected in the SM to approach zero for lepton
pairs from B decays to final states including charmonia.
Recalculating the PDG averages after removing all con-
tributing BABAR results, we find no significant deviations
from the expected values in any individual final state or
for the particular combinations of final states used in our
main analysis.

Having validated our fit model with the vetoed charmo-
nium events, we proceed to the extraction of the angular
observables in each q2 bin. Our results are tabulated in
Tables IV and V; Figs. 5 and 6 show the B+ → K∗+ℓ+ℓ−

and B0 → K∗0ℓ+ℓ− cos θK and cos θℓ fit projections in q
2
0

and q25 . Fig. 7 graphically shows our FL and AFB results
in disjoint q2 bins alongside other published results and
the SM theory expectations, the latter of which typically
have 5-10% theory uncertainties (absolute) in the regions

below and above the charmonium resonances. Fig. 8 sim-
ilarly compares the q20 results obtained here with those
of other experiments and the SM theory expectation.

E. Systematic Uncertainties

We describe below the systematic uncertainties in the
angular results arising from:

• the purely statistical uncertainties in the parame-
ters obtained from the initial 3-d mES,m(Kπ) fit
which are used in the angular fits;

• the FL statistical uncertainty, which is propagated
into the AFB fit; and

• the modeling of the random combinatorial back-
ground pdfs and the signal angular efficiencies.
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TABLE IV: FL angular fit results with, respectively, statistical and systematic uncertainties.

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 +0.05+0.09
−0.10

+0.02
−0.10 +0.43+0.12

−0.13
+0.02
−0.02 +0.24+0.09

−0.08
+0.02
−0.02

q21 −0.02+0.18
−0.13

+0.09
−0.14 +0.34+0.15

−0.10
+0.15
−0.02 +0.29+0.09

−0.12
+0.13
−0.05

q22 −0.24+0.27
−0.39

+0.18
−0.10 +0.18+0.16

−0.12
+0.02
−0.10 +0.17+0.14

−0.15
+0.02
−0.02

q23 +0.15+0.14
−0.13

+0.05
−0.08 +0.48+0.14

−0.16
+0.05
−0.05 +0.30+0.12

−0.11
+0.05
−0.07

q24 +0.05+0.27
−0.16

+0.16
−0.15 +0.45+0.09

−0.14
+0.06
−0.06 +0.34+0.15

−0.10
+0.07
−0.10

q25 +0.72+0.20
−0.31

+0.10
−0.21 +0.48+0.12

−0.12
+0.02
−0.11 +0.53+0.10

−0.12
+0.07
−0.14

TABLE V: AFB angular fit results with, respectively, statistical and systematic uncertainties.

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 +0.32+0.18
−0.18

+0.08
−0.05 +0.06+0.15

−0.18
+0.06
−0.05 +0.21+0.10

−0.15
+0.07
−0.09

q21 +0.44+0.20
−0.22

+0.13
−0.16 −0.12+0.23

−0.21
+0.10
−0.21 +0.10+0.16

−0.15
+0.08
−0.19

q22 +0.70+0.21
−0.38

+0.36
−0.49 +0.33+0.21

−0.30
+0.12
−0.11 +0.44+0.15

−0.18
+0.14
−0.11

q23 +0.11+0.22
−0.28

+0.08
−0.20 +0.17+0.14

−0.16
+0.08
−0.08 +0.15+0.14

−0.12
+0.08
−0.05

q24 +0.21+0.32
−0.33

+0.11
−0.24 +0.40+0.12

−0.18
+0.17
−0.16 +0.42+0.11

−0.17
+0.14
−0.13

q25 +0.40+0.26
−0.21

+0.18
−0.17 +0.29+0.14

−0.17
+0.10
−0.10 +0.29+0.07

−0.10
+0.10
−0.12

We additionally examined several other possible
sources of systematic uncertainty, but found no signifi-
cant contributions due to:

• modeling of the signal crossfeed contributions to
the angular fits;

• the parameterization of the signal Gaussian mES

and resonant m(Kπ) shapes that are extracted
from the relatively high-statistics J/ψ control sam-
ples;

• possible fit biases which, to relatively very good
precision, were not observed in any of the data con-
trol sample angular fits;

• characterization of mES peaking backgrounds from
muon mis-identification and charmonium leakage;

• variations in event selection.

We combine in quadrature the individual systematic
uncertainties to obtain the total systematic uncertainty
on each of the angular observables; these are are given
in Table X, which is placed after the detailed discussion
below for each family of systematic uncertainties.
In the initial fits that determine the signal yields, we

allow the random combinatorial mES shape and normal-
isation, as well as the signal yield, to float. We then

fix these parameters at their central values for the an-
gular fits. To study the systematic uncertainty associ-
ated with these fixed parameters, we vary each param-
eter from its central value by its ±1σ statistical uncer-
tainty, accounting for correlations among the fit param-
eters, and then redo the angular fit. To control for sys-
tematic fit results that deviate from the nominal central
value mainly from statistical effects rather than system-
atic ones, we additionally examine fit results obtained
from ±(0.8, 0.9, 1.1, 1.2)σ variations. These small varia-
tions on the ±1σ values should also result in similarly
small variations, in the absence of any statistical effects,
on a ±1σ systematic fit result. For the bulk of the sys-
tematics, where the series of fit results for each of the ad-
ditional variations is linearly distributed around the mid-
dle 1σ fit result, the 1σ variation is considered robust. In
the relatively few cases where the disagreement between
the nominal 1σ variation and the value of the 1σ variation
interpolated from the additional (0.8, 0.9, 1.1, 1.2)σ varia-
tions is statistically significant, the interpolated 1σ value
is used to assign the systematic. All deviations from the
nominal fit central value are then added in quadrature to
obtain the overall systematic uncertainty attributable to
this source, which is given in Table VI.

The cos θK fit yields the central value and statistical
uncertainty for FL in each q2 bin, which is subsequently
used in the fit to the cos θℓ distributions to extract AFB.
To study the systematic uncertainty on AFB due to the
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FIG. 5: B+
→ K∗+ℓ+ℓ− angular fit projections. The shaded areas show the contribution to the total fit from each individual

final state: (green vertical lines) B+
→ K0

Sπ
+µ+µ−; (red diagonal lines) B+

→ K0
Sπ

+e+e−; (blue horizontal lines) B+
→

K+π0e+e−. The overlaid dashed line shows the total signal contribution summed over the three individual final states. Each
colored band includes both signal and background events in a given final state.

purely statistical FL uncertainty, we vary the value of
FL by ±1σ from its fitted value, and redo the cos θℓ fits
with the new value of FL. We determine the systematic
uncertainty from the shift in the central value ofAFB rel-
ative to the nominal fit for ±1σ variations of FL; these
are given in Table VII. As with the variations described
in the preceding paragraph, additional fits for several FL

variations surrounding the nominal ±1σ values are per-
formed. We then apply the same quality criterion as for
the preceding systematic and, where this criterion is not
met, assign the FL systematic using an interpolated 1σ
value rather than the fitted 1σ variation.

The angular combinatorial background shapes are
derived from the mES sideband region and are non-
parametrically modeled directly from these data. We ex-
amine several variations on the modeling, and addition-
ally use the LFV events (described above) as an alterna-

tive dataset from which the angular background pdfs are
drawn. We assign a systematic uncertainty associated
with the modeling of these pdfs by using 20 different
variations of the non-parametric modeling and refitting
for FL and AFB. We take the largest of the deviations
between the default nominal fit and these varied fit re-
sults, and to this add in quadrature the deviation from
the nominal fit obtained using the LFV dataset; the re-
sulting systematic uncertainty is given in Table VIII.

Finally, to study a possible systematic uncertainty on
FL and AFB as a function of their true physical values,
we generated and reconstructed simulated events with
varied values of the underlyingWilson coefficients C7, C9,
and C10 in order to produce a range of near-maximal, but
physically allowed, asymmetries. These datasets are used
to produce signal efficiency histograms differing from the
default ones, which use the expected SM values for the
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FIG. 6: B0
→ K∗0ℓ+ℓ− angular fit projections. The shaded areas show the contribution to the total fit from each individual

final state: (red diagonal lines) B0
→ K+π−µ+µ−; (blue horizontal lines) B0

→ K+π−e+e−. The overlaid dashed line
shows the total signal contribution summed over the two individual final states. Each colored band includes both signal and
background events in a given final state.

Wilson coefficients. This allows different regions of the
angular distributions to contribute with different rela-
tive weight depending on the magnitude and sign of the
underlying angular asymmetries. Applying these alter-
native signal efficiency histograms, we measure the shifts
in the fitted values of FL and AFB , and assign as the
systematic the sum-in-quadrature of each deviation from
the nominal central value; the resulting systematic un-
certainty is shown in Table IX.

F. Extraction of P2 from the Angular Fit Results

As mentioned above in the Introduction, FL and AFB

can be used to parameterize an additional angular ob-
servable, P2 = (−2/3) ∗AFB/(1−FL), which has dimin-
ished theory uncertainty and greater sensitivity to non-

SM contributions than either FL or AFB alone [28, 29].
Table XI gives our results for P2. The 68% confidence
intervals quoted are frequentist and derived from ensem-
bles of fits to simulated datasets randomly drawn from
the correlated confidence-level contours for FL and AFB.
For the disjoint mass-squared bins q21 to q25 , Fig. 9 graph-
ically shows our results overlaid on the SM expectations
from theory (as given in Table 3 (KMPW) of Ref. [29])
in the mass-squared region below the J/ψ . In the q20
mass-squared bin, the SM expectation (from the same
source) for P2 is 0.11 ± 0.10, in slight tension with our
experimental result.
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FIG. 7: FL (top) and AFB (bottom) results in disjoint q2 bins, along with those of other experiments and the SM expectations
(blue dashed lines, which also define the extent of each individual q2 bin): (black filled star) Belle [19], (black filled circle)
CDF [20], (black open square) LHCb [21], (black open circle) CMS [22], (black open star) ATLAS [23], (blue filled square) BABAR
B → K∗ℓ+ℓ−, (red filled down-pointing triangle) B0
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FIG. 8: q20 FL (left) and AFB (right) results, along with those of other experiments [19–23] and the SM expectation (vertical
lines) [1–5, 7].
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TABLE VI: Angular observable systematic uncertainties from the initial 3-d fit.

FL systematic AFB systematic

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ− B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 +0.02 −0.09 +0.02 −0.02 +0.02 −0.02 +0.05 −0.04 +0.01 −0.04 +0.02 −0.07

q21 +0.09 −0.13 +0.02 −0.02 +0.02 −0.05 +0.12 −0.08 +0.07 −0.02 +0.07 −0.08

q22 +0.18 −0.05 +0.02 −0.01 +0.02 −0.02 +0.34 −0.48 −0.02 −0.08 +0.09 −0.07

q23 +0.05 −0.07 +0.02 −0.02 +0.05 −0.06 +0.02 −0.19 −0.02 −0.04 +0.01 −0.02

q24 +0.11 −0.14 +0.02 −0.06 +0.02 −0.10 +0.09 −0.23 +0.15 −0.11 +0.13 −0.10

q25 +0.02 −0.19 +0.02 −0.10 +0.02 −0.14 +0.16 −0.09 +0.05 −0.02 +0.08 −0.02

TABLE VII: Systematic uncertainty in AFB from the experimental determination of FL.

AFB systematic

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 ±0.04 ±0.04 ±0.04

q21 ±0.04 ±0.07 ±0.04

q22 ±0.07 ±0.07 ±0.08

q23 ±0.03 ±0.06 ±0.04

q24 ±0.04 ±0.07 ±0.06

q25 ±0.08 ±0.07 ±0.07

TABLE VIII: Systematic uncertainties from combinatorial background modeling. “—” denotes where there is no uncertainty
associated with a particular systematic.

FL systematic AFB systematic

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ− B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 — −0.05 — — — — +0.04 — — — — −0.04

q21 +0.02 −0.02 — — — — +0.05 — — — — —

q22 — −0.05 — — — — — −0.07 — −0.04 — —

q23 — — — — — — — — — — — —

q24 +0.10 — — — — — — −0.04 — — — —

q25 — −0.10 — −0.05 — — +0.04 −0.08 +0.04 — — —
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TABLE IX: Systematic uncertainties from signal angular efficiency modeling. “—” denotes where there is no uncertainty
associated with a particular systematic.

FL systematic AFB systematic

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ− B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 — −0.02 — — — — +0.04 — +0.04 — +0.05 —

q21 +0.02 −0.04 +0.14 — +0.13 — — −0.13 — −0.20 — −0.17

q22 — −0.07 — −0.10 — −0.02 +0.12 — +0.09 — +0.07 —

q23 — −0.04 +0.04 −0.05 +0.02 −0.04 +0.08 — +0.06 −0.04 +0.07 −0.02

q24 +0.07 −0.05 +0.06 — +0.07 — +0.06 — — −0.09 +0.02 −0.06

q25 +0.10 — +0.02 — +0.07 — — −0.09 — −0.08 — −0.10

TABLE X: Total systematic uncertainties.

FL systematic AFB systematic

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ− B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 +0.02 −0.10 +0.02 −0.02 +0.02 −0.02 +0.08 −0.05 +0.06 −0.05 +0.07 −0.09

q21 +0.09 −0.14 +0.15 −0.02 +0.13 −0.05 +0.13 −0.16 +0.10 −0.21 +0.08 −0.19

q22 +0.18 −0.10 +0.02 −0.10 +0.02 −0.02 +0.36 −0.49 +0.12 −0.11 +0.14 −0.11

q23 +0.05 −0.08 +0.05 −0.05 +0.05 −0.07 +0.08 −0.20 +0.08 −0.08 +0.08 −0.05

q24 +0.16 −0.15 +0.06 −0.06 +0.07 −0.10 +0.11 −0.24 +0.17 −0.16 +0.14 −0.13

q25 +0.10 −0.21 +0.02 −0.11 +0.07 −0.14 +0.18 −0.17 +0.10 −0.10 +0.10 −0.12

TABLE XI: P2 results with total uncertainties.

B+
→ K∗+ℓ+ℓ− B0

→ K∗0ℓ+ℓ− B → K∗ℓ+ℓ−

q20 −0.22+0.14
−0.13 −0.07+0.20

−0.21 −0.18+0.13
−0.13

q21 −0.29+0.19
−0.17 +0.12+0.27

−0.29 −0.09+0.18
−0.17

q22 −0.38+0.35
−0.28 −0.27+0.25

−0.24 −0.35+0.19
−0.16

q23 −0.09+0.24
−0.21 −0.22+0.27

−0.22 −0.14+0.15
−0.13

q24 −0.15+0.28
−0.26 −0.48+0.34

−0.27 −0.42+0.26
−0.20

q25 −0.95+1.84
−0.96 −0.37+0.28

−0.24 −0.41+0.34
−0.21

IV. CONCLUSION

In conclusion, we have measured in bins of dilepton
mass-squared the fraction FL of longitudinally polarized
K∗ decays and the lepton forward-backward asymmetry
AFB in the decays B+ → K∗+ℓ+ℓ−, B0 → K∗0ℓ+ℓ−

and B → K∗ℓ+ℓ−. Results for the B+ → K∗+ℓ+ℓ− fi-
nal state are presented for the first time here. Fig. 7
graphically shows our FL and AFB results in disjoint q2

bins alongside other published results and the SM the-
ory expectations, the latter of which typically have 5-
10% theory uncertainties in the regions below and above

the charmonium resonances. Fig. 8 similarly compares
the q20 results obtained here with those of other exper-
iments and the SM theory expectation. As shown in
these figures, our B0 → K∗0ℓ+ℓ− results are in rea-
sonable agreement with both SM theory expectations
and other experimental results. Similarly, although with
relatively larger uncertainties, we observe broad agree-
ment of the B+ → K∗+ℓ+ℓ− results with those for
B0 → K∗0ℓ+ℓ−. However, in the low dilepton mass-
squared region, we observe relatively very small values for
FL in B+ → K∗+ℓ+ℓ−, exhibiting tension with both the
B0 → K∗0ℓ+ℓ− results as well as the SM expectations.
Similarly, as shown in Fig. 9 in the same mass-squared
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FIG. 9: P2 results with total uncertainties.The blue boxes show the SM theory expectation in the low mass-squared region;
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region, there appears to be some tension between the ex-
perimental results and the expected SM values for P2.
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