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A primary problem for perturbative QCD analyses is how to set the renormalization scale of the
QCD running coupling in order to achieve maximally precise fixed-order predictions for physical
observables. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated
with the conventional renormalization scale-setting procedure, giving predictions which are inde-
pendent of the choice of renormalization scheme. The scales of the QCD couplings and the effective
number of quark flavors are set order by order in the pQCD series. The PMC has a solid theoretical
foundation, satisfying the standard renormalization group invariance and all of the self-consistency
conditions derived from the renormalization group. The PMC scales at each order are obtained by
shifting the arguments of αs to eliminate all non-conformal {βi}-terms in the pQCD series. The {βi}
terms are determined from renormalization group equations without ambiguity. One then obtains
the correct behavior of the running coupling at each order and at each phase-space point. The PMC
reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we sum-
marize the results of our recent PMC applications for a number of collider processes, emphasizing
their generality and applicability. A discussion of hadronic Z decays shows that by applying the
PMC, one can achieve accurate scheme-independent predictions for the total and separate decay
widths at each order without scale ambiguities. We also show that if one applies the PMC to de-
termine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level,
one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of
the asymmetry, accounting for the “increasing-decreasing” behavior observed by D0 collaboration
as the tt̄ invariant mass is increased. At lower energies, one can use the angular distribution of
heavy quarks to obtain a direct determination of the heavy quark potential. A discussion of the
angular distribution of massive quarks and leptons is also presented, including the fermionic part
of the two-loop corrections to the electromagnetic form factors. These results demonstrate that the
application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predic-
tions, thus increasing the sensitivity of the colliders to possible new physics beyond the Standard
Model.

PACS numbers: 12.38.Aw, 12.38.Bx

I. INTRODUCTION

A primary problem for perturbative QCD analyses of
hadronic processes, such as those studied at a Tau-Charm
Factory, is how to systematically set the renormalization
scales of the QCD running coupling in order to achieve
precise fixed-order predictions for physical observables.
If one uses the conventional scale-setting method, one
simply guesses a single renormalization scale (µr) for
the argument of the QCD running coupling and varies
it over an arbitrary range. This method for setting the
scale has inherent difficulties. For example, the resulting
pQCD predictions depend on the choice of renormaliza-
tion scheme, in contradiction to the principle of “renor-
malization scheme invariance” – predictions for physi-
cal observables cannot depend on a theoretical conven-
tion [1]. Moreover, the error estimate obtained by vary-
ing µr over an arbitrary range is unreliable, since the re-
sulting variation of the prediction is only sensitive to per-
turbative contributions involving the pQCD β-function.
The convergence of the series is problematic due to the
presence of divergent renormalon terms. In some pro-
cesses, a large “K-factor” arises, e.g., for J/ψ produc-
tion at a τ -charm factory. However, one cannot decide

whether the large K-factor is indeed the property of the
process or a false result due to the improper choice of
scale. Worse, guessing the renormalization scale gen-
erally gives predictions for QED observables which are
in contradiction to the experimentally verified, precise
predictions obtained using the standard Gell-Mann-Low
(GM-L) method [2].

The Principle of Maximum Conformality (PMC) [3–8]
provides a systematic way to eliminate renormalization
scheme-and-scale ambiguities. It has a rigorous theoret-
ical foundation, satisfying renormalization group (RG)-
invariance [9] and all of the other self-consistency condi-
tions derived from the renormalization group [10]. The
PMC scales at each order are obtained by shifting the ar-
guments of the running coupling to eliminate all noncon-
formal {βi}-terms. The resulting scales also determine
the correct effective numbers of flavors nf at each order.
The pQCD convergence is automatically improved due to
the elimination of the divergent renormalon series. There
can be special cases where the β = 0 conformal terms at
low orders, are large, leading to large K-factors. This
indicates that an even higher-order calculation is needed
for a reliable pQCD prediction.

The PMC reduces in the Nc → 0 Abelian limit to the
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GM-L method [2]. The PMC provides the underlying
principle for the well-known Brodsky-Lepage-Mackenzie
(BLM) approach [11], extending the BLM procedure un-
ambiguously to all orders consistent with the renormal-
ization group. An important example of a BLM/PMC
application at next-to-leading order (NLO) level is the
investigation of semihard processes based on the BFKL
approach [12–15]. At the NLO level, the previous BLM
predictions are equivalent to the PMC results, since in
both cases one only needs to deal with the β0-terms which
can be unambiguously fixed 1.

The PMC has now been successfully applied to a num-
ber higher-order processes, providing precisions tests at
pQCD at a range of experimental facilities, including
electron-positron annihilation to hadrons [7–9]; Higgs de-
cays to γγ [16], gg and bb̄ [17, 18]; hadronic Z decays [19];
Υ(1S) leptonic decay [20]; top-pair production at the
LHC and Tevatron [4, 5, 21–23], etc. When it is ap-
plied to B physics, the PMC provides a possible solution
to the B → ππ puzzle [24].

Measurements of the Z-boson decay rate into hadrons
can provide an important method for determining a high
precision value for the strong coupling constant αs at a
specific renormalization scale. This is the central goal of
GigaZ [25] and other super-Z factories [26] – high lumi-
nosity e+e− colliders operating at the Z-resonance. The
contributions from the nonperturbative and power-law
terms are suppressed, and the smallness of αs leads to
a rapid decrease of the higher-order corrections in the
pQCD series. In fact, by applying PMC scale-setting to
the available pQCD predictions up to four-loop level [27–
30], one obtains optimal fixed-order predictions for the
Z-boson hadronic decay rate, thus enabling a very high
precision test of the Standard Model [19].

The authors of Ref.[31] have noted that an alter-
native scale-setting procedure, called the “large β0-
approximation” [32, 33], leads to incorrect next-to-next-
to-leading order (NNLO) n2

f -term to the top-pair pro-
duction at hadron colliders. It should be empha-
sized that this analytic error is a defect of “large β0-
approximation”; it does not occur if one uses PMC scale-
setting.

It is possible for conventional scale-setting to acciden-
tally predict the correct value of a global observable such
as the total cross-section at sufficiently high order; how-
ever, since one assumes the same renormalization scale at
each order in αs, it will often give incorrect predictions
for differential observables. In fact, as in QED, the scale
and effective number of flavors is distinct at each order of
pQCD, reflecting the different virtualities of the relevant
subprocesses as a function of phase space. This provides
the underlying reason why a single ‘guessed’ scale can-
not explain the “increasing-decreasing” behavior of AFB

1 One needs to ensure that in these BLM predictions, only the

β0-terms that pertain to αs-running are eliminated.

as the tt̄-pair mass is varied. We shall show that the
PMC provides a self-consistent explanation for all of the
tt̄-pair measurements at the Tevatron.
The PMC can also be applied to problems with mul-

tiple physical scales. For example, the subprocess qq̄ →
QQ̄ near the quark threshold involves, not only the sub-
process scale ŝ ∼ 4M2

Q, but also the scale v2ŝ which

appears in the Sudakov final-state corrections [34]. Here
v is the QQ̄ relative velocity which becomes very small
near threshold, and Q labels the heavy-quark flavor. We
need to introduce two PMC scales for this process, one
for the hard-part and one for the Coulomb-terms at the
presently known order of the pQCD corrections. This
is an important PMC application for processes at super
tau-charm factories.
The following sections of this contribution to Frontiers

of Physics in China are organized as follows: In Sec.II, we
present general arguments for the scale-setting problem
and introduce the Rδ-scheme, which provides a system-
atic and convenient way to identify the nonconformal β
terms in a pQCD series needed to compute the PMC
scales. We review several applications which will illus-
trate important features of the PMC: hadronic Z decay
rates; the cross section and the forward-backward asym-
metry of top-quark pair production at the Tevatron; and
the angular distributions of massive quarks and leptons
close to threshold – which is directly relevant to physics
studies at a super tau-charm factory. This PMC applica-
tion also illustrates how to deal with multiple-scale prob-
lems. Sec.III is reserved for the summary.

II. GENERAL ARGUMENTS FOR PROPER

SCALE-SETTING AND THE PMC

The scale dependence of the running coupling is con-
trolled by the renormalization group equation (RGE),
which can be used recursively to establish the perturba-
tive pattern of β terms at each order. More explicitly,
the scale-displacement relation for the running coupling
at two different scales µ1 and µ2 defines the following
β-pattern at each order,

α(µ2) = α(µ1)− β0 ln

(

µ2
2

µ2
1

)

α2(µ1)

+

[

β2
0 ln

2

(

µ2
2

µ2
1

)

− β1 ln

(

µ2
2

µ2
1

)]

α3(µ1) + . . . ,(1)

where α = αs/4π. The PMC utilizes this perturbative
β-pattern to systematically set the scales of the running
coupling at each order in a pQCD expansion; the coeffi-
cients of the resulting series thus match the coefficients
of the corresponding conformal theory with β = 0. This
is the same principle used in QED where all β-terms re-
sulting from the vacuum polarization corrections to the
photon propagator are absorbed into the scale of the run-
ning coupling. As in QED, the scales are physical in the
sense that they reflect the virtuality of the gluon prop-
agators at a given order, as well as setting the effective



3

number nf of active flavors. The resulting resummed
pQCD expression thus determines the relevant “physi-
cal” scales for any physical observable, thereby providing
a solution to the renormalization scale-setting problem.
We have suggested two all-orders PMC approaches

which are equivalent to each other at the level of confor-
mality, and are thus equally viable PMC procedures [35].
In this report, we introduce the PMC approach using the
Rδ-scheme, which can be readily automatized. The Rδ

method uses the β-pattern generated by the RGE and its
degeneracy relations to identify which terms in the pQCD
series are associated with the QCD β-function and which
terms remain in the β = 0 conformal limit. The β-terms
are then systematically absorbed by shifting the scale of
the running coupling at each order, thus providing the
PMC scheme-independent prediction.
The starting point of this approach is to introduce an

arbitrary dimensional renormalization scheme: the Rδ-
scheme. In the Rδ-scheme, an arbitrary constant −δ
is subtracted in addition to the standard subtraction
ln 4π − γE for the MS-scheme. This amounts to redefin-
ing the renormalization scale by an exponential factor,
µδ = µMS exp(δ/2). The δ-subtraction thus defines an
infinite set of new renormalization schemes. Using the
Rδ-scheme, one can determine the β-pattern at each per-
turbative order [7, 8]. The QCD prediction ̺n of a phys-
ical observable ̺ can be expressed as

̺n(Q) = r0,0 + r1,0α(µr) + [r2,0 + β0r2,1]α
2(µr) +

[

r3,0 + β1r2,1 + 2β0r3,1 + β2
0r3,2

]

α3(µr) + · · · ,(2)

where Q stands for the scale at which it is measured,
all the coefficients ri,j are functions of the initial choice
of scale µr and Q. The ri,0 are the conformal parts of
the coefficients. Here the β-pattern for the pQCD series
at each order is a superposition of all of the {βi}-terms
which govern the evolution of the lower-order αs contri-
butions at this particular order.
After applying the standard scale-setting procedures,

by setting the PMC scales Qi, the final pQCD prediction
for ̺n reads

̺n(Q) = r0,0 +

n
∑

i=1

ri,0α
i(Qi). (3)

The PMC scales Qi and the conformal coefficients ri,0
can be found in Ref.[8]. The PMC scales Qi are func-
tions of µr and Q. The resulting values of the Qi are
independent of the choice of the initial µr at infinite or-
der, ensuring the renormalization group invariance. Thus
one can adopt any initial value of µr (only needs to be
in perturbative region) and obtain the same pQCD pre-
diction. At fixed orders, there can be a small residual

scale-uncertainty in Qi and hence the final pQCD ex-
pression due to the truncation of the β-function; how-
ever, these residual uncertainties are found to be highly
suppressed – in fact negligible – even for lower-order pre-
dictions. Thus, the conventional renormalization scale
dependence has been eliminated. In practice, one can
take the usual choice of scale; e.g., the typical momen-
tum flow of the process, as the initial scale to simplify
the pQCD expressions and the PMC treatment.
The PMC eliminates the renormalization scheme-and-

scale dependences which characterize the conventional
scale setting methods. It does not break other properties
of the pQCD series, such as gauge invariance. Moreover,
the PMC correctly sets the scales at each order of pQCD;
thus in distinction to conventional scale setting, it simul-
taneously predicts the correct values for both the total
cross-section (or total decay width) and the differential
observables.

A. The higher-order pQCD corrections to hadronic

Z decays

The decay rate of the Z-boson into hadrons can be
expressed as,

ΓZ = C
[

∑

f

v2f r
V
NS +

(

∑

f

vf

)2

rVS +
∑

f

a2fr
A
NS + rAS

]

,

where the factor C = 3
GFM3

Z

24π
√
2
, vf ≡ 2If − 4qfs

2
W , af ≡

2If , qf is the f -quark electric charge, sW is the effective
weak mixing angle, and If is the third component of weak
isospin of the left-handed component of f . rVNS = rANS ≡
rNS, r

V
S and rAS stand for the non-singlet, vector-singlet

and axial-singlet part, respectively. These contributions
can be further expressed as

rNS = 1+

n
∑

i=1

CNS
i ais, r

V
S =

n
∑

i=3

CVS
i ais, r

A
S =

n
∑

i=2

CAS
i ais,

where as = αs/π. The coefficients of rNS, r
V
S and rAS

with their dependence on the choice of initial scale can
be derived from Refs.[27–30]. Each physical contribution
to the Z decay has a different momentum flow, thus,
the PMC scales for rNS, r

V
S and rAS should be set sep-

arately [19]. The prediction for a physical observable
should not depend on scheme or the initial choice of the
scale. We shall take the non-singlet contribution rNS as
example to show that the computed PMC scales and thus
the final PMC predictions for the hadronic Z decay re-
sults are highly independent of the scale.
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FIG. 1: The non-singlet contribution rNS up to four-loop QCD corrections versus µr before and after PMC scale setting. After
PMC scale setting, the curves for NLO, N2LO, and N3LO are almost coincide with each other.

We present the scale dependence before and after PMC
scale setting for rNS in Fig.(1). As expected, for the case
of conventional scale setting, the resulting low-order pre-
dictions depend heavily on µr, but as expected one ob-
serves that as more loops are taken into consideration, a
weaker scale dependence is achieved. On the other hand,
after applying the PMC, the pQCD predictions at each
order are almost independent to µr. This is because that
the PMC scales at each order are determined unambigu-
ously by absorbing all non-conformal β-terms into the
running coupling. It also indicates that the PMC pre-
dictions have the property that any residual dependence
on the choice of initial scale is highly suppressed even
for low-order predictions. Fig.(1) shows not only that
the renormalization scale ambiguities are eliminated, but
also that the value of rNS rapidly approaches its steady
point; i.e; the curves at NLO, N2LO, and N3LO almost
coincide with each other after applying the PMC.

RNS
1 RNS

2 RNS
3 RNS

4

∑4

i=1
RNS

i

Conv. 0.03769 0.00200 -0.00069 -0.00016 0.03884

PMC 0.03636 0.00252 -0.00003 -0.00001 0.03885

TABLE I: Perturbative contributions for the non-singlet rNS

under the conventional (Conv.) and the PMC scale settings.
Here, RNS

i = CNS
i ai

s with i = (1, · · · , 4) stand for the one-,
two-, three-, and four-loop terms, respectively. µr = MZ .

We emphasize that after applying the PMC, one ob-
tains better pQCD convergence due to the elimination of
the renormalon terms. The pQCD estimations at each
perturbative order for rNS are presented in Table I. The
fastest pQCD convergence is thus achieved by applying
the PMC. The pQCD correction at O(α4

s) is -0.00016 for
the conventional scale setting, which leads to a shift of the
central value of αs(MZ) from 0.1185 to 0.1190 [28, 29].
In contrast, after applying the PMC, this correction be-

comes a negligible −0.00001. Table I also shows that the
predictions for the total sum

∑4
i=1 R

NS
i are close in value

for both PMC and conventional scale setting, although
their perturbative series behave very differently.

1.034

1.036

1.038

1.04

1.042

1.044

1.046

 

 

Conv.

PMC

r
(2)
NS r

(4)
NSr

(3)
NS

FIG. 2: The values of r
(n)
NS = 1+

∑n

i=1
CNS

i ai
s and their errors

±|CNS
n an

s |MAX. The diamonds and the crosses are for con-
ventional (Conv.) and PMC scale settings, respectively. The
central values assume the initial scale choice µr = MZ .

It is helpful to be able to estimate the magnitudes
of the “unknown” higher-order pQCD corrections. One
usually estimates those unknown contributions by vary-
ing µr ∈ [MZ/2, 2MZ]. However, this simple procedure
only exposes the β-dependent non-conformal terms – not
the entire perturbative series. We emphasize that after
applying the PMC, the scales are optimized and can-
not be varied; otherwise, one will explicitly break the
renormalization group invariance, leading to an unreli-
able prediction. Here, for a conservative estimate, we
take the uncertainty to be the last known perturbative
order [9]; i.e. at n-th order the perturbative uncertainty
is estimated by ±|CNS

n ans |MAX, where the symbol “MAX”
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stands for the maximum of |CNS
n ans | by varying µr within

the region of [MZ/2, 2MZ]. The error bars for PMC and
the conventional scale setting are displayed in Fig.(2). It
shows that the predicted error bars from the “unknown”
higher-order corrections quickly approach their steady
points after applying the PMC. These error bars provide
a consistent estimate of the “unknown” QCD corrections
under conventional and PMC scale settings; i.e., the ex-

act value for “unknown” r
(n)
NS (n = 3 and 4) are well

within the error bars predicted from r
(n−1)
NS .

B. The yields and the forward-backward

asymmetry of the top-pair productions at the

Tevatron

In the following, we summarize our recent results for
the yields and the forward-backward asymmetry of the
top-pair productions at the Tevatron with hadron-hadron
collision energy

√
S = 1.96 TeV.

1. The tt̄ Production Cross-Section

The NNLO total cross-sections from all the production
channels, i.e. the (qq̄)-, (gq)-, (gq̄)- and (gg)- channels,
before and after PMC scale-setting, are [23]

σTotal|Conv. = 7.42+0.25
−0.29 pb, (4)

σTotal|PMC ≃ 7.55 pb, (5)

where the errors are obtained by varying the initial scale
µr ∈ [mt/2, 2mt]. The PMC total cross-section is almost
unchanged, indicating the residual scale dependence is
negligible. Both the PMC and conventional scale-setting
procedures agree with the CDF and D0 measurements
within errors; the recent combined cross-section given by
the CDF and D0 collaborations is 7.60 ± 0.41 pb [36].
The dependence of the total cross-section on the choice
of renormalization scale is also small using conventional
scale-setting if one incorporates NNLO QCD corrections.

Conventional PMC

µr mt/2 mt 2mt [mt/2, 2mt]

σLO
qq̄ 5.99 4.90 4.09 ≃ 4.76

σNLO
qq̄ 0.09 0.96 1.41 ≃ 1.73

σN2LO
qq̄ 0.45 0.48 0.63 ≃ −0.06

TABLE II: The (qq̄)-channel cross-sections (in unit: pb) at
each perturbative order under the conventional and PMC
scale-settings [23], where three typical renormalization scales
µr = mt/2, mt and 2mt are adopted. The factorization scale
is taken as µf = mt.

Eq.(4) shows that if one uses conventional scale set-
ting, the scale dependence for the total cross-section at

the NNLO level is small; i.e. the scale error is
(

+3%
−4%

)

.

However, using a single guessed scale does not predict the
cross-sections for individual channels correctly at each
order. In fact, by analyzing the pQCD series in detail,
we find that the errors for the separate cross-sections at
each order from conventional scale-setting are large in all
of the contributing channels. As an example, the contri-
butions of the dominant (qq̄)-channel with and without
PMC scale-setting are presented in Table II. To show
the scale dependence of individual cross-sections σi

qq̄, we
define a ratio κi:

κi =
σi
qq̄

∣

∣

µr=mt/2
− σi

qq̄

∣

∣

µr=2mt

σi
qq̄

∣

∣

µr=mt

,

where i=LO, NLO and N2LO, respectively. Using con-
ventional scale-setting, we obtain

κLO = 39%, κNLO = −138%, κN2LO = −36%.

These results show that if one uses conventional scale-
setting, then the dependence on the choice of initial scale
at each order is very large. For example, the scale depen-
dence of σNLO

qq̄ , which gives the dominant component of
the asymmetry AFB, reaches up to −138%. On the other
hand, by using the PMC, all of the κi-values become less
than 0.1%, indicating the scale dependence of each loop-
term is eliminated simultaneously.
In these calculations, we have set the factorization

scale µf to be the renormalization scale µr. The deter-
mination of the factorization scale is a completely sep-
arate issue from the renormalization scale setting, since
it is present even for a conformal theory with β = 0.
The factorization scale should be chosen to match the
nonpertubative bound-state dynamics with perturbative
DGLAP evolution, which can be done explicitly by us-
ing nonperturbative models such as AdS/QCD and light-
front holography, where the light-front wavefunctions of
the hadrons are known. See the recent review [37]. We
have found that the factorization scale dependence is
decreased after applying the PMC [22]. In contrast,
the simple conventional scale-setting procedure of setting
µr = mt to eliminate the log-terms lnk µ2

r/m
2
t is again

problematic, since it may lead to a large factorization-
scale dependence. This again explains the importance of
proper renormalization scale setting.

2. The tt̄ Forward-Backward Asymmetry

The top-quark pair forward-backward asymmetry in
p̄p → tt̄X collisions is also sensitive to the renormaliza-
tion scale-setting procedure. This asymmetry is domi-
nated by interference of different amplitudes contribut-
ing to the (qq̄)-channel. Contributions to the asymme-
try start at the NLO level. Thus evaluating the correct
value for the NLO-terms is very important in order to
achieve the correct prediction for the tt̄ asymmetry. In
contrast, one cannot trust the value of σNLO

qq̄ derived us-
ing conventional scale-setting due to its large scale errors;
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i.e., κNLO ∼ −138%. Moreover, if one uses conventional
scale-setting, the NLO cross-section σNLO

qq̄ increases and

the total cross-section σTotal
qq̄ decreases as µr is increased.

Thus, in order to agree with the measured total cross-
section, the conventional method requires a smaller scale
µr = mt/2; however this leads to the prediction of a small
tt̄ asymmetry, well below the data. This example shows
why previous NLO SM predictions could not achieve a
consistent simultaneous explanation of both the top-pair
total cross-section and the tt̄ asymmetry.

t

q

q̄

FIG. 3: Dominant cut diagrams for the nf -terms at the α4
s-

order of the (qq̄)-channel, which are responsible for the smaller
effective NLO PMC scale, where the solid circles stand for the
light quark loops.

It is important to note the NLO PMC scale µPMC,NLO
r

of the (qq̄)-channel is much smaller than mt. It is dom-
inated by the non-Coulomb nf -terms at the α4

s-order,
which are shown in Fig.(3). In these diagrams, the mo-
mentum flow of the virtual gluons has a large range of
virtualities. The NLO PMC scale is numerically small
since, in effect, it is a weighted average of the differ-
ent momentum flows of the gluons. The resulting NLO
(qq̄) cross-section is in fact about twice as large as the
cross-section predicted by conventional scale-setting; the
precision of the predicted asymmetry AFB is also greatly
improved.
Moreover, as shown by Table II, after applying the

PMC, the predicted ratio of the cross-section at the
N2LO level to the NLO cross-section for the qq̄-channel,

i.e. |σN2LO
qq̄ /σNLO

qq̄ |, is reduced from ∼ 50% to less than
∼ 4%. This shows that a great improvement of pQCD
convergence can be achieved by using the PMC. Such an
improvement of the pQCD convergence is essential for
achieving accurate pQCD predictions for the tt̄ asymme-
try. If we further include the O(α2

sα) and the O(α2) elec-

troweak contributions, we achieve a precise SM “NLO-
asymmetry” prediction [21],

APMC
FB =

α3
sN1 + α2

sαÑ1 + α2Ñ0

α2
sD0 + α3

sD1
, (6)

where the Di-terms stand for the total cross-sections
at each αs-order and the Ni-terms stand for the corre-
sponding asymmetric contributions. The term labeled
Ñ1 corresponds to the QCD-QED interference contribu-
tion at the orderO(α2

sα), and Ñ0 stands for the pure elec-
troweak antisymmetric O(α2) contribution arising from
|Mqq̄→γ→tt̄ +Mqq̄→Z0→tt̄|2. By using Eq.(6), we obtain
a precise prediction for AFB without any renormalization
scale uncertainty [23], APMC

FB = 9.2%, agreeing with the
D0 measurement within errors, AD0

FB = (10.6± 3.0)% [38]
and AD0

FB = (11.8± 2.5± 1.3)% [39].
We can also use the PMC to predict the top-quark

pair asymmetry AFB(Mtt̄ > Mcut) as a function of the
top-pair invariant mass lower limit Mcut. In the case of
Mcut = 450 GeV, the predicted asymmetry using con-
ventional scale-setting is AFB(Mtt̄ > 450 GeV)|Conv. =
12.9%, which becomes even larger after applying the
PMC, AFB(Mtt̄ > 450 GeV)|PMC = 29.9%. The pre-
diction using conventional scale-setting deviates signifi-
cantly from the CDF measurements (47.5 ± 11.4)% [40]
and (29.5±5.8±3.3)% [41]. In contrast, the PMC predic-
tion agrees with the weighted average of the CDF mea-
surements [40, 41] within errors. Thus, after applying
the PMC, the large discrepancies between the Standard
Model estimates and the CDF measurements which were
obtained using conventional scale-setting is removed.

Mcut (GeV)

AFB(Mtt̄ > Mcut) 400 450 500 600 700 800

Conv. 11% 13% 15% 18% 21% 23%

PMC 17% 30% 44% 38% 31% 30%

TABLE III: Top-quark pair asymmetries AFB(Mtt̄ > Mcut)
using conventional (Conv.) and PMC scale-setting proce-
dures [23], respectively. The predictions are shown for typical
values of Mcut. The initial scale µr = mt.

The most recent measurements reported by D0 [38]
indicate a non-monotonic, increasing-decreasing behav-
ior for AFB(Mtt̄ > Mcut) as the lower limit of the tt̄
mass is increased. This behavior cannot be explained
even by a NNLO QCD calculation using conventional
scale-setting; one predicts monotonically increasing be-
havior [31]. More explicitly, as shown in Table III, if one
assumes conventional scale-setting with the fixed scale

mt, then AFB(Mtt̄ > Mcut) monotonically increases with
increasing Mcut. In contrast, if one employs the PMC,
then AFB(Mtt̄ > Mcut) first increases and then decreases
as the lower limit of the pair mass Mcut is increased.
These trends are more clearly shown in Fig.(4), in which
the Standard Model predictions using conventional and
PMC scale-settings are compared with the CDF [41]
and D0 [38] measurements. The PMC predictions can
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FIG. 4: A comparison of SM predictions of AFB using conventional (Conv.) and PMC scale-settings with the CDF [41] and
D0 [38] measurements [23]. The initial scale µr = mt.

be understood in terms of the behavior of the effective
pQCD coupling ᾱs(µ

PMC
r ); it is the weighted average of

the running couplings entering the (qq̄)-channel, the sub-
process underlying the asymmetry in pQCD. The effec-
tive coupling ᾱs(µ

PMC
r ) depends in detail on kinemat-

ics, and the non-monotonic behavior of the effective cou-
pling accounts for the “increasing -decreasing” behav-
ior of AFB(Mtt̄ > Mcut) [23]. We have also recently
shown [22] that the PMC predictions are in agreement
with the available ATLAS and CMS data . Thus, the
proper setting of the renormalization scale provides a
consistent Standard Model explanation of the top-quark
pair asymmetry measurements at both the Tevatron and
LHC.

C. The angular distributions of massive quarks and

leptons close to threshold

The PMC can also be applied to problems with mul-
tiple physical scales. The tt̄-pair hadronic production
already provides one of such examples at the Tevatron or
LHC. In the case of the hard part at the two-loop level,
we need to introduce two PMC scales. The Coulomb-
type corrections in the threshold region are enhanced by
factors of π, thus the terms which are proportional to
(π/v) or (π/v)2 must be treated separately and an ex-
tra PMC scale has to be introduced, which is relatively
soft for v → 0 [4]. As another example, a BLM anal-
ysis of the angular distributions of massive quarks and
leptons close to threshold has been done. It was shown
that the subprocess qq̄ → QQ̄ near the quark threshold
involves not only the subprocess scale

√
ŝ ∼ 2MQ but

also the scale v
√
ŝ which enters the Sudakov final-state

corrections [34], where v is the QQ̄ relative velocity. At
this order, the BLM and PMC predictions are the same,
so for this particular process, we can treat BLM and the
PMC on an equal footing. More explicitly, we need to in-

troduce two PMC scales for this process, one for the hard
part and one for the Coulomb-type terms. This example
also illustrates how to deal with multiple scale problems,
which is relevant for processes that can be studied at
a super τ -charm factory or high intensity electro-proton
accelerators with similar center-of-mass collision energy.
An important consequence of the heavy-quark kine-

matics is that the production angle of a heavy hadron
follows the direction of the parent heavy quark. Close
to threshold, in the limit v → 0, the center-of-mass an-
gular distribution for e+e− → QQ̄ is isotropic, a re-
sult of S-wave dominance. The small admixture of P -
waves slightly above threshold provides a contribution
∝ v2 cos θ. The angular distribution is measurable, and
one can define the “anisotropy” A(v2) of the process as

dN

d cos θ
∝ 1 +A(v2) cos2 θ. (7)

The anisotropy A(v2) can determined by the Dirac (F1)
and Pauli (F2) form factors via the way [34]

A =
Ã

1− Ã
, (8)

with

Ã =
v2

2

|F1|2(1 − β2)− |F2|2
|F1 + F2|2(1− β2)

. (9)

The two-loop-QED corrections to the form factors F1,2

have been calculated in Ref.[43]; thus one can set their
renormalization scales by applying the PMC. For exam-
ple, we have [34]

F1 + F2 = 1 +
πα(v

√
ŝ)

4v
− 2

α(
√
ŝe3/8/2)

π
(10)

≃
(

1− 2
α(

√
ŝe3/8/2)

π

)(

1 +
πα(

√
ŝv)

4v

)

.(11)
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One finds two distinctly different correction factors. The
first originates from hard transverse photon exchange,
where the scale reflects the short distance process; the
second arises from the instantaneous Coulomb poten-
tial. All of the 1/v-terms can then be resummed using
Sommerfeld’s re-scattering formula. For example, from
Eq.(11), we can get

|F1 + F2|2 ≃
(

1− 4
α(

√
ŝe3/8/2)

π

)

x

1− e−x
, (12)

where x = πα(
√
ŝv)/v. One can take ŝ ≃ 4m2

Q in the

threshold region. In this way one can predict |F1|2, |F2|2
and |F1 + F2|2, and thus give accurate predictions for
the anisotropy A. These formulae can be conveniently
matched to the QCD case by using the effective charge of
the potential αV [34]. Because A is sensitive to αV (

√
ŝv),

the measurement of anisotropy can provide a check on
other determinations of αV .
The anisotropy of τ -pairs produced through the chan-

nel e+e− → τ+τ− can also be used in an analogous way
to measure the Pauli form factor F2(ŝ) of the τ lepton in
the threshold domain ŝ ≥ 4m2

τ . Thus a precise measure-
ment of the anisotropy could provide a novel measure-
ment of a fundamental parameter of the τ lepton and its
time-like anomalous magnetic moment.

III. SUMMARY

It is clearly important and fundamental to set the
renormalization scale in a manner consistent with the
principles of the renormalization group. The most criti-
cal criterion is that a prediction for a physical observable
cannot depend on a theoretical convention such as the
choice of renormalization scheme or the (initial) scale.
This principle is satisfied by GM-L scale setting which is
rigorously used for precision QED predictions. The QED
scale is unambiguous, and the resulting high precision
QED predictions are the same in any scheme at any fi-
nite order. The same properties are also satisfied for non-
Abelian gauge theory when one uses PMC scale-setting.
The PMC can be applied to any high-order process thus
giving precision tests of theory at any experiment facility.
We have illustrated the main features of PMC predic-

tions for hadronic Z decays, the yields and the forward-
backward asymmetry of the top-quark pair at the Teva-
tron, and the production of massive quarks and leptons
close to threshold.
In contrast to predictions obtained using conventional

scale setting, one finds for the PMC:

• All terms in the pQCD series involving the β-
function are absorbed into the running coupling
order-by-order. The value of the PMC scale at each
order is fixed, which also determines the effective
number of contributing flavors nf at each order,

just as in QED. One finds negligible initial scale-
independence of the PMC predictions for both the
global observables and the differential observables
at each order and each phase-space point. Small
initial scale dependence can often also be achieved
when using conventional scale setting at very high
orders in pQCD; however, this is typically due to
the cancelation among different orders or different
phase-space points. Nevertheless, the scale depen-
dences for differential observables at each order can
remain very large. This fact underlies the inconsis-
tency of conventional predictions of the top-quark
pair asymmetry with measurements.

When one applies the PMC, a large tt̄ asymme-
try is predicted, in agreement with data. This
can be traced to the fact that a smaller effective
PMC scale controls the NLO-terms of qq̄-channel,
resulting in an enhanced NLO-contribution. Fur-
thermore, the NNLO terms are negligible due to
the improvement of the pQCD convergence. The
effective scale is determined by a NNLO β0-term
which is independent of the choice of initial scale;
its behavior versus Mtt̄ explains the “increasing-
decreasing” behavior measured by D0. The NNLO
calculation of the top-pair asymmetry using con-
ventional scale setting can also predict a reasonable
large top-pair asymmetry. This is however due to a
large contribution at NNLO. It has a large scale
uncertainty, and it cannot explain the observed
“increasing-decreasing” behavior as a function of
the tt̄ invariant mass.

• Only those β-terms which pertain to the running of
αs should be eliminated. One can confirm that the
nonconformal β-terms are correctly identified and
absorbed by the PMC procedure by checking that
there is negligible dependence of the fixed-order
theory prediction on the choice of the initial scale.
Some dependence on the initial scale can persist us-
ing the PMC due to unknown higher-order terms;
however, this dependence is highly suppressed even
for low-order predictions.

• The resulting coefficients of the pQCD series at
any perturbative order using the PMC method are
thus identical to that of the corresponding con-
formal theory with β = 0, and the PMC predic-
tions are thus scheme independent. Such scheme-
independence is exact for all dimensional-like Rδ-
schemes [7, 8]. One can also obtain scheme-
independent predictions for effective charges using
“commensurate scale relations” [42]. In principle,
there can be some residual scheme dependence if
one uses a non-dimensional-regularization scheme,
due to unknown higher-order β-terms; in such a
case, the PMC scale for the highest-known terms
can only be determined by one-order-higher terms,
which ay be unknown. Thus one cannot obtain a
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complete commensurate scale relation at this par-
ticular order. However, due to the elimination of
the divergent renormalon terms, the value of the
highest-known term itself is usually small, so such
residual scheme dependence is typically highly sup-
pressed.

• PMC scale-setting also can be systematically ap-
plied to multi-scale problems. The typical momen-
tum flow can be distinct; thus one should apply
the PMC separately in each region. For example,
in the case of the production massive quarks and
leptons close to threshold, two PMC scales arise at
NNLO [34]; one is proportional to

√
ŝ and the other

one is proportional to v
√
ŝ.

There are cases where additional momentum flows
occur – again contradicting conventional scale set-
ting; however, the PMC eliminates such ambigui-
ties. For example, there are two types of log-terms
ln(µr/MZ) and ln(µr/Mt) for the axial-singlet rAS
of the hadronic Z decays. By applying the PMC,
one finds the scale is QAS ≃ 100 GeV [19], indicat-
ing the typical momentum flow for rAS is closer to
MZ rather than Mt.

The Principle of Maximum Conformality is an impor-

tant theoretical tool for making precise, reliable predic-
tions for QCD. The PMC rigorously eliminates the usual
ambiguities associated with the renormalization scale-
setting procedure, giving predictions which are indepen-
dent of the choice of the renormalization scheme. The
scales of the QCD couplings and the effective number
of quark flavors are systematically set, order-by-order,
even for multiple-scale applications. The usual n! diver-
gent renormalon behavior of the perturbative expansion
is also eliminated.
The application of the PMC can thus greatly improve

the precision of tests of QCD at a Super Tau-Charm
factory and the sensitivity of measurements at the LHC
and other colliders to new physics beyond the Standard
Model.
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