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A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons
was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in
terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically,
its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of
the nucleon regardless of whether it is determined from all N particles or only the hadrons, the
mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown
that the eigen-values, the polar representation θν of the masses on the Sphere, satisfy the symmetry
θν + θN+1−ν = π within less that 1% relative error. These pair correlations include the pairs
θγ +θtop ' π and θgluon +θH ' π as well as pairing the weak gauge bosons with the three neutrinos.
The eigen-values form 6 distinct clusters. A function was established whose zeros were a good
approximation to the masses {θν}. It was shown that there are very few particles with spin (J)
larger than 1 + θ3 and no particles having θ > 0.6π with a spin larger than 2.

I. INTRODUCTION

Mass is a property of matter that we take for granted
but, other than experimental data, little is known about
its origins or composition. At the macroscopic level it
was first taken by Newton to summarize all the irre-
ducible properties of a body1 and especially inertia or
the resistance to motion. Further, because force per se
was invisible while mass manifests itself in all observable
bodies, it was mass that defined force for Newton and not
the reverse. Later Einstein2 postulated that the gravita-
tional mass equaled the inertial mass that might include
energy in various forms some of which appeared to have
no ponderable mass whatsoever.

At the microscopic level, it is taken first as a parameter
in a Hamiltonian and after renormalization the resultant
value is taken to be the inertial mass of a particle.3 We
take these values as given.4,5 At the low-energy end we
find a degenerate pair of zero mass bosons (the photon
and gluon) and the three neutrinos (electron, muon and
tau).6 At the high-energy end are the gauge bosons W±

and Z, the Higgs and the top quark.
Spanning from zero to more than 100GeV, we intro-

duce a geometric representation allowing us to posit a
generating particle - the Masson (pronounced as one does
the Muon). Associated with it, there is a generating func-
tion whose zeros are the masses of the particles. These
masses can be projected onto a 2D Riemann Sphere of ra-
dius equal to the mass of the Masson that is determined
by imposing the equivalent of a minimum action crite-
rion; throughout this study whenever we refer to mass
the intention is to the inertial mass.

The only particle we understand is the photon with
zero mass. Ignoring other hypothetical low mass particles
such as the axion or graviton5, the photon must move
at the speed of light because there is no rest frame to

measure the mass explicitly based on m0/
√

1− β2.
Thus, while we know how to determine the extreme [5],

in general, we do not know the fundamentals underlying

FIG. 1. The mass of a particle is marked on the axis (red-
dot). Projection of the mass of the particle on the Riemann
Sphere, whose radius represents the mass of the Masson Mo,
is uniquely determined by the polar angle θν .

the other values. However, we do know, according to
Sommerfeld7, that it is not associated with the charge
alone. He pointed out that given a macroscopic charge of
finite radius and mass, the energy associated with the two

is different. His approach was simple: denoting by E
(rest)
EM

the electrostatic energy of the charged particle when at
rest and subtracting this energy from the electric and

magnetic energy when the particle is in motion E
(motion)
EM ,

it was shown that the difference does not equal the kinetic
energy of the particle. Recently, the Standard Model
was used to calculate the masses of 10 light hadrons as
reported by Dürr et.al..8 Normalizing to the mass of the
Ξ baryon, they found good agreement with the observed
data. Also, the mass spectrum of some 14 isoscalar tensor
mesons, the so called f2 states, with masses less than 2.5
GeV have been studied.9

In this study we introduce a geometric (polar θν) rep-
resentation of the (N = 279) masses of the particles by
employing a Riemann Sphere. This allows us to interpret
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the N masses in terms of a single particle, the Masson
that may be in one of the N eigen-states and whose mass
we take as the radius of the Riemann Sphere as shown
in Figure 1. Ignoring the other properties of these parti-
cles, it is shown that the eigen-values satisfy the symme-
try θν + θN+1−ν = π within less than 1% relative error.
These eigen-values form at least 6 clusters suggestive of
a “Periodic” Chart of the Particles.

II. RIEMANN’S SPHERE

Because the range of the N masses spans over many
orders of magnitude, we introduced a compact represen-
tation based on a “Riemann Sphere” as shown in Fig-
ure 1. The masses are organized in ascending order along
the horizontal axis “x”. A circle of radius M0 has its
center at “x” = 0, “z” = M0 and the intersection of
the straight-line, connecting the top of the circle with
“z” = 0, “x” = mν defines an angle θν . Based on ele-
mentary trigonometric arguments one then finds

θν = 2 arctan

(
2M0

mν

)
. (1)

This transformation represents the projection of any
one of the masses on the circle whose radius we attribute
to the mass of the Masson. The latter is established next
based on the experimental data and a minimal action
criterion. To establish M0, the vector θν is organized in
ascending order and we define the interval-spread of any
two adjacent angles as

E (M0) =
1

π

√√√√ 1

N + 1

N∑
ν=0

(θν+1 − θν)
2
. (2)

FIG. 2. Spread of intervals for N=279 fundamental particles
as a function of M0. The dominant minimum is calculated
numerically and it occurs at M0[MeV] = 1003 near the lowest
lying baryon mass which is the only stable hadron mass.

M0 is the value that minimizes this functional; θν=0 = 0
and θν=N+1 = π represent the upper and lower limits
of the masses in this polar representation. For the case
of a single particle represented by an angle θ, there are
two intervals: θ − 0 and π − θ so the intervals spread is
proportional to θ2 + (π − θ)2 and it has a minimum at
θ = π/2 implying for this simple case, the radius of the
sphere is half the mass of the particle i.e. M0 = m/2 or,
equivalently, the particle’s mass is twice the mass of the
Masson: m = 2M0.

Now we are in position to introduce the particles from
the Table in Ref. 4. The spread of their intervals in Fig-
ure 2 clearly shows resonant behavior. The absolute min-
imum, occurring at 1003 MeV, we take to be the mass
of the Masson. For this value (M0= 1003 MeV) the Rie-
mann Sphere is illustrated in Figure 3. Two facts are
evident – first, as anticipated, most of the particles are
located in the θ ∼ π/2 region and, second, close to zero
and π there are voids with no particles although these
are not symmetrically disposed nor do they appear to be
correlated in any obvious way but more on this later.
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0

FIG. 3. Projection of the masses of all 279 particles where
the mass of the Masson is determined from the requirement
that the spread of the intervals in Figure 2 is minimal. Light
particles (θ ∼ π) are the gamma, gluon and neutrinos. The
heavy ones (θ ∼ 0) the gauge-particles, Higgs and top quark.

III. CHARACTERISTICS OF THE POLAR REP-
RESENTATION

With the polar representation established, we now in-
vestigate some features of the inertial masses based on
this new representation. To begin, consider only the
hadrons (N = 261). If we were to establish the Mas-
son based on the hadrons alone, its mass would be only

slightly reduced to M
(H)
0 =962.2 MeV. Moreover, if we

attribute a separate Masson to baryons (N = 113) and
to mesons (N = 148) the corresponding Masson masses
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would be M
(B)
0 = 1094 MeV and M

(M)
0 =964 MeV. All of

these and esp. M
(H)
0 and M

(M)
0 are close to both M0

as well as to the stable nucleon mass N(940). Curiously,
there are more mesons than baryons even though their
confined quarks(2) are fewer than for the baryons(3). In
all cases, the corresponding “intervals spread”, similar to
Figure 2 for all of the particles, gave a single minimum.

Another perspective on the polar representation of the
masses can be obtained by ordering the {θν} in ascend-
ing order and plotting them as a function of the nor-
malized index ν (quantum number) as the red squares
in Figure 4. For comparison, the N zeros of the Leg-
endre polynomial of order N = 279 are organized in
ascending order and represented by the black squares
[PN (cos ζν) = 0; ν = 1, 2, ....N ]. While the latter is vir-
tually linear, the former has a more complex structure
with distinct “band-gaps” in the range ν < 0.2N and
ν > 0.9N .
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FIG. 4. Red squares represent the masses (θν) in ascending
order and the black squares the zeros of the Legendre function
of order N = 279. The green diamonds are discussed in the
text below. The index ν is normalized by N .

Two observations may be made: (i) if the absolute
value of the argument of the Legendre polynomial is
larger than unity the behavior is hyperbolic and the func-
tion has no zeros in this range. This is consistent with
the existence of band-gaps. (ii) Having in mind that the
argument of the Legendre polynomial (cos θ) varies be-
tween −1 and 1, we consider another function which is
defined in this range (tanh) and we calculate the zeros

of PN

[
tanh

(
3.46

(
π/2− θ(M)

ν

))]
= 0 which are repre-

sented by the green squares in Figure 4. In the range
0.2 < ν/N < 0.9 these zeros approximate the polar rep-
resentation of the masses (θ) with an accuracy of 0.07%

being defined as 100 ×
〈

[1− θ(M)
ν /θν ]2

〉
ν
. What these

results indicate is that the θν might be regarded as the
eigen-values of a characteristic polynomial of the Legen-
dre type. Our approach in this was inspired by the work
of Liboff and Wong10 in connection with their study of

the prime numbers and the zeta function.
Having such a representation in mind, an additional

feature is revealed by examining the sum of the eigen-
values. Let us assume that we know the Hamiltonian
whose eigen-values are θsν wherein s is a free parameter to
be determined. In many cases of interest, the measurable
is given by a term of the form Trace (H) which in turn is
proportional to g(s) ≡

∑
ν θ

s
ν . In reality we do not know

this Hamiltonian but a rough idea as to its character can
be obtained by assuming that g(s) has a minimum. A
simple calculation reveals that such a minimum exists for
s ' −79/150 = −0.5267.

One of the main results of our approach relies on a
property of the Legendre polynomials that the sum of two
zeros of complementary order (ν + ν′ = N + 1) equals
π, or explicitly ζν + ζN+1−ν = π. We have examined to
what extent this rule applies to the polar representation
of the masses (θν) and found that θν+θN+1−ν = πχ with
χ = 0.958 within 0.13% relative error defined as

Error[%] = 100
1

2N

N∑
ν=1

[
θν + θN+1−ν − πχ
θν + θN+1−ν

]2
. (3)

The factor of 2 in Eq.(3) corrects the fact that each
pair of masses is counted twice. According to the present
spectrum of masses [4], this relation implies that the mass
of the Higgs and that of the Axion (if observed) would
be related θAxion + θHiggs ' π and that the mass of the
electrons neutrino is related to that of the Z-gauge boson
θνe + θZ ' π [5]. However, it should be emphasized that
the present estimate of the error is dominated by the light
particles with θ ∼ π and that it is larger if the deviation
is compared to the smallest angle between the two. In
fact, due to uncertainty associated with the measurement
of many of those masses and especially the neutrinos,
comparing to the calculated deviation of χ from unity,
one can hypothesize that χ ≡ 1 or explicitly

θν + θN+1−ν = π . (4)

For further insight into this result, we plot in Fig-
ure 5 the normalized symmetry-pairs (θν + θN+1−ν)/π
as a function of the normalized masses (θν/π). Several
important aspects are reflected in this plot: (i) the pairs
linked by Eq.(4) form (at least) six clusters although a
better picture will be shown later. (ii) The error or devi-
ation from unity is dominated by light particles (θ ∼ π).
When both particles have similar mass, the deviation is
negligible − see the right cluster. (iii) Further splitting
is expected when including additional quantum numbers
that produce a Riemann hypersphere. (iv) Subject to the
condition χ ≡ 1, the error defined above for hadrons is
0.47%, for baryons 0.07% and for mesons it is 0.63%.

Before proceeding it is important to assess whether
such small errors are not the result of pure coincidence.
For this purpose let us postulate that the Masson has
a fixed inertial mass of M0=1003 MeV and between the
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FIG. 5. The normalized symmetry-pairs, (θν +θN+1−ν)/π, as
a function of the normalized geometric representation of the
masses (θν/π). These pairs form at least six clusters analo-
gous to a “Periodic Table” for the fundamental particles.

two extremes, the photon and the top quark, the vari-
ous (279) particles are randomly distributed. We repre-
sent the inertial masses in terms of a random variable
mν [MeV] = 10pν wherein pν is uniformly distributed
−8 ≤ pν ≤ 5 + log(1.26) = 5.104. As in the case of the
real particles, we employ the transformation in Eq. 1. It
is tacitly assumed that the mass of the Masson is not
dependent on the specific distribution. Once the θν are
established, the error is calculated based on Eq. 3. We
determined this error 1000 times, each time for a different
seed. The resulting error spans from 7% to less than 11%.
Figure 6 shows the error as a function of the index of the
seed (1 ≤ n ≤ 1000). For comparison, in the case of all
of the actual particles (279), its value is 0.225% indicat-
ing that the roughly two orders of magnitude difference
is not a result of coincidence.
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FIG. 6. The error associated with the polar representation of
a random distribution of masses for 1000 different seeds. The
value for the actual particles is 0.225%.

IV. SOME FUNDAMENTALS

Hadrons are the absolute majority (261) of the 279
fundamental particles we have considered and we have
called them fundamental because they are composite be-
ing made of different numbers of quarks, gluons and an-
tiquarks as opposed to those one might call elementary
such as the electron. These particles can also be distin-
guished as bosons or fermions according to their individ-
ual spins. The elementary fermions include two classes
– the quarks and leptons whereas the elementary bosons
comprise the photon and gluons. We have not included
any antiparticles in our particle count because they bring
nothing new to our analysis and because, as far as we
know, there has never been a fermion discovered that did
not lead to the discovery of its corresponding antiparticle
as first implicitly suggested by Dirac.11

V. BARYONS AND MESONS

We now take a closer look at the mesons (148) and
baryons (113) separately and compare the two species.
The Masson is assumed to have a fixed mass as deter-
mined above (M0≡MMasson) and in the first row of Fig-
ure 7 we plot the polar intervals spread for both mesons
and baryons - similar to the process that lead to Fig-
ure 2 except these spreads are only for mesons or baryons
separately. A good approximation to the exact expres-
sion in Eq. (2), the (red) solid-line, is given by a simple
Lorentzian (black) dashed-line corresponding to a band-
pass model

Emodel (M) = Emax +
Emin − Emax√

1 +Q2
(

M
MMasson

− MMasson

M

)2
The spread of meson masses (∆M = 5447 [MeV ])
is more than twice the spread for the baryons
(∆M = 2506 [MeV ]). Note that in these two cases, the
intervals spread has a single resonance in direct contrast
to the picture in Figure 2 for all of the particles.

The central frames in Figure 7 show the normalized
density of states (DoS) projected on a Riemann sphere
when the arc is divided into 60 segments and a cubic
spline is used to approximate the DoS function. Two
comments may be made: (i) The resonance character of
the DoS is clearly revealed and (ii) the voids and struc-
ture in the DoS are more pronounced for the mesons. The
bottom frames illustrate the complementary symmetry
for each species. For the mesons we see 5 sub-groups but
only 3 for the baryons but both types of particle show a
rough mirror symmetry about θ ' π/2.

VI. SPIN

At this point we introduce information about the total
spin J . The four frames of Figure 8 reveal the polar rep-
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FIG. 7. Mesons (148) left-column and baryons (113) right-column are considered separately. The Masson is assumed to have
the mass as determined above M0 = MMasson and in the first row the polar intervals spread for both mesons and baryons are
shown - similar to the process that lead to Figure 2 except the spread is only for mesons or baryons independently. A good
approximation to the exact expression [Eq. 2], (red) solid-line, is given by a simple Lorentzian (black) dashed-line corresponding
to a band-pass model. Central frames reveal the normalized density of states (DoS) projected on a Riemann sphere; the arc was
divided into 60 segments and a cubic spline was used to approximate the DoS. Two comments are: (i) The resonance character
of the DoS is clearly evident and (ii) the voids in the DoS are more pronounced for the mesons. Bottom frames illustrate the
complementary symmetry for the mesons and baryons. For the mesons we identify 5 sub-groups but only 3 for the baryons.

resentation of the masses as a function of the quantum
number (ν) wherein the red circles represent the bosons
(integer spins) and the blue crosses show the fermions
(non-integer). The top-left frame reveals the full range
whereas the other frames are a breakdown or magnifi-
cation of the full range into three parts. Two facts are
evident from the top-left frame: (i) there are obvious

voids at both low and high energy ends, (ii) bosons oc-
cupy most of the low-energy states (θ ∼ π) i.e. most of
the lower-right frame.

At high energies (top-right frame) the voids become
more distinct and there is no indication of a preferred
species (fermion or boson) in any one of the “energy-
bands” with the exception of the last one at ν/N ∼ 0.2.
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 FIG. 8. Polar representation of the masses vs the quantum numbers for fermions(blue crosses) and bosons(red circles).

In the cental energy range (0.2N < ν < 0.8N), bottom-
left frame, θ is almost linear in ν and at the adopted
resolution, there are, at most, two voids: (i) close to
θ ∼ π/2 there is an interval that is fermions-free and
(ii) at the top end there is a region that is bosons-free.
With higher resolution, additional voids can be identified.
Over the central range one sees a slight third order vari-
ation that gets magnified at the wings e.g. in the lower
right frame. Finally, at the low energy end (bottom-
right frame), bosons dominate with four or five voids
that are boson-free. Without more quantum numbers,
we have no explanation for this “band-gap” structure
other than greater sensitivity to the underlying quark
masses and dynamics analogous to the periodic table of
the elements whose structure is now understood to be
determined by the effects of the Pauli exclusion principle
in atomic physics.

Another observation refers to the distribution of
fermions and bosons between spin-states. Figure 9 shows
these distributions when each is normalized to unit area.
Several comments can be made: (i) the peak distribution
for the fermions is at the lowest state (J = 1/2) whereas
the distribution of the bosons peaks at the first “excited
state” (J = 1) and not the “ground state”. Note that
we have used J and S interchangeably for the total spin.
(ii) The average quantum-number for bosons is close to
〈J〉 ∼ 1 while for fermions it is 〈J〉 ∼ 1.5. This con-
tradicts distributions of single species of either bosons
or fermions where in thermodynamic equilibrium, the
highest likelihood is always the lowest energy or “ground

state” and this is also consistent with a spin-independent
Hamiltonian formulation. (iii) For both species, the
spread is similar.

Figure 10 shows the spin J , θ and the symmetry
θν + θN+1−ν . Clearly, there are two major voids: the
one on the left indicates no particles with spin larger than
1+θ3 and, on the right, that there are no lighter particles
having θ > 0.6π with a spin larger than 2. Explanations
for these voids follow from our expectation that the high-
est spins should lie near the highest density of states i.e.
towards the middle around θ ∼ π/2 i.e. away from the
endpoints at 0 and π and that such states do not occur
in isolation but as members of spin multiplets.
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particles having θ > 0.6π with a spin larger than 2.

VII. CONCLUSIONS

A geometric representation of the N = 279 inertial
masses of the elementary and lowest lying fundamen-
tal particles was introduced by employing a Riemann
Sphere. It allowed us to interpret the N masses in terms
of a single entity, the Masson, that might be in one of the
N eigen-states. Geometrically, the mass of the Masson
was the radius of the Riemann Sphere while its numerical
value was closest to the mass of the nucleon regardless of
whether M0 was computed from all particles (279), the
hadrons (261), or just the mesons (148) or baryons (113).

Ignoring the other properties of these particles, it was
shown that the eigen-values, the polar representation θν ,
satisfied a symmetry θν+θN+1−ν = π within less than 1%
relative error. One thousand samples consisting of 279
masses chosen randomly over the observed mass range

gave much larger errors e.g. none were less than a factor
of 30 larger. A function was established whose zeros were,
to good approximation, the polar representation of the
masses θν . A rough assessment of the Hamiltonians’s
character was made by imposing that its trace

∑
ν θ

s
ν

has a minimum for s=-0.523.
Among other results we found that bosons occupy most

of the light mass states and there are virtually no funda-
mental particles with spin J larger than 1 + θ3. Among
hadrons we found that mesons form 5 clusters whereas
baryons form 3 but both groups have a similar structure
being roughly symmetric about θν=π/2.

The new symmetry and its extension pairing bosons
and fermions based on grouping all of the degenerate zero
mass particles into one we called the ”photon” holds well
for the gauge bosons and lowest lying leptons and quarks
until one has to pair hadrons because the quarks and
leptons are fermions while the highest lying hadrons are
bosons based on high lying, quark-antiquark mesons.

We did not include antiparticles in our analysis based
on quantum field theory where every fermion has a cor-
responding antifermion of identical mass11 because they
added nothing new. Nevertheless, they are important
for cosmology where the lack of any apparent antimatter
in the universe is a concern albeit ironic12. Because the
only stable hadron is the relatively heavy nucleon pre-
sumably because it contains no antiquarks one sees the
weakness of using only classical concepts in an attempt
to understand the microscopic particle world.
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