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ABSTRACT

Hierarchical structure formation implies that the number of subhalos within a dark matter halo
depends not only on halo mass, but also on the formation history of the halo. This dependence on
the formation history, which is highly correlated with halo concentration, can account for the super-
Poissonian scatter in subhalo occupation at a fixed halo mass that has been previously measured
in simulations. Here we propose a model to predict the subhalo abundance function for individual
host halos, that incorporates both halo mass and concentration. We combine results of cosmological
simulations with a new suite of zoom-in simulations of Milky Way-mass halos to calibrate our model.
We show the model can successfully reproduce the mean and the scatter of subhalo occupation in these
simulations. The implications of this correlation between subhalo abundance and halo concentration
are further investigated. We also discuss cases in which inferences about halo properties can be affected
if this correlation between subhalo abundance and halo concentration is ignored; in these cases our
model would give a more accurate inference. We propose that with future deep surveys, satellite
occupation in the low-mass regime can be used to verify the existence of halo assembly bias.
Keywords: dark matter — galaxies: halos — methods: analytical — methods: numerical

1. INTRODUCTION

Bridging our understanding of the processes of galaxy
formation and of the evolution of dark matter halos re-
mains one of the primary challenges in modern cosmol-
ogy. While N -body simulations provide detail about the
formation and evolution of dark matter halos, it is still
observationally challenging to directly probe their prop-
erties. Nevertheless, extensive work over the past decade
has used observations of galaxy’s spatial distributions to
constrain models of the galaxy–halo connection, which
reveals how galaxies form in halos (e.g. Berlind & Wein-
berg 2002; Zehavi et al. 2011; Reddick et al. 2013). As
new observations become more precise, it is crucial to
understand possible systematic uncertainty and bias in
those models.

The two main characteristics of a dark matter halo are
its mass, usually calculated by setting a spherical over-
density region, and its formation history. The latter is
also highly correlated with the density profile of the halo,
and hence with the concentration and with the maximal
circular velocity vmax of the halo (Wechsler et al. 2002).
Halos of the same mass but different formation history
can have very different characteristics or reside in differ-
ent environments (e.g. Bullock et al. 2001; Allgood et al.
2006; Macciò et al. 2007).

The abundance of subhalos within a dark matter halo
most strongly correlates with the mass of the halo (e.g.
Kravtsov et al. 2004). Nevertheless, at a fixed halo mass,
the subhalo abundance also correlates with the formation
history of the halo (Zentner et al. 2005; Zhu et al. 2006;
Ishiyama et al. 2009). This correlation, despite its signifi-
cance in modeling satellite occupation, is often neglected,
mostly because it does not manifest itself when the Pois-
son scatter is comparable to the number of subhalos in
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consideration. Satellite occupation, or richness, is often
used as a proxy of host halo mass, especially for optical
observations of clusters (Rozo et al. 2009, 2010). The
scatter in the mass distribution inferred from richness
can be underestimated if this correlation with concen-
tration is neglected.

In this work, we investigate again the correlation be-
tween subhalo abundance and halo concentration, and
propose a simple model that describes this correlation.
This model can also be used to extend the subhalo abun-
dance function for a given host halo beyond the resolu-
tion limit, and enables us to evaluate how this correlation
may manifest in a range of observable statistics.

The simplest approach to extend the subhalo abun-
dance function beyond the resolution limit is to extrap-
olate a parametrized subhalo abundance function. The
subhalo abundance function is most commonly modeled
by a power law, and the parameters of the model can
be calibrated against simulations. Studies have shown
this method describes the subhalo abundance functions
in N -body simulations very well (Kravtsov et al. 2004;
Gao et al. 2004; Springel et al. 2008; Giocoli et al. 2008;
Angulo et al. 2009; Boylan-Kolchin et al. 2010; Ishiyama
et al. 2013; Cautun et al. 2014b), at least for host halos
in a narrow mass range.

In order to calibrate this kind of model over a wide
range of mass, usually a suite of cosmological simulations
and zoom-in simulations is needed. Zoom-in simulations,
such as the Aquarius and Phoenix simulations (Springel
et al. 2008; Gao et al. 2012), are particularly powerful for
measuring subhalo abundance function at high resolution
but still with reasonable costs. However, if one wants to
study the halo-to-halo scatter in the subhalo abundance
function, a fairly large sample size is required. More
recently, two re-simulation suites have been completed
with tens to hundreds of simulations in specific small
mass ranges: the Rhapsody (cluster-mass halos, Wu et al.
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2013) and ELVIS simulations (Milky Way-mass halos,
Garrison-Kimmel et al. 2014).

While these fitting models can usually describe simula-
tions fairly well, they often capture the minimal relevant
physics for the particular questions that are being ad-
dressed. A more elaborate approach is to consider the
assembly histories of dark matter halos and the evolu-
tion of halo mass function (Yang et al. 2011). One can
further consider more relevant subhalo dynamics when
modeling subhalo abundance beyond the resolution limit
by tracking the orbits of subhalos and adding subhalos
that do not appear or are disrupted in simulations Zent-
ner et al. (2005); Jiang & van den Bosch (2014); van den
Bosch & Jiang (2014). Instead of fitting the abundance
function, this kind of approach considers most physical
details, but at the same time can be more difficult to
constrain.

In this work, we focus on an empirical model which
directly uses mass and vmax of the host halo to pre-
dict the subhalo abundance function, and calibrate the
model against cosmological and zoom-in simulations.
This model is essentially the simplest possible model of
subhalo abundance function that takes halo formation
history into account. In principle, a more sophisticated
model (i.e. models that track subhalo evolution) could
produce similar results. However, our simple model pro-
vides a straightforward way to evaluate this correlation
between subhalo abundance and halo formation history,
and to evaluate its implications for various observables.

This paper is organized as follows. In Section 2 we
describe the simulations used in this study. In Section 3
we first discuss the correlation between subhalo abun-
dance and halo formation history, and then we describe
and calibrate the model which predicts the subhalo abun-
dance. In Section 4, we further discuss the implications
of this correlation between subhalo abundance and halo
concentration. We summarize this paper in Section 5.

2. SIMULATIONS

In this study we use a cosmological simulation
c125-2048 and also present a new set of zoom-in sim-
ulations of Milky Way-mass halos.

The c125-2048 box3 is a dark matter-only cosmologi-
cal simulation run with L-Gadget (based on Gadget-
2, Springel et al. 2001; Springel 2005). The box has 20483

particles and a side length of 125 Mpc h−1, resulting in
a particle mass of 1.8×107M�h

−1. The softening length
used is 0.5 kpc h−1, constant in comoving length. The
cosmological parameters are Ωm = 0.286, ΩΛ = 0.714,
h = 0.7, σ8 = 0.82, and ns = 0.96. The initial condi-
tions are generated by 2LPTic4 (Crocce et al. 2006) at
z = 199, with the power spectrum generated by Camb5.

The new suite of zoom-in simulations consists of 46
Milky Way-mass halos, selected from the c125-1024
box3, which is a low-resolution version of the c125-2048
box. The parameters and initial conditions of these two
boxes are identical, but c125-1024 contains only 10243

particles and starts at z = 99. All the selected ha-
los fall in the mass range Mvir = 1012.1±0.03M� in the

3 provided by Matthew Becker (Becker et al. 2015, in prepara-
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c125-1024 box. The initial conditions of these zoom-
in simulations are generated with the publicly available
Music code6 (Hahn & Abel 2011), and are matched to
the cosmological box up to the 10243 scale. The La-
grangian volume where the highest-resolution particles
are placed is set by the rectangular volume which the
particles within 10Rvir of the present-day halo occupied
at z = 99. The mass of the highest-resolution particles in
the zoom-in simulations is 3.0× 105M�h

−1. The soften-
ing length in the highest-resolution region is 170 pc h−1

comoving. Figure 1 shows the images of 6 of these zoom-
in simulations. Figure 2 compares the concentration dis-
tribution of this sample of Milky Way-like halos with
the full sample in the mass range in the c125-2048 box.
The concentration distribution of the selected sample is
slightly wider than that of all the host halos in the mass
range.

In the analysis, we use Rockstar7 for halo finding and
Consistent Trees8 for tree building (Behroozi et al.
2013a,b). The halos are defined with ∆vir ' 99.2 for
this cosmology. Subhalos are defined as halos that are
within Rvir of any other larger halo. Halos that are not
a subhalo are called host halos throughout this paper.

The particle mass of a simulation cannot be directly
translated into the maximal circular velocity, vmax, to
which the simulation converges. By inspecting the veloc-
ity function, we estimate that a conservative lower limit
for the convergence of the c125-2048 box is 40 km/s, and
that of the zoom-in Milky Way simulations is 9 km/s.

3. MODELING SUBHALO ABUNDANCE

In this section, we present a framework to model the
subhalo abundance of individual host halos. We first
discuss the correlation between subhalo abundance and
host halo concentration, and observe qualitatively how
host halo concentration affects subhalo abundance func-
tion. We further argue that for a given host halo, the
number of subhalos is consistent with a Poisson distri-
bution. Then we describe both the framework and the
specific parameterization of our model, and calibrate the
model against the aforementioned simulations. Finally
we briefly discuss the universality of the subhalo abun-
dance function.

3.1. Dependence of Subhalo Abundance on Halo
Concentration

N-body simulations have shown that the subhalo abun-
dance function averaged over a sample of host halos of
a similar mass approximately follows a power law, and
its form is nearly universal for different host halo masses
when scaled properly (e.g. Kravtsov et al. 2004; Gao et al.
2004; Boylan-Kolchin et al. 2010). Hence, the simplest
model of subhalo abundance is to describe the mean num-
ber of subhalos, 〈Nsub〉, as a function of host halo mass
only. Although this simple kind of model can predict
the mean number of subhalos at a given host halo mass
in simulations fairly well, it cannot explain the depen-
dence of subhalo abundance on host halo concentration,
as shown in Zentner et al. (2005).

6 https://bitbucket.org/ohahn/music
7 https://bitbucket.org/gfcstanford/rockstar
8 https://bitbucket.org/pbehroozi/consistent-trees
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Figure 1. Images of the zoom-in simulations of six Milky Way-mass halos, from our suite of 46 halos. The concentration of these selected
halos decreases from left to right.
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Figure 2. The cumulative distribution of concentration (in log
scale) for the zoom-in Milky Way halos (red) and all the halos in
the same mass range in thec125-1024 box (blue).

To see how host halo concentration affects the number
of subhalos, in Figure 3 we plot the mean number of halos
(including hosts and subhalos) whose vmax (or vpeak) is
larger than 60 km/s (or 75 km/s) as a function of host
halo mass. We plot this relation for all the host halos
and for only halos with the highest and the lowest 25% of
concentration in each mass bin. We can clearly see that
halos of high concentration tend to have fewer subhalos,
and also see that this is not a small effect, especially
when the halo halo mass is about 1012M�h

−1. We note
that at higher host halo mass, this difference becomes
smaller because high-mass halos have a smaller spread
in concentrations than low-mass halos.

We now take a closer look at how concentration affects
the subhalo abundance on a halo-by-halo basis for host
halos of the same mass. In Figure 4, we plot the subhalo
vmax function for all the zoom-in simulated Milky Way-
mass halos. The subhalo vmax functions in Figure 4 are
colored according to the concentration of their respective
host halos. We observe two prominent features:

• All these halos fall in a very narrow mass bin
(smaller than 0.08 dex), yet there is a significant
halo-to-halo scatter in their subhalo vmax functions.
The halo-to-halo scatter seems to affect mostly the
normalization of the subhalo vmax function, and
the trend roughly follows the concentration trend,
which is indicated in colors — darker lines sit lower.

• On the log-log plot, subhalo vmax functions are
mostly parallel to one another, especially in the
regime where Nsub > 10. This suggests the power-
law index is roughly a constant from halo to halo.
Also, for each individual halo, the deviation of the
abundance function from a simple power law is
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Figure 3. Number of galaxies, i.e. halos (including both hosts
and subhalos) with a cut in vmax (upper) or in vpeak (lower), as
a function of host halo mass. The black solid line shows all host
halos, while the blue dashed line and the red dash-dot line show the
host halos with the lowest and the highest 25% of concentration,
respectively.

much smaller than the halo-to-halo scatter when
Nsub is large.

In Wu et al. (2013), the authors also find that the num-
bers of subhalos in different vmax bins are correlated, es-
pecially when Nsub is large. This agrees with our findings
here.

This correlation between the subhalo number and host
halo concentration has been found and discussed in, for
example, Zentner et al. (2005); Watson et al. (2011).
This correlation can be understood by the hierarchical
formation of halos: conditioned on a fixed halo mass,
halos with higher concentration form early, and subhalos
in these halos are stripped longer to a lower mass and
vmax, and some could already be completely disrupted
and merged with the host. Both effects would result in
a smaller number of subhalos at a fixed velocity cut.

3.2. Small-scale Poisson Scatter

It is also known and shown explicitly by Boylan-
Kolchin et al. (2010) that the scatter in the number
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Figure 4. The subhalo vmax function for the 46 zoom-in sim-
ulations of the Milky Way halos. Each line represents one host
halo and is colored according to the ratio Vmax/Vvir of the host
halo. Darker color reprensents halos of higher concentration (larger
Vmax/Vvir). The gray band on the left shows the regime affected by
resolution, where the abundance function bends due to unresolved
subhalos.

of subhalos is super-Poissonian when the mean number
is much larger than 1, The authors argue this super-
Poissonian scatter is a sum of a Poisson scatter and an in-
trinsic scatter (see also related discussion in Busha et al.
(2011b)).

Here we further claim that the Poisson scatter should
exist on a single-halo basis. That is, given a host halo and
its environment, the small-scale variation would result
in a Poisson scatter in its subhalo abundance. On the
other hand, the intrinsic scatter (or more precisely called
the halo-to-halo scatter) is then in principle all possible
scatter among host halos.

To verify that the subhalo abundance function is al-
ways subject to this small-scale Poisson scatter when we
consider a single host halo, i.e.,

(Nsub|host) ∼ Pois(〈Nsub|host〉), (1)

we run 13 zoom-in simulations of a single halo, with
different random seeds for the small-scale modes. All
these 13 realizations have the same simulation setup
as described above, and also the same large-scale ini-
tial conditions down to the scale of k ∼ 16.4 h/Mpc,
which is equivalent to 20483 particles in the box. This
scale roughly corresponds to a host halo mass of 2.5 ×
1010M�h−1, or host Vmax ∼ 50 km/s.

Figure 5 shows σ/σPois, where σ is standard deviation

and σPois =
√
〈N〉, i.e. the square-rooted ratio of the

variance to the mean of the number of subhalos, in bins
of vmax of the subhalos. The variance and the mean
are calculated over the 13 halos of the same large-scale
initial conditions. If the number of subhalos in a given
vmax bin follows a Poisson distribution, this ratio would
be 1. In Figure 5, one can see that at higher values of
vmax, this ratio is less than 1, which is expected due to
the constrained large-scale modes. At smaller vmax, this
ratio approaches 1. Although the sample size is small,
the typical number of subhalos above vmax = 10 km/s is
already more than 200. Hence, if the super-Poissonian
scatter truly exists at the scales within a single host halo,
one would expect the ratio to be larger than 1 at small
vmax, scaling similar to the green dashed line, which in-
cludes the super-Poissonian scatter. This test suggests
that, for a given host halo (and its environment), the
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Figure 5. The blue line shows σ/σPois in bins of vmax, calculated
over the 13 halos of the same large-scale initial conditions. The red
bands show the 1-σ (dark) and 2-σ (light) confidence interval if N
follows a Poisson distribution and given that there are 13 samples.
The green dashed line shows the super-Poissonion scatter (Boylan-
Kolchin et al. 2010, Figure 8) for comparison.

scatter of its subhalo abundance is consistent with Pois-
son scatter. The super-Poissonian scatter in a fixed host
halo mass cannot solely come from small-scale modes,
and should be a result of the scatter in the host halo
properties at that fixed mass, combined with dependence
of the subhalo abundance on these properties.

3.3. Framework of the Model

Now we present the framework of our subhalo abun-
dance model. We first outline our model that describes
the number of subhalo for a given host halo, and the pa-
rameters of the model. Then we further present how
to relate these model parameters to the properties of
the host halos. In this fashion, we can clearly separate
the Poisson scatter in each individual host halo from the
halo-to-halo scatter.

Mathematically, we can model the subhalo abundance
function as a counting process. Here the counting process
we consider is counting over the proxy variable (i.e. vmax

or Mvir), not over the physical time. Although the math-
ematical term we used is process, we are not considering
the physical evolution of the subhalo merging process,
but only the number of subhalos at a given time.

Let N(v) denote the number of subhalos whose vmax

(or other proxy, which for simplicity we call v) is greater
than or equal to v. Note that N(v) is always an integer
and has the following properties:

N(v1) ≥ N(v2), if v1 ≤ v2, (2a)

N(v) = 0, if v ≥ Vcut, (2b)

where Vcut is a scale above which there are no subhalos.
The value of Vcut depends on the host halo.

We further argue that this counting process is an in-
homogeneous Poisson process. That is, the number of
subhalos in the interval [v1, v2) follows a Poisson distri-
bution and is independent of the counts in any other
disjoint intervals. We can write

[N(v1)−N(v2)] ∼ Pois(λ(v1, v2)), (3)

and

λ(v1, v2) =

(
v1

V0

)n
−
(

min(v2, Vcut)

V0

)n
, (4)
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where V0 is a positive parameter and n is a negative
parameter, and both could depend on the host halo. Note
that the parameters V0 and Vcut should have the unit of
the proxy. For example is the proxy is vmax, they should
have the unit of velocity. If one uses Mvir instead as the
proxy, they should have the unit of mass.

The expected number of subhalos whose vmax ≥ v is
then simply

〈N(v)〉 =

(
v

V0

)n
−
(
Vcut

V0

)n
. (5)

We note that by introducing the Vcut scale, we do
not need an additional exponential cutoff in the model.
The average subhalo abundance function naturally drops
off at the high end, and resembles a exponential cutoff.
There are two strengths of this approach. First, the pa-
rameter Vcut has a clear physical meaning; no subhalo
can have vmax (or any proxy in use) that is larger than
Vcut. Second, when implementing this model, one does
not need to worry about the chance of having a subhalo
with a very large vmax. The chance of having such an out-
lier is remote but still finite when using an exponential
cutoff, while in our model the probability of a subhalo
with vmax ≥ Vcut is zero by construction.

With our framework, there is a straightforward algo-
rithm to create a set of values which represents the set
of the subhalo vmax values of a particular host halo,
given a known threshold vthres. This algorithm helps
to generate a mock catalog of subhalos beyond the res-
olution limit. To generate this set, one first draws one
random number k from a Poisson distribution of mean
N(vthres) according to Eq. (5), with vthres being the
minimal possible vmax value in the desired set. Then
one draws k random numbers X1, · · · , Xk from a uni-
form distribution U(0, 1). The desired set would then be
{f(X1), · · · , f(Xk)}, where

f(x) := V0

[
N(vthres) · x+

(
Vcut

V0

)n]1/n

(6)

is the inverse function of Eq. (5).

3.4. Calibrating the Model

So far we have introduced three parameters that are
associated with the host halo: Vcut, the largest scale a
subhalo could have; V0, the overall normalization of the
subhalo abundance function; and n, the power-law index
(log-log slope) of the subhalo abundance function. In
principle, the values of these three parameters in different
host halos do not need to follow any universal relation,
and can depend on any host halo property. Nevertheless,
since the dark matter halos in dissipationless simulations
do have many universal properties, it is plausible that
some universal relations relating these three parameters
to the host halo properties would already make a good
approximation.

For conventional models that describe 〈N〉 as a func-
tion of host halo mass only, one can parameterize the
variables in Eq. (4) as follows

V0 = a Vvir, (7a)

Vcut = b Vvir, (7b)

n = n0, (7c)

Table 1
Parameter Values

Proxy Redshift a0 α b0 β n0

vmax 0 0.49 −0.9 1.4 −2.5 −2.90
vmax 1 0.85 −1.0 1.4 −1.0 −2.80
vmax 3 1.70 −1.0 1.4 −0.8 −2.60
vpeak 0 0.67 −0.8 1.4 −2.5 −2.75

Note. — See Eqs. (7) and (8) for the definitions of
these parameters. See text of Section 3.4 for details.

where V vir refer to the circular velocity at Rvir of the
host halo, a, b, and n0 are all constants that do not
depend on any host halo properties.

However, we already know that the parameterization
above cannot account for the dependence on halo concen-
tration. Here we present a specific parameterization that
replaces a and b in Eqs. (7) with functions of (Vmax/Vvir).
Particularly, we set

a := a0

(
Vmax

Vvir

)α
, (8a)

b := b0

(
Vmax

Vvir

)β
, (8b)

where a0, b0, α, and β are constant. Here Vvir and Vmax

refer to the host halo, and their ratio can be viewed as a
proxy of the halo concentration or formation time. When
α = β = 0, this falls back to the conventional model
which has no concentration dependence.

With this particular parametrization which incorpo-
rates host halo concentration, we can calibrate the model
against simulations. With the c125-2048 box, we find
the values listed in Table 1 provide decent descriptions
to both the mean and the scatter of subhalo abundance
across a wide range of mass. We also find the values for
two different redshifts (z = 1 and 3) and for using vpeak

as the proxy. Note that if one use vpeak as the proxy in-
stead of vmax, the dependence on concentration is slightly
weaker (see the values of α in Table 1).

Figure 6 compares simulations with the prediction
from this model with the parameters listed in Table 1.
In the simulations, we bin host halos according to their
mass, in a wide range of masses (1012–1014M�h

−1), and
measure the mean and variance of number of subhalos
whose vmax > 50 km/s in each bin. For each host halo
we also predict the number of subhalos with the model,
and measure the binned mean and variance in the same
way as with simulations. Then we plot the relative dif-
ference between the model prediction and the simulation
as a function of host halo mass in Figure 6. The relative
difference is defined as δX := Xmodel/Xsim − 1, where
X could be the mean (upper panels) or variance (lower
panels) of number of subhalos in each mass bin.

As Figure 6 shows, our model can reproduce the mean
and variance of the number of subhalos in all mass bins
very well. We also plot the model with no concentration
dependence (α = β = 0) for comparison. While this kind
of model can reproduce the mean value, it fails to repro-
duce the variance. Especially for the predicted variance,
our model successfully recovers the scatter in high-mass
bins, where a model that depends only on mass or the
Poisson scatter cannot. For halos of the highest and the
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lowest 25% concentration in each mass bin, our model
also fits the simulation reasonably well.

In this work, we do not focus on refining these relations
to obtain the best mock subhalo abundance function. In
fact, the essence of this work is to show that with our
simple model one can already reproduce most important
features in the subhalo abundance function. There are
two main reasons for not pursuing the best-fit model here.

First of all, the parameterization proposed above is
not unique. For example, one can substitute the ratio
Vmax/Vvir that appears in V0 with some generic function
of concentration f(c), or put in a mass/velocity depen-
dency in n. The parameters can also involve other host
properties, or even be stochastic (i.e. involving random
variables). Also, while the parameters provide insight
on the dependence on concentration, they do not bear
clear physical meaning and the parameterization choice
is somewhat arbitrary.

Second, although simulations do provide constraints on
the model parameters, these parameters are very degen-
erate and the Poisson scatter of individual halos makes
it very difficult to tightly constrain the best-fit parame-
ters. Multiple sets of values could give equally good fits
to simulations, and the choice of the objective function
(statistics to minimize) would also affect the best-fit val-
ues. The reported value in Table 1 are obtained by fitting
only the mean and scatter of subhalo abundance in the
full c128-2048 box in bins of host halo mass (i.e. to min-
imize the two leftmost panels in Figure 6), yet these val-
ues also provide decent fits to the individual abundance
function as shown in Figure 7.

As a result, here we do not give meaningful error bars
on the parameter values, but rather simply demonstrate
the model’s capability of reproducing the subhalo abun-
dance functions. Until the statistics of high-resolution
halos improves significantly, we recommend optimizing
the fit every time for each specific use case.

3.5. The Power-law Index

So far we have been fixing the power-law index (log-
log slope) to be a constant that does not change with
halo properties when calibrating our model against the
c125-2048 box. This assumption is consistent with pre-
vious studies (e.g. Gao et al. 2012). However, due to the
resolution limit, low-mass host halos in a cosmological
box do not constrain the index as well as the high-mass
halos because the number of resolved subhalos in low-
mass host halos is smaller and subject to larger relative
Poisson scatter. As a result, the value of n0 in Table 1
is mostly set by those high-mass halos in the box.

To investigate whether the power-law index is indeed
a constant, we check if the model would work for both
the zoom-in Milky Way halos and the high-mass halos
in the box. In Figure 7 we compare the subhalo abun-
dance function in simulations with that predicted by the
model. We discover that a constant index which can
fit the subhalo abundance function very well for cluster-
size halos fails to fit the abundance function for zoom-in
Milky Way-size halos. The log-log slope of the abun-
dance function is steeper for Milky Way-size halos than
for cluster-size halos.

We emphasize again that this mass trend is difficult to
detect in a cosmological box due to limited dynamical
range. As shown in the upper right panel of Figure 7,

at vmax = 50 km/s, both the number of subhalos and
the scatter are still consistent with the prediction from a
constant slope.

Recall that the power-law index also changes with red-
shift, as shown in Table 1: at higher redshift, the log-log
slope of the abundance function is shallower. The rela-
tion between the power-law index, host halo mass, and
redshift is also discussed in Zentner et al. (2005); Watson
et al. (2011). An intriguing question is then whether this
redshift trend and the aforementioned mass trend in the
index have the same physical origin.

Specifically, we find that we can fit the subhalo vmax

functions of the zoom-in Milky Way halos and of the
cosmological box simultaneously (see the lower panels of
Figure 7) if we replace the constant index by this relation,

n = −3.05 ν(M, z)−0.1, (9)

where

ν(M, z) =
δc

σ(M)D(z)
,

δc ≈ 1.686 is the critical overdensity, D(z) is the linear
growth rate, and σ(M) is the squared root of the mass
variance (at z = 0) with a top-hat filter of mass M .

Figure 8 shows the relation of Eq. (9) and compares
it with the constant values of n0 in Table 1. Although
this is not a proof of the validity of Eq. (9), it indeed
demonstrates the possibility that the mass and redshift
trends in the power-law index have the same physical
origin. To robustly verify this connection between n and
ν(M, z) would require several sets of zoom-in simulations
of halos of different masses, preferably also with different
cosmologies. This is beyond the scope of this work, but
worth exploring as simulation suites expand.

4. IMPLICATIONS AND DISCUSSION

So far we have been focusing on subhalo abundance
function and its dependence on host halo concentration.
In this section, we discuss its observational implications.
While we cannot observe dark matter subhalos directly,
we can certainly count the satellite galaxies that sit in
those subhalos. Hence, the subhalo occupation can be
viewed as a proxy of the satellite occupation, subject
to the effect of baryons on the subhalo abundance func-
tion (e.g. Cui et al. 2012; Vogelsberger et al. 2014). Here
we ignore baryonic effects and directly translate the sub-
halo occupation above a certain velocity cut to the satel-
lite abundance at a luminosity threshold by specifying a
galaxy–subhalo connection.

The simplest relation between subhalos and satellite
galaxies is a one-to-one relation,

Nsub(> v) = Nsat(> L(v)), (10)

where L(v) specifies the correspondence between veloc-
ity cut and luminosity threshold by matching their abun-
dance functions. This is commonly known as abundance
matching (e.g. Kravtsov et al. 2004; Vale & Ostriker
2004), which has been shown to work fairly well for
predicting measurements such as the correlation func-
tions (e.g. Conroy et al. 2006; Reddick et al. 2013). With
this abundance matching scheme, the model we intro-
duced in Section 3 directly becomes P (Nsat|M, c), and
it implies that satellite occupation depends on both host
halo mass and concentration.
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A different, but also widely-used approach is to use
Halo Occupation Distribution (HOD). Instead of speci-
fying the galaxy–subhalo connection, standard HOD di-
rectly models the probability distribution of satellite oc-
cupation at a luminosity threshold as a function of host
halo mass (e.g. Peacock & Smith 2000; Seljak 2000; Scoc-
cimarro et al. 2001; Berlind & Weinberg 2002; Cooray
& Sheth 2002). That is, it specifies P (Nsat > L|M),
and this distribution of satellite occupation does not de-
pend on host halo concentration. Nevertheless, one can
also generalize the HOD to include the concentration de-
pendence and to specify P (Nsat|M, c). Yet most studies
constraining HOD assume the sole dependence on mass.

Abundance matching and HOD also differ from each
other in how the positions of the satellite galaxies are
assigned. However, in the context of satellite occupa-

tion, the only relevant difference is whether or not the
satellite occupation depends on host halo concentration
(at a given host halo mass). It is clear that subhalo oc-
cupation does depend on host halo concentration, but
the stochastic process of galaxy formation could dimin-
ish this dependence. Nevertheless, it is also possible that
Eq. (10) is only perturbed, and the concentration depen-
dence of subhalo abundance still survives and results in
the concentration dependence of satellite abundance.

In this section, we assume the simple relation of
Eq. (10), and investigate the implications of the correla-
tion between concentration and satellite occupation. We
compare the different inferences between these two mod-
els (with and without concentration dependence) when
using satellite occupation as a proxy of halo mass. Then
we look at the the possible signal of halo assembly bias
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with satellite occupation.

4.1. Satellite Occupation as a Proxy of Halo Mass

Satellite occupation, especially in the cluster-mass
regime, has been used to probe the host halo mass (Oguri
& Lin 2015; Rozo et al. 2015; Old et al. 2014, 2015).
Conventionally, this is done within the standard HOD
framework, which ignores the dependence of satellite oc-
cupation on host halo concentration. Here we would like
to investigate the effects of ignoring this dependence. We
consider the two subhalo models, as presented in Fig-
ure 6: one only depends on halo mass like the standard
HOD, and the other incorporates the dependence on con-
centration as introduced in Section 3. We then take the
host halos from simulations and populate them with sub-
halos according to these two models. This procedure is
repeated multiple times to obtain enough statistics and
to smooth the Poisson noise.

Figure 9 shows the joint distribution of the host halo
mass and concentration at a fixed satellite occupation,
Nsub(vmax > 75 km/s) = 100, in the context of cluster-
size halos. We see significant differences between the
inferences from the two subhalo models, with or without
the dependence on concentration. Although the mean
value of inferred mass does not differ more than 1 σ,
the inferred distribution of mass is much wider in the
case with the dependence on concentration, and also in-
cludes many more high-concentration high-mass or low-
concentration low-mass halos.

The difference seen in Figure 9 would be especially
prominent when the number of subhalos in considera-
tion is large compared to the Poisson noise, i.e. Nsub �√
Nsub. Thus when estimating the mass of galaxy clus-

ters with richness or satellite occupation, one should con-
sider including halo concentration in the model, espe-
cially in cases when not only the mean estimator but
also the resulting inference is relevant.

To refine the mass estimator for halos of a fixed occupa-
tion, we then need some independent observable to probe
halo concentration. We discuss three possible choices
here.

• The radial distribution of satellites. If satellites
trace the density profile of the host halo, then by
the radial distribution of satellites could provide in-
dependent information on host halo concentration.
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Figure 9. The joint and marginal distributions of logarithmic
concentration (y-axis) and logarithmic mass (x-axis) of all the host
halos which have exactly 100 subhalos whose vmax > 75 km/s.
The upper and lower parts demonstrate the inference from the
two models: (1) with only mass dependence (upper) and (2) with
both mass and concentration dependence (lower). Dotted lines in
the side panels show the same marginal distribution for the other
model just for convenient comparison by eyes. Both models are the
same as used in Figure 6. The number in the marginal distribution
of logarithmic mass shows σ value.

By comparing the number of satellites in different
projected radial bins, one may be able to select
those more concentrated halos in a fixed-richness
sample.

• The luminosity of the central galaxy. For exam-
ple, the abundance matching scheme of Eq. (10)
matches luminosity with vmax or vpeak instead of
Mvir, and results in the dependence of luminosity
on concentration. Hence a further selection on the
luminosity of central galaxy may provide a tighter
mass distribution (see also Reyes et al. 2008). Red-
dick et al. (2015, in preparation) also finds a nega-
tive correlation between the central luminosity and
richness at a fixed halo mass, which agrees with
trends proposed here.

• The magnitude gap. In addition to the concen-
tration dependence of luminosity, the magnitude
gap between the central galaxy and the bright-
est satellite galaxy can further depend on the host
halo concentration. For instance, as suggested by
our model, the parameter Vcut itself has a concen-
tration dependence, regardless how luminosity is
matched to halo properties. It has also been shown
in simulations that the gap is correlated with the
formation history of the host halo, and hence with
concentration (D’Onghia et al. 2005; Zentner et al.
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Figure 10. Same as Figure 9, but showing the distributions of
log vhostpeak/v

1st sub
peak (y-axis) and logarithmic mass (x-axis). The ma-

genta dashed line in the lowest panel shows the mass distribution
when selecting only halos whose “gap” is larger than 2.5.

2005; Dariush et al. 2010; Deason et al. 2013; Wu
et al. 2013).

It has been suggested that selecting on magnitude gap
can refine the mass distribution of a fixed-richness sam-
ple (More 2012; Hearin et al. 2013; Lu et al. 2015). Here
we revisit this method by considering the correlation be-
tween occupation (richness) and halo concentration. Fig-
ure 10 shows the distributions of magnitude gap and halo
mass, for a sample of a fixed occupation (100 subhalos
vmax > 75 km/s, same as in Figure 9), for the two sub-
halo models. Here the magnitude gap is approximated
by log vhost

peak/v
1st sub
peak , and can be translated into the ac-

tual magnitude map by abundance matching. As we
already learned, the distribution of halo mass is much
wider (lower panel) than that from the assumption that
satellite occupation depends on host halo mass only (up-
per panel). Nevertheless, if we apply a further selection
on the magnitude gap, selecting only halos with larger
gaps, we can obtain a sample of halos whose mass distri-
bution is much closer to that in the upper panel.

This may provide a viable method to obtain a sample
of halos in a narrower halo mass bin, especially in the
high-mass regime. It has been shown that selecting on
magnitude gap can indeed narrow the velocity dispersion
distribution of the sample (Hearin et al. 2013). As for
halo mass, it remains to be seen how strong these effects
are in specific observed samples, but we expect that the
relative impact of the central galaxy luminosity and the
magnitude gap could be tested in the near future using
either lensing or X-ray measurements of large samples of
optically-selected clusters with fixed galaxy number.
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Figure 11. Same as Figure 9, but showing of all the host halos
which have exactly four subhalos whose vmax > 30 km/s.

4.2. Satellites of Milky Way

In the context of Milky Way-mass halos, the num-
ber of subhalos in consideration is much smaller, and
the Poisson noise of individual halos would dominate
and diminish the difference between these two subhalo
models. Nevertheless, in Figure 9 we observe a positive
correlation between the host halo mass and concentra-
tion for this sample of a fixed satellite occupation. This
positive correlation differs from the commonly known
concentration–mass relation (e.g. Navarro et al. 1997),
and can also been seen when the number of subhalos in
consideration is small.

Figure 11 shows the joint distribution of the host halo
mass and concentration at another fixed satellite occu-
pation, Nsub(vmax > 30 km/s) = 4. In this case, the
marginal distributions of mass or of concentration barely
differ between the two subhalo models. Nevertheless, the
predicted correlation between mass and concentration is
fairly different in the two cases. Without the dependence
on concentration, a sample of a fixed satellite occupation
basically corresponds to a sample of halos in a mass bin,
and the correlation between halo concentration and mass
inherits the usual, negative, concentration–mass relation
of host halos. On the other hand, with the dependence
on concentration, the inferred correlation between con-
centration and mass becomes positive.

This discrepancy again highlights the need to con-
sider this dependence of satellite occupation on concen-
tration when inferring the mass or other properties of
the Milky Way halo from satellites (e.g. Busha et al.
2011a; Rodŕıguez-Puebla et al. 2013b,a; Cautun et al.
2014a). If the inference is not derived completely from
simulations but with the help of a subhalo model which
does not account for dependence on concentration, such
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as the conventional HOD, then one might need to con-
sider the effect discussed above when interpreting the
results, particularly the degenerate correlation between
concentration and mass. We also note that recent con-
straint on the mass and concentration of the Milky Way
from dynamical tracers have a negatively-correlated de-
generacy (Wang et al. 2015), while occupation-based con-
straints will have the opposite degeneracy if the concen-
tration dependence is properly accounted for, as demon-
strated here.

This dependence on concentration also suggests that
one should take the concentration of the Milky Way halo
into account when investigating the tension between the
population of subhalos in N -body simulations and that
of the observed Milky Way satellite galaxies (e.g. Kauff-
mann et al. 1993; Klypin et al. 1999; Moore et al. 1999;
Bullock 2010; Boylan-Kolchin et al. 2011; Purcell & Zent-
ner 2012). While a Milky Way-like halo is conventionally
defined by selecting on halo mass only, it is clear that the
concentration of the Milky Way halo could potentially
change the statistical significance of the aforementioned
tension. In a follow-up paper, we further investigate
these implications of this dependence on concentration
for the Milky Way and its population of satellites (Mao
el al. in preparation).

4.3. Observing Halo Assembly Bias

Given that satellite occupation is a direct observable
that is correlated with halo concentration, it may provide
a way to observationally detect the halo assembly bias.
Halo assembly bias has been shown to exist in simula-
tions; particularly it is found that host halos of different
formation histories or concentrations cluster differently,

bh(M, c) 6= bh(M), (11)

where bh is the halo bias function (Gao et al. 2005; Wech-
sler et al. 2006; Gao & White 2007). The question we
want to address here is whether we can measure

bh(M,Nsat) 6= bh(M), (12)

and if so, whether it implies the existence of halo assem-
bly bias as in Eq. (11).

Instead of calculating the bias function directly, we use
the mark correlation function (MCF) to probe the bias.
The MCF is defined as

MCF(m, r) =
∑

(i,j)∈Sr

mimj

m̄2
, (13)

where Sr = {(i, j) : |xi − xj | ∈ [r, r + dr]}, and m̄ is
the mean of mi over i. The MCF of a specific mark m
shows whether the averaged value of this mark for halos
in pairs is higher or lower than the averaged value of the
whole sample. For each radial bin Sr, we find all pairs of
halos whose separation falls in that bin and measure the
mark of those halos. To accommodate the possible large
range of the mark values, we use the ranks of the mark
instead of the actual value for m, normalized by the total
number of different values. If Eq. (12) holds, we expect
either a positive or a negative excess in the MCF of Nsat.

In Wechsler et al. (2006), the authors found a positive
excess in the MCF of Nsat in the regime above M∗, but
were not able to find a similar signal below M∗. To in-
terpret these results, recall that for halos below the typ-
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Figure 12. The MCFs of concentration (left) and of satellite oc-
cupation (vmax > 60 km/s) (right), for host halos whose mass is
within 1011 and 1011.4 M�h−1. The red shaded area shows the
range of MCF consistent with no correlation within 2-σ.

ical collapse mass M∗, high-concentrated halos are more
clustered; for halos above M∗, high-concentrated halos
are less clustered. In the regime above M∗, halos in pairs
are on averaged more massive but less concentrated, and
both characters give a higher Nsat. As a result, the excess
in the MCF of Nsat comes from a mixed effect of both
mass and concentration, and hence it is easy to detect
this excess but would be difficult to distinguish whether
this signal is really coming from halo assembly bias.

On the other hand, in the regime below M∗, the de-
pendence of the clustering strength on halo concentration
switches sign, but the dependence of Nsub on concentra-
tion remains the same: host halos that form earlier still
have fewer subhalos at a fixed mass. As a result, in the
regime below M∗, halos in pairs are on averaged more
massive and more concentrated, and these two charac-
ters have opposite effects on Nsat. If a negative excess
in the MCF of Nsat is detected, this signal must come
from the contribution of concentration, or halo assem-
bly bias. However, in Wechsler et al. (2006), there were
not enough subhalos resolved in the simulation for the
correlation between subhalo abundance and halo concen-
tration to manifest itself, and hence this signal was not
detected.

We first calculate the MCFs of halo concentration and
of satellite occupation by selecting all resolved subha-
los whose vmax > 60 km/s in our cosmological box, for
host halos in a mass range, 1011–1011.4 M�h

−1, and plot
the results in Figure 12. The result we found here is
consistent with previous studies: significant bias in con-
centration, but not in satellite occupation. This result,
however, does not directly answer whether or not the
satellite occupation can probe assembly bias, because the
variance in Nsub can be large. As we argued in Section 3,

(Nsat|M, c) ∼ Pois(〈Nsat|M, c〉). (14)

For host halos in this mass range, the number of re-
solved subhalos is typically less than 10, even for a high-
resolution cosmological box (e.g. with a particle mass
of 107M�h

−1). Despite the correlation between subhalo
abundance and host halo concentration, the scatter in
subhalo abundance can wash out this correlation, espe-
cially for host halos with few subhalos, and render the
bias in subhalo occupation unobservable.

To verify our conjuncture that Eq. (12) would hold for
low-mass halos if the typical value of Nsub is large (> 10),
one would need a cosmological box large enough to mea-
sure clustering statistics and with a particle mass of
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Figure 13. Same as Figure 12, but shows the MCFs of
model-predicted satellite occupation down to 60, 50, 40, and
30 km/s. The corresponding number densities are 0.122, 0.216,
0.38, 1.03 (Mpc/h)−3.

∼ 105M�h
−1, but this kind of simulation is still beyond

the reach of current computational capabilities. Zoom-in
simulations can easily provide a much better resolution,
but those do not provide large-scale statistics. With our
model, we can predict the expected number of subhalos
(satellites) to a lower velocity cut (higher number den-
sity), while preserving the dependence on host halo mass
and concentration. We then can quantify at what veloc-
ity cut (number density) we can start to observe the bias
in subhalo occupation in low-mass host halos.

Figure 13 shows the model-predicted MCF of subhalo
occupation for four different thresholds, in the same mass
range of the host halos, 1011–1011.4 M�h

−1. The host ha-
los are selected from the cosmological box, and for each
host halo we re-populate its subhalos with our model.
At vmax = 60 km/s the result can be directly compared
with the right panel of Figure 12. Since our model by
construction correlates subhalo abundance and halo con-
centration (Vmax/Vvir), the lack of signal in the MCF at
vmax = 60 km/s results from the Poisson scatter. Mov-
ing the threshold down to vmax = 40 km/s we start to
see a clear negative excess in the MCF. As we discussed
above, this negative excess must originate from the fact
that paired halos are on averaged more concentrated, and
hence have fewer subhalos.

This negative excess in the MCF would manifest in the
projected correlation function by lowering the one-halo
term if the low-threshold data is available. With up-
coming deep spectroscopic surveys, such as DESI (Levi
et al. 2013), data with low thresholds will be accessible
in the near future. Figure 14 demonstrates the num-
ber of galaxies in a volume-limited sample from two ex-
emplary surveys, assuming the luminosity function re-
ported in Blanton et al. (2003, 2005). Both surveys have
a detection limit of mr = 19.5, and their sky coverages
are 290 and 14,000 square degrees, roughly representing
the GAMA Survey9 (Driver et al. 2011) and the DESI

9 http://www.gama-survey.org/
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Figure 14. Expected number of galaxies in a volume-limited sam-
ple as a function of number density (and corresponding halo vmax)
for two example surveys with different sky coverage (given in square
degrees).

Bright Galaxy Survey10, respectively. With the latter
survey, a volume-limited sample of a few hundred thou-
sand galaxies with mr < 19.5 down to the number den-
sity at 0.4 (Mpc/h)−3 would be accessible, and this sam-
ple would be sufficient for a precise measurement of the
projected correlation function.

We note that although we assume the simple relation
of Eq. (10) in this discussion, this signal has the advan-
tage that it is less sensitive to the details of the galaxy–
halo relation because it only utilizes the number of satel-
lites above a certain luminosity threshold, but not other
properties (e.g. color) of the satellites. Even if galaxy
formation introduces additional scatter in the satellite
occupation, as long as this scatter is smaller than the
halo-to-halo scatter due to halo concentration, this sig-
nal would survive in the projected correlation function.

5. SUMMARY

In this work, we model the subhalo abundance on the
basis of individual halos. The framework of our model
is based on the fact that the scatter in Nsub for an in-
dividual halo is consistent with Poisson scatter, and the
additional halo-to-halo scatter inNsub for halos in a mass
bin primarily affects only the overall normalization of the
subhalo function. For a large sample of halos, we find
that the subhalo velocity functions of a sample of halos
in a mass range are nearly parallel to one another. As a
result, we can model this halo-to-halo scatter by intro-
ducing additional parameters to the model that specify
the normalization as a function of additional halo prop-
erties.

We hence present a model which predicts the subhalo
abundance based on two properties: Vvir (equivalent to
mass) and Vmax/Vvir (roughly equivalent to concentra-
tion) of the host halos. This model successfully repro-
duces the mean and scatter in the subhalo abundance
in a given host halo mass bin. It can then be used to
predict the number of subhalos for thresholds that are
lower than the resolution limit of the simulation. It also
enables one to conveniently sample a sequence of vmax

values that represent the subhalos of a given host halo.
This model further provides plain insight into the de-

pendence of subhalo abundance on halo concentration.
We found that the halo concentration affects the subhalo

10 http://desi.lbl.gov/cdr/

http://www.gama-survey.org/
http://desi.lbl.gov/cdr/
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abundance function mainly through the overall normal-
ization (V0 in our parameterization), but also through
the “cutoff” scale (Vcut). A constant power-law index
(n) fits the cosmological simulations well; however, we
also find that an index that depends on halo mass would
fit the zoom-in Milky Way halos better. This depen-
dence on mass may have the same physical origin as the
dependence on redshift.

With this model, we then investigate the observable
implications of the correlation between the subhalo abun-
dance and halo concentration. We find that when us-
ing subhalo or satellite occupation as a proxy of halo
mass, one might need to consider using a concentration-
dependent model, such as the one presented here, to ob-
tain a more accurate inference. We show that ignoring
this dependence on concentration could result in a biased
mass inference and an incorrect joint distribution of mass
and concentration of the sample. Although these biases
are small, they may become important as other sources
of systematic errors decrease.

We further propose that satellite occupation can be
used to probe halo assembly bias if we can detect all
satellites which reside in subhalos down to ∼ 40 km/s.
Because in the low-mass regime, high-concentration ha-
los are more clustered but have fewer subhalos, this sig-
nal can probe the halo assembly bias in concentration
and is not degenerate with the contribution from halo
mass. This method is also less sensitive to the detailed
galaxy formation processes because it only depends on
the total count.
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