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Abstract

We consider the calculation of electromagnetic fields generated by an electron bunch

passing through a vacuum chamber structure that, in general, consists of an entry pipe, fol-

lowed by some kind of transition or cavity, and ending in an exit pipe. We limit our study

to structures having rectangular cross-section, where the height can vary as function of lon-

gitudinal coordinate but the width and side walls remain fixed. For such structures, we

derive a Fourier representation of the wake potentials through one-dimensional functions.

A new numerical approach for calculating the wakes in such structures is proposed and im-

plemented in the computer code ECHO(2D). The computation resource requirements for

this approach are moderate and comparable to those for finding the wakes in 2D rotation-

ally symmetric structures. Numerical examples obtained with the new numerical code are

presented.

PACS numbers: 41.60.-m, 29.27.Bd, 02.60.Cb, 02.70.Bf
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I. INTRODUCTION

The interaction of charged particle beams and the vacuum chamber environment

can be quantified using the concept of impedance or wakefield [1]. In order to cal-

culate electromagnetic fields in accelerators several different numerical approaches

have been suggested and implemented in computer codes. Such calculations for

complicated three dimensional structures, however, remain a challenge even for to-

day’s parallel computers. The approaches suggested in papers [2]-[4] allow one

to obtain reliable results for rotationally symmetric and general three-dimensional

structures even when using a personal computer. However, fully three dimensional

calculations can be cumbersome and require long computation times. In contrast,

for rotationally symmetric structures, the modelling is much simpler, the execu-

tion time is much shorter, and the required computational resources are relatively

modest.

Many three-dimensional vacuum chamber components used in particle acceler-

ators can be well-approximated with structures of rectangular cross-section whose

height can vary as function of longitudinal coordinate but whose width and side

walls remain fixed. Three examples of such geometry are shown in Fig. 1: (a) a

corrugated structure that can be used as a dechirper [5], (b) a rectangular tapered

collimator, and (c) a vacuum chamber in a bunch compressor. Calculation of the

wakefields for such structures can be greatly simplified by expanding the field gen-

erated by the beam into Fourier series. As it turns out, each Fourier harmonic can be

solved separately, and the wakefield calculated as a sum of their contributions. This

reduces the original 3D problem into a number of 2D ones, each of which requires

much less computing resources than the original problem.

In this paper we derive the equations for the Fourier harmonics and propose a

computational scheme for their solution. The scheme was implemented in a com-

puter code that we call ECHO(2D).
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FIG. 1: Structures of constant width: (a) dechirper, (b) tapered collimator, (c) vacuum

chamber in bunch compressor.

The paper is organized as follows. In Section II, we apply the Fourier transform

in the horizontal direction (the direction of constant width), and derive a system

of equations for the Fourier harmonics. In Section III, we prove that the longitu-

dinal wake function satisfies the Laplace equation with respect to the coordinates

of the source particle. In Section IV, we show that, in the general case, the wake-

field of each harmonic can be described by four scalar functions of one variable.

The description is further simplified in Section V where we assume that the entire

structure has a horizontal symmetry plane, and then analyze the longitudinal and
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transverse wakefields near the system axis. An important symmetry relation for the

wake function is established in Section VI. In Sections VII and VIII we present a

numerical algorithm for solving equations derived in Section II. Several numerical

examples obtained with the computer code ECHO(2D) are described in Section IX.

The results of the paper are summarized in Section X.

II. PROBLEM FORMULATION AND FOURIER EXPANSION

FIG. 2: Charged particle bunch moving through an accelerating structure.

We consider a bunch of particles moving with the velocity of light c through

a metallic structure comprising an incoming pipe, a transition or cavity, and an

outgoing pipe, an example of which is shown in Fig. 2. The bunch is characterized

by the charge distribution ρ and the electric current density j = cρ. We assume

that the bunch is moving along a straight line parallel to the longitudinal axis of

the system, and we neglect the influence of the wakefields on the bunch’s motion.

Our problem is to find the electric and magnetic fields E, H, in the domain Ω

which is bounded transversally by perfectly conducting metallic walls, defined by

the boundary ∂Ω of the domain Ω. We need to solve Maxwell’s equations with the
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boundary conditions:

∇ × H =
∂

∂t
D + j, ∇ × E = −

∂

∂t
B,

∇ · D = ρ, ∇ · B = 0,

B = µH, D = εE, r ∈ Ω,

E(t = 0) = E0, H(t = 0) = H0, r ∈ Ω̄,

n× E = 0, x ∈ ∂Ω, (1)

where E0, H0, is an initial electromagnetic field in the domain Ω̄ and n is a unit

vector normal to the surface ∂Ω. While we consider the propagation of beams

through vacuum, for the generality of the computational algorithm we included in

Eqs. (1) arbitrary dielectric constant ε and magnetic permittivity µ.

We choose a coordinate system with y in the vertical and x in the horizontal

directions; the z coordinate is directed along the longitudinal axis of the system.

The structures considered in this paper have constant width 2w and a fixed location

of the side walls (in the x-direction).

The charge density is localized within the interval 0 < x < 2w and vanishes at

the ends of the interval, ρ(0, y, z) = ρ(2w, y, z) = 0. Such a function can be expanded

in Fourier series

ρ(x, y, z) =
1
w

∞∑
m=1

ρm(y, z) sin(kx,mx), kx,m =
π

2w
m,

ρm(y, z) =

∫ 2w

0
ρ(x, y, z) sin(kx,mx)dx. (2)

It follows from the linearity of Maxwell’s equations, Eqs. (1) and Eq. (2), that the

components of electromagnetic field can be represented by infinite sums:
Hx

Ey

Ez

 =
1
w

∞∑
m=1


Hx,m

Ey,m

Ez,m

 sin(kx,mx),


Ex

Hy

Hz

 =
1
w

∞∑
m=1


Ex,m

Hy,m

Hz,m

 cos(kx,mx). (3)
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For each mode number m we can write an independent system of equations

∂

∂y
Hz,m −

∂

∂z
Hy,m = jx,m +

∂

∂t
Ex,mε,

∂

∂z
Hx,m + kx,mHz,m = jy,m +

∂

∂t
Ey,mε,

− kx,mHy,m −
∂

∂y
Hx,m = jz,m +

∂

∂t
Ez,mε,

∂

∂y
Ez,m −

∂

∂z
Ey,m = −

∂

∂t
Hx,mµ,

∂

∂z
Ex,m − kx,mEz,m = −

∂

∂t
Hy,mµ,

kx,mEy,m −
∂

∂y
Ex,m = −

∂

∂t
Hz,mµ,

kx,mHx,mµ +
∂

∂y
Hy,mµ +

∂

∂z
Hz,mµ = 0,

− kx,mEx,mε +
∂

∂y
Ey,mε +

∂

∂z
Ez,mε = ρm. (4)

Hence we have reduced the 3D problem, Eqs. (1), to an infinite set of independent

2D problems, Eqs. (4). Our approach is similar to one used in [6] for solving

Maxwell’s equations in the frequency domain.

III. LONGITUDINAL WAKE AS A HARMONIC FUNCTION

Let us consider a line-charge beam with vanishing transverse dimensions,

ρ(x0, y0, x, y, s) = Qδ(x − x0)δ(y − y0)λ(s),

jz(x0, y0, x, y, s) = cρ(x0, y0, x, y, s), (5)

where x0, y0, define the transverse offset of the beam, s = z − ct is the local longi-

tudinal coordinate in the bunch, Q is the bunch charge and λ(s) is the longitudinal

bunch profile [for a point charge, λ(s) = δ(s)]. The longitudinal wake potential W‖

at point (x, y, s) is defined as [1]

W‖(x0, y0, x, y, s) = Q−1
∫ ∞

−∞

[Ez(x, y, z, t)]t=(z−s)/cdz, (6)
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where the electric field on the right-hand side is the solution to Maxwell’s equation

with the sources of Eqs. (5) (this field, of course, is also a function of x0 and y0

omitted in the arguments of Ez for brevity).

It is well known [7] that the longitudinal wake potential satisfies the Laplace

equation for the coordinates x, y, of the witness particle(
∂2

∂x2 +
∂2

∂y2

)
W‖(x0, y0, x, y, s) = 0. (7)

In order to express the wake potential in structures of constant width through

one-dimensional functions we need to prove that the longitudinal wake potential

satisfies also the Laplace equation with respect to the coordinates x0, y0, of the

source particle. This statement will actually be proven below for arbitrary struc-

tures without any restrictions on the structure geometry. The only requirement im-

posed on the system is that the incoming and outgoing waveguides have perfectly

conducting walls.

The proof is based on the directional symmetry relation between the wake po-

tential W‖ for the case when the particle travels through the system in the positive z

direction, and the wake potential W (−)
‖

corresponding to the case when the particle

travels through the same system but in the negative z direction. It was shown in

Ref. [8] that the two wake potentials are related by

W (−)
‖

(r2, r1, s) −W‖(r1, r2, s) = 2cZe(r1, r2)λ(s), (8)

where

Ze(r1, r2) =
ε0

c

(∫
S A

ds∇φA(r1, r) · ∇φA(r2, r) −
∫

S B

ds∇φB(r1, r) · ∇φB(r2, r)
)
,

(9)

ε0 is the permittivity of vacuum, r1 = (x0, y0) and r2 = (x, y) are two dimensional

vectors, and φA, φB, are the Green functions for the Laplacian in the incoming and
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outgoing pipes with cross-sections, S A, S B:

∆φA(ri, r) = −ε−1
0 δ(r − ri), r ∈ S A,

φA(ri, r) = 0, r ∈ ∂S A,

∆φB(ri, r) = −ε−1
0 δ(r − ri), r ∈ S B,

φB(ri, r) = 0, r ∈ ∂S B, i = 1, 2, (10)

where ∂S is the boundary of S . Note that r1 and r2 are offsets of, respectively, the

leading and the trailing particles in W‖, while r2 is the offset of the leading particle,

and r1 is the offset of the trailing particle in W (−)
‖

. Note also that, according to the

general property of the wake potentials (7), W (−)
‖

satisfies the Laplace equation(
∂2

∂x2
0

+
∂2

∂y2
0

)
W (−)
‖

(x, y, x0, y0, s) = 0. (11)

With the help of Green’s first identity (n is the outward pointing unit vector

normal to the line element dl),∫
S
∇ϕ · ∇ψds =

∫
∂S
ϕ∂nψdl −

∫
S
ϕ∆ψds,

we can rewrite Eq. (8) as

W (−)
‖

(r2, r1, s) −W‖(r1, r2, s) = 2λ(s)
[
φB(r1, r2) − φA(r1, r2)

]
, (12)

where we have used the symmetry of Green’s functions, φA(r1, r2) = φA(r2, r1),

φB(r1, r2) = φB(r2, r1). We now apply the Laplacian operator to the coordinates x0,

y0 in Eq. (12) and use relation (11) to obtain(
∂2

∂x2
0

+
∂2

∂y2
0

)
W‖(x0, y0, x, y, s) = 0. (13)

This proves that the wake potential, in addition to being a harmonic function with

respect to the coordinates of the trailing particle, is also a harmonic function with

respect to the coordinates of the leading particle. To our knowledge, this general

property of wakefields has not been previously reported in the literature.
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IV. WAKE POTENTIAL REPRESENTATION IN STRUCTURES OF CONSTANT

WIDTH

It is well known [7] that for rotationally symmetric structures the wake potential

can be represented through one dimensional functions, with only one function for

each azimuthal mode number m,

W‖(x0, y0, x, y, s) =

∞∑
m=0

Wm(s)rm
0 rm cos(m(θ − θ0)),

x0 = r0 cos(θ0), y0 = r0 sin(θ0), x = r cos(θ), y = r sin(θ). (14)

As it turns out, a similar, comparably simple representation exists for the wake

potential in structures of rectangular cross-section and constant width; however, in

the latter case four one-dimensional functions are needed for each mode number m.

Substituting Eq. (5) into (2) we find for the charge distribution

ρ(x0, y0, x, y, s) =
1
w

∞∑
m=1

ρm(y0, y, s) sin(kx,mx0) sin(kx,mx),

ρm(y0, y, s) = Qδ(y − y0)λ(s). (15)

It then follows from Maxwell’s equations (4) that all components of the fields will

be proportional to sin(kx,mx0) and using Eqs. (3) and (6) we find

W‖(x0, y0, x, y, s) =
1
w

∞∑
m=1

Wm(y0, y, s) sin(kx,mx0) sin(kx,mx). (16)

If we insert representation (16) into Eq. (7), we obtain the one-dimesional Helmholz

equation
∂2

∂y2 Wm(y0, y, s) − (kx,m)2Wm(y0, y, s) = 0, (17)

which has a general solution of the form

Wm(y0, y, s) = Wc
m(y0, s) cosh(kx,my) + W s

m(y0, s) sinh(kx,my). (18)
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Finally from Eq. (13) it follows that functions Wc
m(y0, s) and W s

m(y0, s) satisfy equa-

tions

∂2

∂y2
0

Wc
m(y0, s) − (kx,m)2Wc

m(y0, s) = 0,

∂2

∂y2
0

W s
m(y0, s) − (kx,m)2W s

m(y0, s) = 0. (19)

These equations can again be easily integrated with the result:

W‖(x0, y0, x, y, s) =
1
w

∞∑
m=1

Wm(y0, y, s) sin(kx,mx0) sin(kx,mx), (20)

where

Wm(y0, y, s) =
[
Wcc

m (s) cosh(kx,my0) + W sc
m (s) sinh(kx,my0)

]
cosh(kx,my)

+
[
Wcs

m (s) cosh(kx,my0) + W ss
m (s) sinh(kx,my0)

]
sinh(kx,my). (21)

Thus, we have proven that, in structures of constant width, for each mode number

m four functions are needed to completely describe the longitudinal wake potential.

These functions can be calculated as follows

Wcc
m = Wm(0, 0, s), W sc

m =
1

kx,m

∂

∂x
Wm(0, 0, s),

Wcs
m =

1
kx,m

∂

∂x0
Wm(0, 0, s), W ss

m =
1

(kx,m)2

∂2

∂x∂x0
Wm(0, 0, s), (22)

where the mth modal component of the wake potential

Wm(y0, y, s) = Q−1
∫ ∞

−∞

[Ez,m(y, z, t)]t=(z−s)/cdz (23)

is excited by a charge distribution that does not depend on x,

ρm(y0, y, s) = Qδ(y − y0)λ(s). (24)

With a knowledge of the longitudinal wake we can calculate the transverse

wakes. For example, the vertical wake potential, Wy, can be easily found through

the Panofsky-Wenzel theorem [7]

∂

∂s
Wy(x0, y0, x, y, s) =

∂

∂y
W‖(x0, y0, x, y, s). (25)
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In the next section we will analyze both the longitudinal and the transverse wakes

assuming that the structure under consideration has a symmetry axis.

V. STRUCTURES WITH HORIZONTAL SYMMETRY PLANE

Let us consider a structure of constant width 2w that also has a vertical symmetry

plane, at y = 0. Structures in Fig. 1 (a) and (b) possess this symmetry; hence, they

have a symmetry axis located at x = w, y = 0. Due to the symmetry, the wake

potential satisfies the equation

W‖(x0, y0, x, y, s) = W‖(x0,−y0, x,−y, s), (26)

and Eq. (21) simplifies:

Wm(y0, y, s) = Wcc
m (s) cosh(kx,my0) cosh(kx,my) + W ss

m (s) sinh(kx,my0) sinh(kx,my).

(27)

Note that

Wm(y0, y, s) = Wm(y, y0, s). (28)

Let us consider the transverse wakes in such structures. We first introduce the

integrated wake functions (sometimes called the step function response)

S cc
m =

∫ s

−∞

Wcc
m (s′)ds′, S ss

m =

∫ s

−∞

W ss
m (s′)ds′. (29)

It then follows from (25) that the transverse wake function can be written as

Wy(x0, y0, x, y, s) =
1
w

∞∑
m=1

kx,mWy,m(y0, y, s) sin(kx,mx0) sin(kx,mx), (30)

where

Wy,m(y0, y, s) = S cc
m (s) cosh(kx,my0) sinh(kx,my) + S ss

m (s) sinh(kx,my0) cosh(kx,my),

Wx(x0, y0, x, y, s) =
1
w

∞∑
m=1

kx,mWx,m(y0, y, s) sin(kx,mx0) cos(kx,mx), (31)

Wx,m(y0, y, s) = S cc
m (s) cosh(kx,my0) cosh(kx,my) + S ss

m (s) sinh(kx,my0) sinh(kx,my).
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Representations (30), (31), are valid for arbitrary offsets of leading and trailing

particles.

For small offsets near the symmetry axis, x = w, y = 0, the transverse wake

potential is usually expanded in Taylor series,

Wy(w, y0, w, y, s) ≈ y0
∂

∂y0
Wy(w, y0, w, 0, s)

∣∣∣
y0=0

+ y
∂

∂y
Wy(w, 0, w, y, s)

∣∣∣
y=0
. (32)

The first term in (32) is usually called the transverse dipole wake in the y-direction.

It can be calculated as follows

Wy,d(s) ≡
∂

∂y0
Wy(w, y0, w, 0, s)

∣∣∣
y0=0

=
1
w

∞∑
m=1,odd

(kx,m)2S ss
m (s). (33)

The second term in (32) is called the transverse quadrupole wake in y-direction; it

is obtained by

Wy,q(s) ≡
∂

∂y
Wx(w, 0, w, y, s)

∣∣∣
y=0

=
1
w

∞∑
m=1,odd

(kx,m)2S cc
m (s). (34)

The transverse wakes in the x direction are obtained by equations corresponding to

those of Eqs. (33), (34). Note that Wy,q(s) = −Wx,q(s).

In numerical calculations of structures with symmetry we can use the approach

of paper [9] that allows us to reduce the calculation domain in half. Indeed the

charge distribution (24) can be written as a sum of symmetric and antisymmetric

parts

ρm(y0, y, s) = ρE
m(y0, y, s) + ρH

m(y0, y, s), (35)

where

ρH
m(y0, y, s) =

1
2

Q
[
δ(y − y0) + δ(y + y0)

]
λ(s), (36)

ρE
m(y0, y, s) =

1
2

Q
[
δ(y − y0) − δ(y + y0)

]
λ(s). (37)

In problems with the symmetric driving charges (36), the tangential component of

the magnetic field will be zero in the symmetry plane (the so called “magnetic”
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boundary condition). In problems with the antisymmetric driving charges (37) the

tangential component of the electric field will be zero in the symmetry plane (the

“electric” boundary condition). Thus, instead of solving the system of equations

(4) in the whole domain, one can solve two independent problems in half of the

domain: one problem with the “magnetic” boundary condition at y = 0 and one

problem with the “electric” boundary condition at y = 0. This is true not only

for the line-charge current distribution (5), but for any arbitrary three dimensional

charge distribution ρ(x, y, z, t). From solutions WH
m (y0, y, s) and WE

m(y0, y, s) of the

two problems we can easily find the one dimensional modal functions in Eq. (27):

Wcc
m (s) = WH

m (0, 0, s), W ss
m (s) = (kx,m)−2 ∂2

∂y0∂y
WE

m(y0, y, s)
∣∣∣
y,y0=0

. (38)

VI. SYMMETRY RELATIONS FOR THE TRANSVERSE WAKE POTENTIAL

In the general case, from the directional symmetry relation, Eqs. (8), discussed

in Section III, one cannot immediately infer the corresponding symmetry for the

transverse wakes taken in the positive and negative directions. It turns out, how-

ever, that for structures of constant width with a symmetry axis, such a directional

symmetry relation for the transverse wake potential can be proven. Indeed, from

the symmetry relation (28) and Eq. (20) follows the symmetry of the longitudinal

wake potential,

W‖(x0, y0, x, y, s) = W‖(x, y, x0, y0, s). (39)

Hence the directional symmetry relation (12) for the longitudinal wake potential

can now be written as

W (−)
‖

(r1, r2, s) −W‖(r1, r2, s) = 2λ(s)
[
φB(r1, r2) − φA(r1, r2)

]
; (40)
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and from the Panofsky-Wenzel theorem (25) it follows that

W(−)
⊥ (r1, r2, s) −W⊥(r1, r2, s) = 2Λ(s)

[
∇φB(r1, r2) − ∇φA(r1, r2)

]
,

Λ(s) =

∫ s

−∞

λ(s′)ds′. (41)

In the last equation we have used the vectorial notation for the transverse wake,

W⊥ = (Wx,Wy).

Let us now calculate the directional relation for the dipole and quadrupole wakes

defined by Eqs. (33), (34). Denote the vertical aperture of the incoming rectangular

pipe by 2gA and that of the outgoing pipe 2gB. (Both pipes have the same width 2w.)

The Green function for Poisson’s equation in a rectangular pipe, φA(x0, y0, x, y), has

been obtained by Gluckstern, et al [10]. For x0 = w, their result reads:1

φA(w, y0, x, y) = −
1
πε0

∞∑
n=1

e−
nπw
2gA cosh nπ(x−w)

2g

n cosh nπw
2gA

sin
nπ
2g

(y + gA) sin
nπ
2g

(y0 + gA)

+ ln

[(x − w)2 + (y − y0)2
] sinh2 π(x−w)

4gA
+ cos2 π

4gA
(y + y0)

sinh2 π(x−w)
4gA

+ sin2 π
4gA

(y − y0)


− ln

[
(x − w)2 + (y − y0)2

]
. (42)

The last term is singular in the limit x → w and y → y0. All other terms are

finite for all admissible x and y, and the sum in the first term rapidly converges.

The Green’s function of the outgoing pipe, φB(w, y0, x, y), is obtained from (42)

by replacing gA → gB. It is then easy to see that the singular terms cancel in the

difference φA−φB; hence this function is finite within the domain of its definition. If

we follow the approach of paper [11] and use Eqs. (39), (40), (45) from that paper,

1 There is a typo in Eq. (5.11) of Ref. [10] that is corrected in (42).
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then from Eq. (41) our final result reads

W (−)
y,d (s) −Wy,d(s) = 2cΛ(s)

[
Zy,d(gA) − Zy,d(gB)

]
,

W (−)
y,q (s) −Wy,q(s) = 2cΛ(s)

[
Zy,q(gA) − Zy,q(gB)

]
,

Zy,d(g) =
πZ0

12g2

1 + 24
∞∑

m=1

m
1 + e2πm(w/g)

 ,
Zy,q(g) =

πZ0

24g2

1 − 24
∞∑

m=1

2m − 1
1 + eπ(2m−1)(w/g)

 . (43)

VII. TE/TM SCHEME IN MATRIX NOTATION

In this section we describe a particular realization of the implicit TE/TM scheme

introduced in [4]. The scheme will be discussed in the context of the Finite Integra-

tion Technique [12].

FIG. 3: One cell of cell complex G showing the positions of the voltage and magnetic flux

components

We will consider Maxwell’s equations in their integral form on a domain Ω with
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the linear non-dispersive constitutive relations:∮
∂S

Edl = −
∂

∂t

	
S

Bds,
∮
∂S

Hdl =
∂

∂t

	
S

Dds +

	
S

jds, ∀S ⊂ Ω,	
∂V

Dds =

*
V

ρdv,
	
∂V

Bds = 0, ∀V ⊂ Ω,

D = εE, B = µH, ∀x ∈ Ω. (44)

Let us start by introducing a grid-based decomposition of the entire computa-

tion domain Ω into cell complex G. We use here a three dimensional Cartesian

mesh in x, y, z coordinates, with the corresponding indexing i, j, k. Unlike in finite-

difference methods where one starts by allocating the field components, we begin

by taking the voltage along cell edges and the magnetic flux through cell facets as

the computational unknowns:

eϑ =

∫
Lϑ

Edl, bϑ =

"
S ϑ

Bds, (45)

where ϑ is a mesh multi-index and Lϑ, S ϑ ∈ G. Solving Faraday’s law in integral

form for the front surface shown in Fig. 3 yields:

−ex,i, j,k + ey,i, j,k + ex,i, j+1,k − ey,i+1, j,k = −
∂

∂t
bz,i, j,k.

Note, that this representation is still exact, as eϑ is (by definition) the exact electric

voltage along one edge of the cell, and similarly bϑ represents the exact value of the

magnetic flux density integral over the cell surface. If we compose column vectors

e =


ex

ey
ez

 , b =


bx

by
bz

 (46)

from all voltage and flux components, we can write the combination of all equations

over all surfaces in an elegant matrix form as

Ce = −
∂

∂t
b. (47)
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The matrix C picks the affected components out of the long vector to make up the

corresponding equation. C is thus the discrete curl operator over the mesh G. With

an appropriate indexing scheme the curl matrix has a 3x3 block structure:

C =


0 −Pz Py

Pz 0 −Px

−Py Px 0

 . (48)

The double-banded, topological Px,Py,Pz-matrices take the role of discrete partial

differential operators.

The second important differential operator in Maxwell’s equations (1) is the di-

vergence operator. In order to construct a discrete divergence operator we integrate

Maxwell’s equation
�
∂V

Bds = 0 over the entire surface of a mesh cell depicted in

Fig. 3. By adding up the six fluxes for each cell and by writing down all such equa-

tions for the entire mesh we obtain a discrete analogue to the divergence equation:

Sb = 0, S =
(
Px Py Pz

)
. (49)

The discretization of the remaining Maxwell equations requires the introduction

of a second cell complex G̃ which is dual to the primary cell complex G. For the

Cartesian grid the dual complex G̃ is defined by taking the foci of the cells of G as

gridpoints for the mesh cells of G̃. We again introduce the computational unknowns

as integrals

hϑ =

∫
L̃ϑ

Hdl, dϑ =

"
S̃ ϑ

Dds, jϑ =

"
S̃ ϑ

jds, (50)

where ϑ is a mesh multi-index and L̃ϑ, S̃ ϑ ∈ G̃.

Following an equivalent procedure for the remaining Maxwell’s equations, but

using the dual cell complex G̃, we obtain a set of four discrete equations represent-

18



ing Maxwell’s equations on a dual grid:

Ce = −
∂

∂t
b, C∗h =

∂

∂t
d + j,

Sb = 0, S̃d = q, e,b ∈ G, h,d ∈ G̃,

S̃ =
(
−P∗x − P∗y − P∗z

)
, (51)

where the asterisk denotes the Hermetian adjoint operator.

Equations (51) are completed by the discrete form of the material relations (con-

stitutive equations) which appear (in the simplest linear case) as matrix equations

e = cMε−1d, h = cMµ−1b. (52)

with Mε−1 the discrete inverse permittivity matrix, and Mµ−1 the inverse permeability

matrix.

FIG. 4: Grid doublet (G, G̃) in (y, z)-plane.

In the case of Cartesian grids (or, more generally, whenever the primary and dual

grids are orthogonal) all material operators can be represented by diagonal matrices.

Note that the material matrices contain both averaged material parameters, and the

lengths and areas of the grid edges and faces, respectively. In the standard staircase

approximation the material matrices contain elements (without double indices for
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FIG. 5: Curved PEC-boundary in a Cartesian mesh.

simplicity of notation)

ε
−1
pi jk = (cε)−1 Lpi jk

S̃ pi jk
, µ

−1
pi jk = (cµ)−1 S pi jk

L̃pi jk
, (53)

with p = x, y, z, and the face areas and edge lengths of the primary and secondary

grid given by S , L, S̃ , L̃, respectively.

In the conformal scheme [14], we allow the cells of the computational grid to be

only partially filled by a perfectly electric conducting (PEC) material and with an

arbitrarily shaped interface. To model such a case we modify only the elements of

the material matrices:

ε
−1
pi jk = (cε)−1 lpi jk

S̃ pi jk
, µ

−1
pi jk = (cµ)−1 spi jk

L̃pi jk
, (54)

where s, l denote the reduced cell areas and lengths, including only those parts

inside the computational domain (outside PEC material), as shown in Fig. 5.

The complete set of equations (51) and (52) is referred to as Maxwell’s grid

equations.

For our 2D rectangular structures, Maxwell’s equations (1) reduce to the modal

equations (4). In addition, the dual three-dimensional cell complex (G, G̃) reduces

to the two-dimensional plane complex shown in Fig. 4. In Maxwell’s grid equations
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the discrete operator Px reduces to the diagonal matrix kx,m = kx,mI, where I is the

unit matrix.

System (51) is a time-continuous and space-discrete approximation of problem

(4). The next step is a discretization of the system in time. The field components can

be split in time and the leap-frog method can be applied. With “electric/magnetic”

splitting, a well known Yee’s scheme [13] will be obtained. However Yee’s scheme

has large dispersion errors along the grid lines. In the following we consider an

alternative TE/TM splitting scheme [4], one that does not have dispersion errors in

the longitudinal direction.

Let us rewrite Eqs. (51) in an equivalent form

∂

∂τ
u = Mu(Tuu + Lv − ju),

∂

∂τ
v = Mv(Tvv − L∗u − jv), (55)

where τ = ct and

Tu =


0 0 −Py

0 0 kx,m

P∗y −kx,m 0

 , Tv =


0 0 −P∗y
0 0 kx,m

Py −kx,m 0

 , L =


0 Pz 0

−Pz 0 0

0 0 0

 ,

Mu =


Mµ−1

x
0 0

0 Mµ−1
y

0

0 0 Mε−1
z

 , Mv =


Mε−1

x
0 0

0 Mε−1
y

0

0 0 Mµ−1
z

 ,

u =


hx

hy
ez

 , v =


ex

ey
hz

 , ju =


0

0

jz

 , jv =


jx

jy
0

 . (56)

Applying TE/TM splitting [4] of the field components in time to system (55),

the following numerical scheme is obtained

un+0.5 − un−0.5

∆τ
= Mu

(
Tu

un+0.5 + un−0.5

2
+ Lvn − ju

n
)
,

vn+1 − vn

∆τ
= Mv

(
Tv

vn+1 + vn

2
− L∗un+0.5 − jv

n+0.5
)
. (57)
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Two-layer operator-difference scheme (57) acquires the canonical form [15]

B
yn+1 − yn

∆τ
+ Ayn = fn, (58)

where

B =

Mu
−1 − αTu 0

2αL∗ Mv
−1 − αTv

 , A =

−Tu −L

L∗ −Tv

 ,
yn =

un−0.5

vn

 , fn =

 jn
u

jn+0.5
v

 , α = 0.5∆τ.

It was shown in [4] that stability of the method is insured if

Q ≡ B − αA > 0. (59)

If the matrix Q is positive definite, then we can define a discrete energy as

Wn = 0.5〈Qyn, yn〉 (60)

and the discrete energy conservation law holds

Wn+1 −Wn

∆τ
= −〈ên+0.5, ĵn+0.5〉,

ên+0.5 = 0.5


en+1

x + en
x

en+1
y + en

y

en+0.5
z + en−0.5

x

 , ĵn+0.5 =


jn+0.5

x

jn+0.5
y

jn
z

 . (61)

The stability condition (59) in the staircase approximation (of the boundary in vac-

uum) can be rewritten in the form

I − α2(∆z)−2 PzP∗z > 0. (62)

This last condition resembles the well-known stability condition of the explicit

FDTD scheme for one-dimensional problems. The maximal eigenvalue of the dis-

crete operator PzP∗z fulfills the relation λmax < 4, and the stability condition of the

scheme in the staircase approximation of the boundary in vacuum reads

∆τ ≤ ∆z. (63)
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On an equidistant mesh the implicit scheme (57) has a second order local approxi-

mation error in homogeneous regions.

Relation (63) does not contain information about the transverse mesh. Hence the

transverse mesh can be chosen independent of stability considerations. Following

the conventional procedure [4], the dispersion relation can be obtained in the form(
sin Ω

∆τ

)2

=

(
sin Kz

∆z

)2

+

(
sin Ky

∆y
cos Ω

)2

,

where Ω = 0.5ω∆τ, Ky = 0.5ky∆y, Kz = 0.5kz∆x. With the “magic” time step

∆τ = ∆z, the scheme does not have dispersion in the longitudinal direction.

Following the approach of [4] it is easy to show that charge conservation holds:

gn+0.5
e − gn−0.5

e

∆τ
+ S̃j̄n

= 0,
gn+1

h − gn
h

∆τ
= 0,

gn+0.5
e = S̃M−1

ε−1 ēn+0.5
z , gn

h = SM−1
µ−1h̄n

z ,

where functions with overbars are defined as

f̄n =

(
0.5(fn+1

x + fn
x ), 0.5(fn+1

y + fn
y ), fn+0.5

z

)T
.

VIII. TE/TM SCHEME IN COMPONENT NOTATION

In this section we rewrite scheme (57) in component notation and discuss the

algorithm of numerical solution.

The field components hn+0.5
x ,hn+0.5

y , en+0.5
z at time level n + 0.5 can be found as

h̃n
x = hn−0.5

x + αMµ−1
x

[
Pzen

y − Pyen−0.5
z

]
,

h̃n
y = hn−0.5

y + αMµ−1
y

[
−Pzen

x + kx,men−0.5
z

]
,

en+0.5
z = en−0.5

z + 2αW−1
e Mε−1

z

[
−kx,mh̃n

y + P∗yh̃
n
x − jn

z

]
,

hn+0.5
x = h̃n

x + αMµ−1
x

[
Pzen

y − Pyen+0.5
z

]
hn+0.5
y = h̃n

y + αMµ−1
y

[
Pzen

x + kx,men+0.5
z

]
, (64)
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where h̃n
x, h̃n

y are auxiliary vectors and operator matrix We is a sparse one,

We = I + α2
[
(kx,m)2Mε−1

z
Mµ−1

y
+ Mε−1

z
P∗yMµ−1

x
Py

]
. (65)

The field components en+1
x , en+1

y ,hn+1
z at time level n + 1 can be found as

ẽn+0.5
x = en

x + αMε−1
x

[
P∗zhn+0.5

y − P∗yh
n
z − jn+0.5

x

]
,

ẽn+0.5
y = en

y + αMε−1
y

[
P∗zhn+0.5

x − kx,mhn
z − jn+0.5

y

]
,

hn+1
z = hn

z + 2αW−1
h Mµ−1

z

[
−kx,mẽn+0.5

y + Pyẽn+0.5
x

]
,

en+1
x = ẽn+0.5

x + αMε−1
x

[
P∗zhn+0.5

y − P∗yh
n+1
z − jn+0.5

x

]
en+1
y = ẽn+0.5

y + αMε−1
y

[
P∗zhn+0.5

x − kx,mhn+1
z − jn+0.5

y

]
, (66)

where ẽn+0.5
x , ẽn+0.5

y are auxiliary vectors and operator matrix Wh is a sparse one,

Wh = I + α2
[
(kx,m)2Mµ−1

z
Mε−1

y
+ Mµ−1

z
PyMε−1

x
P∗y

]
. (67)

In the staircase approximation of the boundary, the material matrices Mµ−1 , Mε−1

are diagonal, and the operators (65),(67) are tri-diagonal matrices. The equations

involving these operators can be solved easily by the “elimination” method [15].

However, the staircase approximation of the boundary results in first order conver-

gence in the wake potential. In order to obtain second order convergence and avoid

time step reduction, we use conformal method in the same way as described for the

rotationally symmetric case in [16].

In the original problem formulation (1), we assumed that the structure walls are

perfectly conducting. However, in order to use the Fourier expansion (3), it is suf-

ficient to require only that the walls at x = 0 and x = 2w be perfectly conducting.

The bottom and top walls of the structure can have different boundary conditions;

for example, they can be specified to be metallic with finite resistivity. A similar

approach for the case of rotationally symmetric geometry and the use of the stair-

case approximation for the boundaries was described in [17]. In ECHO(2D) we
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have realized a conformal version of the method for including boundaries with fi-

nite conductivity. Details of the implementation of our algorithm will be published

elsewhere.

IX. NUMERICAL EXAMPLES

In this section we consider two example calculations: a corrugated pipe

(“dechirper”) with perfectly conducting walls, and a tapered collimator with re-

sistive walls. We compare results obtained with ECHO(2D) with those of several

3D codes.

For our dechirper example we used the parameters of the dechirper experiment

performed at the Pohang Accelerator Laboratory [18]. The geometry is shown in

Fig. 1a. The dechirper structure is 1 m long, has a width 2w = 50 mm, and is made

of aluminum. The corrugations are characterized by the period p = 0.5 mm, height

h = 0.6 mm, and aspect ratio h/t = 2. The gap between the jaws is adjustable; at a

nominal setting the full gap 2a = 6 mm.

We have performed calculations of the wakes for a Gaussian bunch with rms

lengthσz = 0.5 mm. The transverse dimensions of the bunch were assumed negligi-

bly small. In the right plots of Figs. 6–7, we show some of the harmonics Wcc
m (kx, s)

and k2
x,mW ss

m (kx, s), calculated for 2w = 5 cm. If the bunch passes through the mid-

dle of the structure, at x0 = w, then only odd harmonics are excited. In the left

plots of Figs. 6–7, these functions are shown as continuous functions of kx (denoted

with subscript m removed); they are independent (see Appendix) of the width pa-

rameter 2w. (Here we have used 2w = 10 cm to obtain a denser sampling of the

functions in the figures.) Finally, in Fig. 8, we compare the longitudinal (left plot)

and the dipole (right plot) wakes obtained with ECHO(2D) with the existing, fully

3D code, ECHO(3D) [4]. In the calculation of the wake potentials, where the width

2w = 5 cm, we used only the first 15 odd harmonics. We see that the agreement
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with the existing code is very good.

FIG. 6: For the Pohang dechirper: function Wcc(kx, s) (left), and the harmonics m = 1, 9,

19, of Wcc
m (s) (right).

FIG. 7: For the Pohang dechirper: function k2
xW ss(kx, s) (left), and the harmonics m = 1, 9,

19, of k2
x,mW ss

m (s) (right).

In Table I we compare the calculated average wakes (the loss factor in the lon-

gitudinal case and the kick factors in the transverse cases) with numerical results

obtained with the time-domain code T3P of the code suite ACE3P [19]. The results
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FIG. 8: Longitudinal wake potential (left) and dipole wake potential (right), calculated from

first 15 odd harmonics.

in the table, denoted by r, have been normalized to analytical results, valid for in-

finitesimally small corrugations (see [18]). We see good agreement except for the

case of the dipole wake. (Note, however, that we have good reason to believe that r

should always be ≤ 1.) Incidentally, it should be noted that in [18] the strength of

the wakes of the Pohang dechirper were measured, both the longitudinal and trans-

verse wakes, and it was estimated that their measured (effective) r was about 0.75,

a result that is in good accord with the ECHO(2D) results.

TABLE I: For the Pohang dechirper, for a Gaussian bunch with σz = 0.5 mm: the ratio

of the numerically obtained and the analytical result(see [18]), that we denote by r. We

compare the results given in Ref. [19], r[T3P], with the new results, r[ECHO].

Wake r[T3P] r[ECHO]

Longitudinal, loss factor 0.84 0.83

Dipole, kick factor 1.08 0.79

Quad, kick factor 0.73 0.73

As the second example problem we consider a symmetric, tapered collimator
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FIG. 9: Longitudinal wake potential of tapered collimator.

(see Fig. 1b). The dimensions are: width 2w = 10 cm, height of large pipe

2a = 10 cm, length of tapers T = 5 cm; height and length of the minimum gap

section, 2b = 2 cm and L = 12 cm. As was mentioned above, ECHO(2D) is capa-

ble of modelling structures with metallic walls of finite conductivity. The tapered

walls and the walls of the minimum gap section are taken to have conductivity

σ = 100 S/m (a poor conductor), while the remaining surfaces are assumed to be

perfectly conducting. In the left plot of Fig. 9 we compare the longitudinal wake

for this collimator with one that has the same geometry but is perfectly conduct-

ing. The Gaussian bunch in the simulations has an rms length σz = 0.25 cm. Both

wakes were obtained with ECHO(2D). In the right plot of Fig. 9 we compare the

ECHO(2D) wake potential with the one obtained using a fully three-dimensional,

commercially available code CST [20]. The good agreement between the results in-

dicates a good accuracy of the conformal meshing and the resistive wall modelling

in ECHO(2D).

Finally, in order to demonstrate the capabilities of the new code to calculate

wakes of very short bunches, we give in Fig. 10 the calculated loss factor κ =

〈W‖(0, 0, s)〉 as function of bunch length in the 1 m-long Pohang dechirper (black
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FIG. 10: Loss factor for very short bunches in the dechirper (in black). The grey symbols

give the difference between the loss factors for 2 m-long structure and a 1 m-long structure.

plotting symbols). Note that the shortest bunch length used in the calculations is

σz = 10 µm. For the shorter bunches, the loss factor in a 1 m-long structure is

larger than the steady-state (periodic) result. We can see that by plotting on the

same figure the difference of κ for a 2 m structure minus that for a 1 m structure

(the gray curve). Note that the analytical, asymptotic value of the loss factor, for

σz → 0, is κ = Z0cL/(2πa2) · (π2/16) = 1234. V/pC [we have taken Z0 = 377 Ω,

structure length L = 1 m, and half-gap a = 3 mm], which agrees well with the

linear extrapolation of the ECHO(2D) steady-state results (the gray curve).

X. SUMMARY

In this paper we presented a new method for solving electromagnetic problems

and calculating wakefields excited by a relativistic bunch in a structure that is char-

acterized by a rectangular cross-section whose height can vary as function of longi-

tudinal coordinate but whose width and side walls remain fixed. Using the Fourier

expansion of the fields, currents and charge densities, we derived a Fourier repre-
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sentation of the wake potential in terms of four one-dimensional functions for each

harmonic. We proved that the longitudinal wake is a harmonic function with respect

of the coordinates of the leading charge. For a structure that has a horizontal sym-

metry plane we also proved an important symmetry relation of the wake function.

A numerical method was proposed for solving Fourier harmonics of the fields.

The method does not generate dispersion in the longitudinal direction and it con-

serves the energy and charge in the calculations. The computer resources required

to solve the system with several tens of the lowest harmonics are moderate and

comparable to those needed for 2D rotationally symmetric calculations.
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APPENDIX A: UNIVERSAL CONTINUOUS FUNCTIONS FOR STRUCTURES

OF CONSTANT WIDTH

The modal charge distribution, Eq. (24), in Maxwell’s equations, Eqs. (3), is in-

dependent of the structure width, 2w. The same holds for the boundary conditions.

Hence the modal solution depends on 2w only through the harmonic number kx,m.

This fact allows us to consider components of the electromagnetic fields as contin-

uous functions of the harmonic number, kx. The same is true for the longitudinal

wake potential. If the continuous function W‖(kx, y0, y, z), kx ∈ [0,∞), is known,

then we can find the solution for any arbitrary width 2w1 as

W‖(x0, x, y0, y, z) =
1
w1

∞∑
m=1

W‖(kx,m, y0, y, z) sin(kx,mx0) sin(kx,mx), kx,m =
π

2w1
m.

(A1)
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In order to find the function W‖(kx, y0, y, z), kx ∈ [0,∞), we can proceed in

the following way. We take width 2w large enough in order that the sampling of

W‖(kx, y0, y, z) with step kx,m+1 − kx,m = π/(2w) is dense enough for smooth inter-

polation of the function between the discrete values kx,m = πm/(2w). Due to the

existence of perfectly conducting walls at x = 0 and x = 2w, the discrete Fourier

harmonics do not contain a “zero” harmonic with kx,0 = 0. At the same time it

is reasonable to find the solution to this problem as well. Then, using interpola-

tion, we obtain a universal continuous function W‖(kx, y0, y, z), kx ∈ [0,∞), which is

independent from the halwidth w.
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