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1 Introduction

The discovery of the Higgs boson in July 2012 [1,2] brought particle physics to
a significant milestone. Since the 1970’s, we have had a “Standard Model” of the
strong, weak, and electromagnetic interactions that has seemed to describe all ele-
mentary particle phenomena observed at high-energy accelerators. Over forty years,
this model has passed a series of increasingly stringent tests. As the parameters of the
model became better defined and its predictions tested more incisively, points of dis-
agreement between theory and experiment have faded away. Now the last elementary
particle predicted by this model has been observed.

This discovery has cast the field of particle physics into a high state of tension.
It is possible that our understanding of nature’s particles and forces is complete, at
least for the foreseeable future. It is equally well possible that the trail we have been
following will veer off to reveal a completely new set of particles and interactions.
The arguments on both sides rely on properties of the Higgs boson.

Thus, to introduce a volume on future experiments and facilities in high-energy
physics, it is valuable to review what is known about the Higgs boson and what is
expected from it. To what extent does the Standard Model provide a beautiful and
simple theory that solves the problem for which the Higgs boson was invented? To
what extent does this solution still leave mysteries? To what extent is this theory
inadequate and in need of replacement? I will address these questions in this review.

There are many arguments outside the domain of the Higgs boson that the Stan-
dard Model is incomplete as a description of nature. The Standard Model does not
include gravity. The Standard Model does not explain the small size of the cosmo-
logical constant or provide an alternative explanation for the accelerating expansion
of the universe. The Standard Model does not have a place for the dark matter that
makes up 85% of the mass in the unverse. The Standard Model does not have a place
for neutrino masses (though these are readily accounted for by adding right-handed
neutrinos). The Standard Model does not explain the preponderance of matter over
antimatter in the universe. Solutions to these questions might imply new phenomena
that will be observed in the near future. The review [3] describes these possibilities.
On the other hand, all of these questions have possible explanations for which the
observation of new physics is far out of reach. In this review, I will put all of these
issues aside and speak only about the implications that we can draw from the physics
of the Higgs boson.

1



2 Why do we need the Higgs boson?

To discuss whether the the Standard Model (SM) gives an adequate theory of
the Higgs boson, we first need to review the reasons that the Higgs boson is needed.
Our long wait for the Higgs discovery encouraged the idea that this particle might
not actually exist. It was always possible that the Higgs boson could have been very
heavy and difficult to discover. However, we could not have lived without it. The
Higgs field, the field for which the boson is a quantum excitation, fills two essential
purposes in the SM. It is necessary to provide the masses of quarks and leptons, and
it is necessary to provide the masses of the W and Z bosons. In this section, I will
review the evidence for these statements.

2.1 Electroweak quantum numbers

It is natural to think that there is no difficulty in generating masses for elementary
particles. Particles should just have mass. However, in relativistic quantum field
theory, this point of view is naive and incorrect.

To build a wave equation for a relativistic field, we start from fields that transform
under the Poincaré group according to basic irreducible representations. The simplest
such representations, and the ones that serve as the building-blocks for all others, are
representations for massless fields. The wave equations for these fields describe two
particle states—a massless particle with helicity J (an integer or half-integer) and a
massless antiparticle with helicity −J [4].

A massles particle always travels at the speed of light. We can never stop it and
manipulate it at rest. This is the raeson that the restriction to a single helicity state is
consistent. If a particle has mass, we can bring it to rest by a Lorentz transformation
and then turn it in an arbitrary direction. This will rotate the state of helicity J into
any linear combation of the (2J + 1) states of a spin J representatioin of the rotation
group. If the particle is not its own antiparticle, another (2J + 1) antiparticle states
are also required. Thus, special relativity places an essential barrier to promoting
a zero-mass particle to nonzero mass. This promotion can only be done if we can
identify the (2J + 1) elementary Poincaré representations that will form the massive
particle and if we can mix these states together quantum-mechanically. In quantum
mechanics, states can mix only if they have the same values of conserved quantum
numbers. We must watch out for this restriction whenever we try to give mass to a
massless particle.

We can understand the required mixing in a very explicit way for particles of
spin 1

2
. A massive spin-1

2
particle is described by the Dirac equation. The Dirac field

is a four-component field. In the basis in which the chirality operator γ5 is diagonal,
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the spinors decompose as

Ψ =
(
ψL
ψR

)
with γµ =

(
0 σµ

σµ 0

)
, γ5 =

(−1 0
0 1

)
(1)

In this notation, the familar Lagrangian for the Dirac equation

L = Ψ(i 6∂ −m)Ψ (2)

takes the form

L = ψ†Liσ
µ∂µψL + ψ†Riσ

µ∂µψR −m(ψ†LψR + ψ†RψL) . (3)

For m = 0, this formula makes explicit that the massless Lagrangian contains the left-
handed (J = −1

2
) and right-handed (J = +1

2
) fermions completely separately. This

remains true when we couple to gauge fields, since this coupling is done by replacing
the derivative by the covariant derivative

∂µ → Dµ = (∂µ − i
∑
a

gaA
a
µ) , (4)

which acts separately on ψL and ψR. The fields ψL and ψR are said to have definite
chirality. The mass term in (3) mixes the these definite chirality states to form the
four states of a massive spin-1

2
particle and its antiparticle. In order for this mixing

to be permitted, these two fields must have the same quantum numbers [5].

However, we know that the left- and right-handed quarks and leptons do not have
the same quantum numbers. The essence of parity violation in the weak interactions
is that the W bosons couple to the left-handed chirality states and not to the right-
handed chirality states. In the SM, the W and Z bosons are gauge fields. Then the
couplings of each quark or lepton reflects its quantum numbers under the SU(2) ×
U(1). The left-handed fields have I = 1

2
under the weak interaction SU(2) gauge

group; the right-handed fields have I = 0, and the two fields also differ in their values
of the hypercharge Y .

We can escape this problem if the W and Z bosons are not gauge fields. However,
the evidence for gauge invariance in the weak interactions is overwhelming. Gauge
invariance implies the equality of the SU(2)×U(1) couplings g and g′ in the couplings
of each species of quarks and leptons. Thus, the quality of the overall precision
electroweak fit [6,7] is a consequence of gauge invariance. The Yang-Mills structure of
the SU(2) vector boson interactions specifies the structure of the WWγ and WWZ
couplings, which are measured to be in agreement with this predicton to percent
accuracy [8].

The only other way to escape this problem is to assume that SU(2) × U(1) is
a symmetry of the W and Z boson equations of motion that is not respected by
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the ground state of the electroweak interactions. That is, the symmetry must be
spontaneously broken. If this is true, there must be an agent that is responsible
for the symmetry breaking. This would be an elementary or composite field that
transforms under the SU(2)×U(1) gauge group and nevertheless acquires a nonzero
value throughout space. To preserve translation and Lorentz invariance, the field
must be a scalar with a constant value, independent of position. Quarks, leptons,
and vector bosons could make symmetry-violating transitions through their coupling
to this nonzero field value.

For electroweak spontaneous symmetry breaking (henceforth, EWSB), we call this
field the Higgs field. Any such field must have quantum excitations, corresponding to
perturbations that change the vacuum value of the field as a function of space and
time. The lowest mass excitation is called the Higgs boson.

2.2 The Higgs mechanism

Generating mass for spin-1 particles such as the W and Z bosons brings in ad-
ditional difficulties. Even before we add the mass term, the reduction of a 4-vector
field Aµ(x) to the Poincaré representation with helicity 1 and −1 states is quite del-
icate. The simplest idea is to quantize the vector field as one would a scalar field.
This leads to a set of creation and annihilation operators with the Lorentz-invariant
commutation relations

[aµp , a
ν†
k ] = (−gµν)(2π)3δ(~p− ~k) . (5)

The metric has (−g00) = −1, and so the operator a0†k creates states with negative
norm, implying negative probability. The interactions of the theory must be set up
so that these negative probability particles can never be emitted. Quantum Electro-
dynamics, and, more generally, Yang-Mills gauge theories, achieve this. The proof
makes strong use of local gauge invariance [9–11].

To give mass to a spin-1 particle, we must add to the helicity ±1 states a helicity 0
state that will complete the needed complement of 3 = (2J +1) spin states. We must
do this without disrupting the cancellation of negative probability states described in
the previous paragraph.

The achievement of Higgs, Brout and Englert, and Guralnik, Hagen, and Kib-
ble [12–14] was to show that spontaneous breaking of the gauge symmetry achieves
this in a Lorentz-invariant way. Spontaneous breaking of a continuous symmetry
automatically generates a massless particle, the Goldstone boson [15]. This boson
is created and destroyed by the current associated with the symmetry. In a gauge
theory, this same current defines the coupling of the vector boson. So, the vector bo-
son and the Goldstone boson naturally mix. The fact that this mixing preserves the
gauge invariance of the equations of motion and the natural cancellation of negative
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Figure 1: (a) Vector boson self-energy diagram; (b) contribution to this diagram from a
Goldstone boson intermediate state.

probability states was already known from studies of superconductivity [16,17]. It is
a nice bonus that the mixing is also fully relativistic.

It is not so difficult to describe the process of mass generation more explicitly. At
zeroth order, a gauge field obeys Maxwell’s equations and thus must be massless. A
mass can potentially be generated by the self-energy diagram shown in Fig. 1(a). For
a scalar field, the analogous diagram would directly shift the mass to a nonzero value.
For a gauge field, however, the currents must be conserved. The diagram must, then,
have the form

−ig2
(
gµν − qµqν

q2

)
Π(q) . (6)

The vector boson obtains a mass if

Π(q2) 6= 0 at q2 = 0 . (7)

However, if all states created by the current are massive, this diagram cannot have a
singularity at q2 = 0. We must find Π(q2) ∼ q2, and so the vector boson mass cannot
be moved away from zero. This is the standard argument in QED that quantum
corrections do not generate a mass for the photon.

Spontaneous symmetry breaking alters this conclusion. In a system with sponta-
neous breaking of a continuous symmetry, there is a Goldstone boson. The Goldstone
boson is created and destroyed by the current that couples to the gauge field. This
is the same current whose 2-point function gives the vacuum polarization diagram in
(6). The matrix element for the current to destroy the Goldstone boson is written

〈π(q)| jµ(x) |0〉 = iFqµ ; (8)

Lorentz invariance fixes the form of the matrix element, requiring a parameter F with
the dimensions of mass. From the form of (8), we find a contribution to the vector
boson self-energy shown in Fig. 1(b),

(−igFqµ)
i

q2
(igFqν) . (9)

This is compatible with (6), the complete self-energy, only if that expression reduces,
as q2 → 0, to

−i(gF )2
(
gµν − qµqν

q2

)
. (10)
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We see that the presence of the Goldstone boson requires a mass for the vector boson

m2 = (gF )2 . (11)

This is the Higgs mechanism.

2.3 Goldstone boson equivalence

There are many formal questions that one might ask about the simple argument
given in the previous section. Of these, there is one that is particularly important
to discuss: What is the eventual spectrum of particles left by the mechanism? Does
it successfully remove all massless states, and all negative-metric states? The short
answer to this question is that the combination of the vector field and the Goldstone
boson field leads to precisely three physical states, the three polarization states of a
massive vector boson. Depending on the gauge chosen to represent the gauge field,
there may be additional unphysical states, of zero or nonzero mass. However, these
states are merely an artifact of the method of calculation. They make no contribution
to the scattering amplitudes of the physical vector boson states and associated matter
particles. For a careful proof of this statement, see [9–11].

However, the Goldstone boson does not quite disappear. There are definite phe-
nomenological consequences of its role in the vector boson mass generation. Recall
that the role of the Goldstone boson is to provide a helicity 0 state that combines with
the helicity ±1 gauge boson states to provide the 3 states required for a massive spin
1 particle. If the final massive boson is near rest, its states will be a mixture of gauge
boson and Goldstone boson states that might be difficult to untangle. However, for
a highly boosted massive vector boson, there shoud be a clear distinction between
the helicity ±1 states, which should have properties similar to massless transversely
polarized gauge bosons, and the helicity 0 state, which should have properties similar
to those of the original Goldstone boson.

This intuition is made precise by the Goldstone Boson Equivalence Theorem
(GBET) of Cornwall, Levin, Tiktopoulos, and Vayonakis [18,19]. The theorem states
that the amplitude for producing the helicity 0 state of a massive gauge boson, consid-
ered in the limit of large momentum, becomes equal to the amplitude for producing
the original Goldstone boson. For example, for the W boson of the SM,

M(X → Y +W+
0 ) ≈M(X → Y + π+) +O(

m2
W

E2
W

) . (12)

where π+ is the Goldstone boson associated with the spontaneous breaking of the
SU(2) gauge symmetry. Chanowitz and Galliard have given a careful statement and
proof of this theorem, valid for any number of vector bosons [20].
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A surprising consequence of the GBET is seen in top quark decay. The top quark
decays by the simple process t→ W+b, to an on-shell W boson. Naively, one might
expect that the rate of this decay would be an expression of the form Γt ∼ g2mt,
where g is the weak interaction coupling constant. Really, though, the formula for
the decay rate is

Γt =
g2mt

32π
(
m2
t

2m2
W

+ 1) (1− m2
W

m2
t

)2 , (13)

ignoring the bottom quark mass and higher-order quantum corrections. One term in
the formula for the rate is enhanced by a factor m2

t/2m
2
W .

The formula (13) can be derived without any reference to gauge invariance. One
simply uses the standard form of the V–A weak interaction coupling

∆L =
g√
2
Wµ bLγ

µtL (14)

and sums over the three polarization states of the massive W boson in the final state.
The enhancement can be seen to be associated with the decay to a helicity 0 W
boson. However, the result only makes sense when viewed from the perspective of the
GBET. According to the GBET, the top quark couples to the helicity 0 component
of the W boson with the strength of the top quark coupling to the Higgs field, which
is larger than the coupling of the t to the weak interactions. More explicitly, if v is
the vacuum value of the HIggs field, these couplings have the ratio

y2t
g2

=
y2t v

2/2

g2v2/2
=

m2
t

2m2
W

(15)

This is exactly the enhancement factor seen in (13).

A corollary to this argument is that the W bosons in top decays should be polar-
ized, with

Γ(t→ bW0)

Γ(t→ bWT )
=

m2
t

2m2
W

≈ 2.3 . (16)

This prediction is confirmed by measurements at the Tevatron and the LHC [21–
23]. Apparently, the W boson secretly knows that its mass comes from the Higgs
mechanism even in processes in which the Higgs boson is not involved directly.

The GBET controls many other features of the high-energy dynamics of W and Z
bosons. One of the most striking predictions occurs in the cross section for e+e− →
W+W− at high energy. At leading order, there are three Feynman diagrams that
contribute to this process, shown in Fig 2(a). Figure 2(b) shows the measurement
of this cross section by the LEP experiments, together with the prediction of the
SM [8]. The figure also shows the effect of omitting the Z and photon diagrams.
The individual diagrams have a different energy-dependence than the final answer,
growing more strongly with energy by a factor of s/m2

W . Remarkably, the WWγ and
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Figure 2: (a) Leading-order Feynman diagrams contributing to the cross section for e+e− →
W+W−; (b) measured values of this cross section from the LEP experiments, from [8].

WWZ vertices are correctly structured to give an almost complete cancellation of the
three diagrams at high energy [24]. This cancellation is difficult to understand from
the point of view of the diagrams in Fig. 2(a). It makes more sense from the point
of view of Goldstone boson equivalence. The cross section for the production of two
longitudinally polarized W bosons, e+e− → W+

0 W
−
0 can equal the cross section for

the production of a pair of Goldstone bosons, e+e− → π+π−, only if the terms with
an extra power of s/m2

W cancel in the full calculation.

Thus, there are many aspects of elementary particle behavior that do not involve
the Higgs boson directly but nevertheless require the Higgs mechanism for their ex-
planation.

3 The Standard Model of the Higgs field

We have now seen that the Higgs mechanism and EWSB are essential parts of the
gauge theory of weak interactions. How can this symmetry breaking be implemented?
The simplest choice is to have one SU(2) doublet of scalar fields, with a potential
that causes this field to acquire a vacuum value. The full structure of the SM is
given by this one doublet scalar field, together with the SU(3)×SU(2)×U(1) gauge
bosons and the quarks and leptons. In this section, I will review some properties of
this model as it relates to the Higgs field.
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Figure 3: Potential energy of the Higgs field in the Standard Model.

3.1 Formulation of the model

The symmetry-breaking sector of the SM is built from a scalar field ϕa(x), a = 1, 2,
that transforms under SU(2) × U(1) with I = 1

2
and Y = 1

2
. The renormalizable

Lagrangian for this field takes the form

L = |Dµϕ|2 − V (ϕ) (17)

with
V (ϕ) = µ2|ϕ|2 + λ|ϕ|4 . (18)

The choice
µ2 < 0 (19)

leads to a potential of the form shown in Fig. 3. The minimum occurs at

v =
√
−µ2/λ . (20)

From the relation between v and the W boson mass

mW = gv/2 (21)

and our excellent knowledge of the value of the SU(2) coupling g from precision
electroweak measurements, we have

v = 246 GeV . (22)

The related parameters v and µ2 are the only dimensionful parameters in the SM.
So, within the SM, (22) sets the scale for all quark, lepton, and vector boson masses.

3.2 Natural flavor conservation

In the SM, the masses of vector bosons are generated by the Higgs mechanism, as
I have already described. The masses of quarks and leptons are generated in a more
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ad hoc way. The SM simply postulates a coupling of the fermion and Higgs multiplets
that respects the SU(2)×U(1) gauge symmetry. Then, when the Higgs field acquires
its vacuum value, the fermions receive mass.

A remarkable feature of the SM is that no special structure is needed to produce
mass terms of a very simple form. The most general Higgs-fermion couplingx, or
Yukawa couplingx, consistent with renormalizability and SU(2)× U(1) are

∆L = Y ij
e L

i · ϕejR + Y ij
d Q

i · djR + Y ij
u Q

i ∗ ϕ∗ujR + h.c. (23)

where i, j = 1, 2, 3 run over the quark and lepton generations, Li, Qi are the left-
handed lepton and quark fields, and the contractions of these SU(2) doublet fields
with the Higgs field are

L · ϕ = Laϕa , Q · ϕ = Qaϕa , Q ∗ ϕ∗ = εabQaϕ
∗
b . (24)

The matrices Y ij
f may be arbitrary 3 × 3 complex matrices. Thus, apparently, they

permit arbitrarily strong flavor and CP mixing.

This mixing, however, can be removed by simple field redefinitions. Any 3 × 3
complex matrix can be represented as

Yf = V †fL · yf · VfR (25)

where yf is real, positive, and diagonal and VfL and VfR are independent unitary
matrices. Using this decomposition of the Yukawa matrices, define

e′jR = V jk
eRe

k
R , d′jR = V jk

dRd
k
R , u′jR = V jk

uRu
k
R . (26)

and
L′j = V jk

eLL
k
R , d′jL = V jk

dLd
k
L , u′jL = V jk

uLu
k
L . (27)

This change of variables removes factors of the Vf L,R from the Yukawa terms, but it
potentially reintroduces these factors into the kinetic terms and gauge coupling terms
of the fermion fields. However, it may be shown that all factors of the Vf L,R that
might appear in these terms cancel out, except for a modification of the W boson
coupling to quarks,

g√
2
W+
µ uLγ

µdL →
g√
2
W+
µ uLγ

µ VCKM dL , (28)

where VCKM = VuLV
†
dL. The Yukawa couplings of the Higgs field become completely

diagonal,

∆L =
yeih√

2
eiLe

i
R +

ydih√
2
d
i

Ld
i
R +

yuih√
2
uiLu

i
R + h.c. (29)

In the full Yukawa Lagrangian, the matrices Vf L,R appear only in the combination
VCKM .
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Finally, the flavor and CP mixings in the original Yukawa term (23) remain only
in three physical couplings. First, they appear in VCKM . This unitary matrix, the
Cabibbo-Kobayashi-Maskawa matrix, is required as the source for all observed flavor
mixing and CP violation in the weak interactions [25]. Second, the matrix VeL appears
in the neutrino mass matrix, another place where there is known flavor mixing and the
possibility of CP violation [26]. These two residual appearances should be considered
sucesses of the model, giving flavor and CP violation precisely in the ways that it is
observed in experiments. Finally, the sum of the overall phases of the Vf L,R matrices
of quarks shifts the QCD θ parameter. If this parameter is nonzero, it leads to P and T
violation in the strong interactions, in particular, to a nonzero neutron electric dipole
moment [27]. This is a problem for the SM whose solution requires the introduction
of a new particle, the axion, or additional symmetries [28].

It is fair to consider that the successes of this analysis outweighs its problems. The
outcome is referred to as natural flavor and CP conservation in the Higgs interactions.
It is important to note that this property is typically lost in models of the Higgs sector
that generalize the one in the SM.

3.3 The end of the universe

The Higgs sector of the SM has one more, quite unexpected, property. If the SM
is exact up to energies much higher than those currently probed by accelerators, we
can extrapolate its behavior using the renormalization group. The most important
effect of this is that the Higgs field self-coupling, which determines the form of the
Higgs potential, evolves with energy scale.

The dominant terms in the renormalization group equation for the Higgs self-
coupling are

dλ

d logQ
=

3

2π2

[
λ2 − y4t

32
+ · · ·

]
(30)

where λ is the Higgs field self-coupling and yt is the top quark Yukawa coupling.
The correction due to the top quark turns out to be larger and fixes the sign of the
right-hand side. Then λ becomes smaller at higher energy scales, eventually becoming
negative. With the current value of the top quark mass, mt = 173 GeV [29], this
analysis predicts that λ will become negative at about 1011 GeV. This means that,
if the SM is exact at energies beyond 1011 GeV, the conventional vacuum of this
model is unstable. With a very long half-life, estimated to be 10600 yr, the vacuum
expectation value of the Higgs field should tunnel to a very large value, near the
Planck scale [30].

It is not clear that this instability is a problem with the Standard Model, or
a feature of it. It has been argued that our universe must be unstable, to avoid
the prediction that most intelligent beings in the universe are “Boltzmann brains”,
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isolated conscious entities produced spontaneously by quantum processes [31]. It is
also possible, within the current uncertainties, that the top quark has the lighter
value, 171.1 GeV, that brings the Higgs potential just to zero at the Planck scale.
This conjecture is the basis for the idea of asymptotically vanishing Higgs interaction
and the Higgs field as the inflaton [32].

4 What is wrong with the Standard Model?

So, couldn’t the Standard Model with one elementary Higgs field describe every-
thing? I have already pointed out the existence of phenomena such as dark matter
and dark energy whose explanation certainly lies outside the Standard Model. The
model must also be extended with effective operators to generate neutrino masses.
But one could pose the question more narrowly: Couldn’t the Standard Model pro-
vide a complete explanation for the phenomena of elementary particle physics up to
the currently conceived limits of accelerator energies?

As far as accelerator-based experiments are concerned—aside from some much-
discussed discrepancies such as the value of the muon (g − 2) [33]—the SM does an
excellent job of explaining the wide variety of elementary particle phenomena. The
main objection to the idea that the SM is a complete explanation comes from theory.

4.1 “Naturalness”

The SM is a compact description of elementary forces, but, still, it contains a large
number of parameters. These include the SU(3) × SU(2) × U(1) gauge couplings—
gs, g, and g′—the quark and lepton masses, the four CKM mixing angles, and two
parameters from the Higgs field potential, or, equivalently, the Higgs mass and vacuum
expectation value. This is already 18 free parameters. A complete specification of the
model starting from the most general renormalizable Lagrangian with the SM gauge
symmetry would also require specification of the three θ angles and the full 3 complex
Yukawa matrices, a total of 62 parameters.

It is the faith of physicists that, eventually, we will be able to predict these pa-
rameters from an underlying theory. However, this simply cannot be done within the
SM. In the Standard Model, the higher-order corrections to all of these parameters
are infinite and require renormalization. That is, we can only make sense of rhe model
by fixing a priori the parameters that we would ideally like to compute.

This problem is particularly galling for the parameters of the potential energy of
the Higgs field. The renormalizability of the theory requires that the Higgs potential
takes the simple form

V (ϕ) = µ2|ϕ|2 + λ|ϕ|4 , (31)
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t
W,Zh+ +

Figure 4: One-loop corrections to the Higgs field mass term in the Standard Model.

up to radiative corrections. For spontaneous symmetry breaking, the renormalized
value of the parameter µ2 should be negative. But not even the qualitative prediction
that the symmetry is broken is a prediction of the model. The µ2 parameter could
have either sign; there is no logic that prefers one sign to the other. Though the
potential (31) is relatively simple, we have to take its parameter values as given. We
cannot ask where these values come from.

Thus, the hypothesis that the SM is the complete description of elementary parti-
cle interactions is a statement about the ultimate limits of physics explanation. This
hypothesis implies that we cannot predict the Higgs boson mass and the quark and
lepton masses, or even the qualitative form of the Higgs potential, from deeper prin-
ciples. Any such predictions require a model with more structure than is present in
the in the SM.

The form of the first corrections to the µ2 parameter give a hint as to where that
additional structure might lie. At the level of one-loop corrections, the formula for
the renormalized µ2 parameter reads

µ2 = µ2
bare −

3y2t
8π2

Λ2 +
λ

8π
Λ2 +

9αw + 3α′

4π
Λ2 + · · · , (32)

where the corrections written out come from the loop diagrams shown in Fig. 4, with
top quarks, Higgs bosons, and W and Z bosons, respectively. All of these diagrams
depend quadratically on the ultraviolet cutoff, as shown. The diagrams have different
signs, so even the final sign of µ2—which determines whether the symmetry is broken
or not—depends on how these diagrams are regularized.

Setting Λ equal to the Planck scale, this equation implies an absurd cancellations
of the first 30 decimal places of the terms on the right-hand side of (32) This difficulty
is called the “gauge hierarchy problem” and is often presented in itself as a motivation
for new physics [34]. I have stressed already that, for me, this problem is part of a
larger problem—that the mass and couplings of the Higgs boson should be predicted,
and that the SM is inadequate to that task.

We can, however, use (32) as a rough way to estimate the masses of new particles
required in a theory that predicts the value of µ. The first thing these particles must
do is to cancel the quadratic divergences in the diagrams of Fig. 4. Let us assume
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naively that the calculation of µ2 will not entail a cancellation in more than the first
decimal place. Then we expect new particles of mass less than 2 TeV to cancel the
top quark loop correction, new particles of mass less than 3 TeV to cancel the Higgs
loop correction, and new particles of mass less than 5 TeV to cancel the W and Z
loop corrections.

This is not in itself a proof that new particles must be present in the energy
regime of the LHC and other planned accelerators. But, it indicates a tremendous
opportunity for discovery.

4.2 Ordering in condensed matter

Many particle physicists do not consider the spontaneous symmetry breaking of
the weak interaction as a problem in itself. They feel that this phenomenon is ade-
quately explained by the Higgs scalar field, perhaps up to the question raised above
of the sign of µ2.

In other areas of physics, there are many examples of spontaneous symmetry
breaking. I feel that it is important for particle physicists to make a close study of
these systems. They teach us that the presence of spontaneous symmetry breaking
is not a random choice taken by a physical system but, rather, is always the result
of a comprehensible, and often fascinating, mechanism. In this section, I will briefly
discuss some examples.

The best understood example of spontaneous symmetry breaking is that of super-
conductivity. The fact that most metals are superconducting in their ground states
was one of the most puzzling mysteries of condensed matter physics in the first half
of the 20th century. The problem was finally solved by Bardeen, Cooper, and Schri-
effer [35], who noticed that the sharpness of the Fermi surface at low temperature
amplifies the effect of any small attractive interaction of electrons, such as that due
to exchange of phonons. This leads to a ground state containing a thermodynamic
number of electron pairs in an ordered condensate. This model leads to a successful
quantitative description of superconductivity [36].

The idea of condensation of fermion pairs stimulated by an attractive interaction
has been applied to other, quite different, physical systems. It describes the array of
superfluid ground states of He3 [37]. Pairing of protons and neutrons is seen in nuclear
spectra (although rigorously, because nuclei have finite size, there is not true spon-
taneous symmetry breaking) [38]. Nambu and Jona-Lasinio used a model with pair
condensation to explain the spontaneous breaking of chiral symmetry in the strong
interactions [39]. Unfortunately, in this case, there is no Fermi surface at a nonzero
momentum, so pairing requires that the attractive interaction between nucleons or
quarks be above some critical strength. (If the analogy with superconductivity were
more exact, we would understand the generation of the constituent quark masses
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better, and Nambu would have received his Nobel Prize decades earlier.) Finally, the
theory of the BCS ground state and its effect on the electromagnetic field directly
stimulated the original papers on the Higgs mechanism [12–14,16,17].

Magnets provide other examples of condensed matter sysems with spontaneous
symmetry breaking. Magnetism is confined to a limited region of the periodic table
with almost but not completely filled d orbitals. This produces an ordering of electron
spins through a principle called Hund’s rule: Because the d electrons repel one another
electrostatically, they tend to favor antisymmetric orbital configurations and therefore
symmetric spin configurations [40]. When a thermodynamic number of electrons are
involved, the spins of these electrons take on a common classical direction, and the
ground state violates rotational symmetry.

Other examples of condensed matter systems with spontaneous symmetry break-
ing depend in even more detail on the atomic or molecular forces involved [41]. As-
semblages of large long or flat molecules lead to the ordering of liquid crystals [42].
Crystal lattices with soft directions of distortion allow displacive transitions that lower
the crystal symmetry [43]. It is wonderful how many different types of ordering are
seen in condensed matter physics and how, in each case, the nature of the ordering
has a direct and intuitive physical explanation.

Shouldn’t this be true also for the spontaneous breaking of the weak interaction
symmetry? If we fail to search for this explanation, it will be an opportunity lost.

5 Alternatives to the Minimal Standard Model

What kind of elementary particle theory could provide the explanation for EWSB?
This question has received a great deal of thought since Steven Weinberg first dis-
cussed it 40 years ago [44]. The answers that have been proposed would fill a book.
Here I will briefly introduce the main types of theories now under consideration.

5.1 Orientation

Before I discuss specific models of EWSB, I should emphasize that these models,
though based on very different physical mechanisms, share many general features.
Here I would like to highlight three of these.

First, theories of EWSB are not simple or minimal in structure. The reason for
this is that one of the problems a theory of electroweak symmetry breaking must
solve is to render the corrections to the Higgs mass term shown in Fig. 4 finite and
calculable. To do this, some symmetry or other principle must prohibit the Higgs
mass term µ2 from obtaining divergent corrections from quantum fluctuations of very
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high momentum. This is not straightforward. The Higgs mass term

µ2|ϕ|2 (33)

is a scalar under the Lorentz group, SU(2) × U(1). It respects all other symmetries
encountered in a first course on quantum field theory. To forbid this term, we need to
invoke more advanced symmetry principles, for which examples will be given below.
Theories with these structures are not mere extensions of the SM but have their own
profound implications.

Second, models of EWSB contain new particles that contribute to the radiative
corrections to the Higgs mass parameter µ2. The higher symmetry of the model might
make the Higgs mass parameter finite in principle, but this mass term must also be
finite in practice when its 1-loop radiative corrections are calculated. This requires
new particles, with masses suggested to be of TeV size, to cancel the divergences due
to the heavy SM particles t, h, W , and Z.

Finally, many theories of EWSB involve the top quark in an essential way. Since
the top quark is the heaviest particle of the SM, and therefore the one most strongly
coupled to the Higgs field, the top quark contribution in Fig. 4 is the term with
the largest coefficient. And, this coefficient is negative. Even after this term is made
finite by adding extra particles in the loop, it is quite plausible that the result remains
negative. If so, it can be the strongest effect driving EWSB. In the specific models
that I discuss below, we will see specific physics explanations for why the contribution
of the top quark and its partner particles has the correct sign to drive EWSB.

5.2 Supersymmetry

Although the mass term of a scalar field is not obviously restricted by symmetry,
the mass term of a spinor typically violates some global symmetry such as a chiral
symmetry. A relation between the Higgs scalar field and a spinor field then might
have the power to prohibit corrections to the Higgs mass term. To implement this,
we would postulate a symmetry

δϕ = ε ψ , (34)

where ψ is a spin-1
2

field and ε is a spinor parameter. A symmetry that connects fields
with spin differing by 1

2
unit is called a supersymmetry.

It turns out that the combination of supersymmetry and Lorentz invariance has
very strong implications [45]. In theories with both symmetries, there must be a
conserved spin-1

2
charge Q whose square is the Hamiltonian. More precisely, the

charge Q satisfies
{Qα, Qβ} = 2γµαβPµ , (35)

where Pµ is the total energy-momentum of the theory. Then every particle in the
theory must participate in the supersymmetry. In a supersymmetric extension of
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the SM, not only do the Higgs bosons have spin-1
2

partners, but also the quarks and
leptons have spin-0 partners with the same SU(2)×U(1) quantum numbers, and the
gauge bosons have spin-1

2
partners.

There is a large literature on the spectrum of particles predicted by supersymmetry
and the expectations for the properties of supersymmetric particles that might be
found at colliders [46–49]. In the remainder of this section, I will focus tightly on the
connection between supersymmetry and EWSB.

Supersymmetry has a number of specific implications for the Higgs field. First,
it motivates the presence of scalar fields in the theory. In the SM, the Higgs field is
the one and only scalar field. In the supersymmetric extension of the SM, there is
a scalar field for each left- or right-handed fermion. In addition, the constraints of
supersymmetry imply that it is not possible for a single Higgs field to give mass to
both u and d quarks. At the minimum, two Higgs fields, Hu and Hd, are needed. Hd

can also give mass to the charged leptons.

The large number of scalar fields brings a new problem. The vacuum expecta-
tion value of the Higgs field breaks the weak interaction symmetry SU(2)× U(1) to
electromagnetism, giving the pattern of symmetry breaking that we see in nature.
But at first sight, it seems equally possible that one of the other scalar fields in the
theory will obtain a vacuum expectation value. This would always be a disaster. For
example, if the scalar partner of the right-handed top quark were to obtain a vacuum
expectation value, that would leave SU(2) invariant while breaking U(1) and also the
SU(3) color symmetry of QCD. An explanation for electroweak symmetry breaking
in supersymmetry must also include an explanation of why the other scalar fields do
not acquire vacuum values.

In a theory with exact supersymmetry, the mass parameters for the scalar fields are
highly restricted. Since the quarks and leptons cannot have mass terms in the absence
of electroweak symmetry breaking, then also the associated scalar fields cannot have
mass terms. The only allowed mass term is one involving the two Higgs fields Hu and
Hd,

µ2(|Hu|2 + |Hd|2) (36)

This is a positive (mass)2. It can be shown that the radiative corrections to this term
vanish to all orders in perturubation theory. Essentially, loop diagrams involving
quarks, leptons, and gauge bosons are cancelled exactly by loop diagrams involving
their spin 0 and spin-1

2
partners.

A realistic model of supersymmetry must be more complex. Exact supersymmetry
would imply a charged scalar particle with the same mass as the electron, but no such
particle exists. The most straightforward way to resolve this problem is to assume
that supersymmetry is spontaneously broken. It can be shown that spontaneous
supersymmetry breaking among any particles in nature—even unknown particles with
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Figure 5: A diagram by which the supersymmetry-breaking mass terms of t̃L, t̃R renormalize
the mass term of the Higgs field Hu.

very large masses—will eventually feed down to the particles of the SM and produce
masses for the partners of the quarks, leptons, and gauge bosons. We can then make
a model of EWSB along the following lines: Spontaneous breaking of supersymmetry
gives mass to some new particles at very short distances, and this in turn gives mass to
the supersymmetric partners of SM particles. Radiative corrections involving those
mass terms can then induce a potential energy function that can favor a nonzero
vacuum value for the Higgs field.

Specifically, this can work as follows: Three scalar fields are coupled by the top
quark Yukawa coupling—the scalar partners of the left- and right-handed top quarks,
t̃L and t̃R, and the Higgs field Hu. All three fields receive mass from supersymmetry
breaking. Arrange that these (mass)2 terms are all positive, approximatey equal,
and of TeV size. Then compute the 1-loop corrections to these mass terms, which
come from diagrams of the form of Fig. 5. This correction is negative by explicit
calculation [50–52]. All three (mass)2 terms receive these negative contributions, but
the correction to the Higgs mass is largest, because of the factor of 3 from QCD color
flowing around the loop. (The t̃L and t̃R mass terms also receive positive corrections
from diagrams involving the supersymmetric partner of the gluon.) This calculation
creates a potential energy function with a negative (mass)2 for the Hu. It explains
why this scalar field—and no other—obtains a vacuum expectation value.

Ultimately, this model of electroweak symmetry breaking is testable. The masses
of the top quark partners and the Higgs boson spin-1

2
partners should not be too far

above the 1 TeV mass scale. The Higgs partners, which are very difficult to discover
at the LHC, could still be as light as 100 GeV [53,54]. If we could discover these
particles and measure their masses and decay products, it will be possible to extract
all of the parameters that enter the calculation of the Higgs potential [55]. If all of
the pieces fit together, we could then claim to understand EWSB at the same level
at which we understand the appearance of superconductivity in metals.
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5.3 Higgs as a gauge boson

Supersymmetry produces a calculable theory of the Higgs mass term in the fol-
lowing way: At the level at which the symmetry is exact, this symmetry strongly
constrains the Higgs potential. If the symmetry is then softly broken, new terms ap-
pear as calculable radiative corrections. These latter terms give the negative (mass)2

that drives electroweak symmetry breaking. Other types of models can implement
this same philosophy in different ways.

Another familiar principle that can keep a particle mass at zero is local gauge
invariance. We can use this in the Higgs story through the idea of gauge-Higgs
unification [56,57]. In this approach, we assume that the universe is 5-dimensional,
with the 5th dimension compact and small. A gauge field AM in 5 dimensions has 5
components, M = 0, 1, 2, 3, 5. In the compactified geometry, the first four components
make up a 4-dimensional gauge field. The last component A5 transforms as a scalar
field in 4 dimensions. If the full gauge group of the 5-dimensional theory is larger than
SU(2)×U(1) and contains fields that transforms like the doublet of SU(2)×U(1), we
can interpret the A5 component of those extra gauge fields as a Higgs boson multiplet.

A simple example is given by assuming the gauge group of the 5-dimensional
theory to be SU(3). Let tA be the 3 × 3 matrices that generate SU(3). The gauge
fields of SU(3) in 5 dimensions take the form

AAM t
A =

(
AaMσ

a/2 + 1
2
BM ΦM

Φ†M −BM

)
(37)

where σa are the usual 2× 2 Pauli sigma matrices and ΦM is 2× 1.

The SU(3) symmetry can be broken by boundary conditions in the 5th dimen-
sion. After appropriate symmetry breaking, the fields Aaµ will be the gauge fields of
the weak interaction SU(2), and Bµ will combine with another U(1) to provide the
weak interaction U(1) gauge field. The components ΦM have the quantum numbers
(I, Y ) = (1

2
, 1
2
), and so the doublet Φ5 has just the quantum numbers of the Higgs

scalar doublet. Similar constructions can be made using larger gauge groups for the
5-dimensional theory. An attractive choice is to take the 5-dimensional gauge sym-
metry to be SO(5). This group has a subgroup SO(4) = SU(2) × SU(2), such that
one can interpret one SU(2) as the weak interaction isospin gauge group. The SO(5)
bosons not contained in SO(4) have the quantum numbers of Higgs fields [58]. A
vecuum expectation value of one of these SO(5) bosons breaks SU(2) × SU(2) to a
diagonal SU(2) group. That unbroken symmetry can be nterpreted as the custodial
symmetry that protects the relation m2

W = m2
Z cos2 θw from receiving large radiative

corrections [59].

Electroweak symmetry breaking will take place if there is an energetic reason why
the 5th component of the 5-dimensional gauge field should take on a nonzero value.
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In a 5-dimensional theory with a periodic 5th dimension, there is in fact a good reason
for this, the Hosotani-Toms mechanism [60,61]. If AM is a 5-dimensional gauge field,
a particle travelling around the 5th dimension acquires a phase

W = exp[ig
∮
dx5A5Q] (38)

where Q is the charge of the field under the gauge symmetry associated with AM . For
bosons, the energy is typically minimized when W = 1 and maximized when W = −1.
However, for fermions, it is the reverse: the energy is minimized for W = −1. A
somewhat formal way to understand this is to recall that the functional integral rep-
resentation of the thermodynamic partition function for fermions uses fermion fields
that are antiperiodic around a compact Euclidean direction. Though this mechanism,
a (t, b) quark doublet in the 5-dimensioaal space can force the quantity

W = exp[ig
∮
dx5Φ5] (39)

to be nonzero, where ΦM is the off-diagonal gauge field multiplet indicated in (37).
From a 4-dimensional point of view, this is the induction of a negative (mass)2 for the
Higgs field by radiative corrections due to a heavy top quark and associated heavy
quarks. The same physics appears in other examples of compact 5-dimensional geome-
tries. In particular, in the Randall-Sundrum warped 5-dimensional spacetime [62], a
very similar computation shows that radiative corrections due to a heavy top quark
can drive some A5 with the quantum numbers of the Higgs field to acquire a vacuum
expectation value [63]

The 5-dimensional picture for the creation of the Higgs potential implies that this
potential is free of ultraviolet divergences. The reason for this is that the phase factor
(38) is nonlocal over the 5th dimension. Quantum fluctuations smaller than the full
size of the 5th dimension see only a part of the integral in (38) and cannot distinguish
this from a local gauge transformation. From a 4-dimensional point of view, though,
the elimination of divergences seems quite surprising. The states of a (t, b) multiplet
in 5 dimensions can be represented in terms of their momentum in 4 dimensions and
their momentum around the 5th dimension. The momentum in the 5th dimension
contributes to the mass term in the Dirac equation. Thus, the 5-dimensional (t, b)
multiplet is seen in 4-dimensions as a 4-dimensional (t, b) multiplet plus an infinite
number of more massive states, called Kaluza-Klein states, with the same quantum
numbers. Each of these states gives a quadratically divergent contribution to the
Higgs boson (mass)2. But, by what seems to be a miracle, the sum of all of the
contributions is finite.

If these 5-dimensional theories are correct, we will discover the heavy partners of
t and b one by one as we search for new particles at higher energies. By measuring
the properties of these particles, we could in principle extract their couplings to the
Higgs field and directly verify the cancellation of divergences and the generation of a
finite, negative Higgs (mass)2.
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5.4 Higgs as a Goldstone boson

There is a third way to construct a model in which the Higgs boson begins as
a massless particle and acquires negative (mass)2 by radiative corrections. This is
to begin with a new set of strong interactions at an energy scale well above the
electroweak scale, say, 10 TeV, that breaks a global symmetry to a subgroup that
contains SU(2)× U(1). This produces Goldstone bosons, one for each broken global
symmetry direction. It is easy to arrange that some of these Goldstone bosons form
a multiplet that transforms as (I, Y ) = (1

2
, 1
2
) under SU(2) × U(1). We can identify

this multiplet with the Higgs scalar doublet. We can now add SU(2) × U(1) gauge
interactions and other weak couplings. These will lead to radiative corrections that
will generate a nonzero potential function for the Goldstone boson fields and drive
these fields to acquire nonzero vacuum expectation values. Models of this type are
known as Little Higgs models [64,65].

A theory of Goldstone bosons is described by a Lagrangian that is invariant under
the original global symmetry. The global symmetry may be nonlinearly realized,
but still there are significant constraints that come from this structure. In particular,
these models also require new heavy quarks with charge +2

3
, with vectorlike couplings

to the weak interactions. As we saw in the case of 5-dimensional models, these
heavy quarks can partially cancel the radiate correction to the Higgs (mass)2 from
the top quark, making this correction ultraviolet-finite but still negative [64]. The
cancellation of ultraviolet divergences implies relations between the Higgs couplings
of the new heavy quarks and that of the top quark, and these could eventually be
tested experimentally [66].

There is a connection between Little Higgs models and the 5-dimensional models
discussed in the previous section. According to the AdS/CFT correspondence of
Maldacena [67,68], a scale-invariant quantum field theory model in 4 dimensions has
an equivalent representation as a 5-dimensional model in which global symmetries
of the first theory become local gauge symmetries of the second theory. This idea
allows the 5-dimensional models in warped backgrounds discussed in the previous
section to be reinterpreted as 4-dimensional models. The Kaluza-Klein states of the
5-dimensional theory are reinterpreted as the spectrum of bound states of the strongly
coupled 4-dimensional system. The gauge field Higgs multiplet in the previous case
becomes the Goldstone boson Higgs multiplet that we have discussed here [69].

The three types of models described in this section illustrate in different ways the
possibility of dynamical explanations of the state of spontaneously broken symmetry
required for the SU(2) × U(1) theory of the weak interactions. These models are
not simple modifications of the SM. They require large numbers of new particles that
must eventually be discovered by accelerator experiments at high energies.
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6 Where is the new physics?

If the arguments for physics beyond the SM are so compelling, and if the particle
spectra expected are so rich, then why haven’t we found evidence for these particles?
I think that every theorist who puts forward arguments similar to those above is
troubled by this question. In all three models above, the new particles introduced to
explain the Higgs potential would be expected to have masses at the scale of hundreds
of GeV. For top quark partners and other particle with QCD interactions, LHC
searches exclude most scenarios with new colored particles in this mass range [70].
In addition, we have not yet seen signs of indirect effects of new particles shifting
low-energy observables from their SM values.

Nevertheless, the situation is different now than in earlier eras of particle physics.
Quantum field theories with only vectorlike coupling obey a general property called
the Appelquist-Carrazone Decoupling Theorem. This is the statement that, if heavy
particles are added to the theory, any new interactions due to those particles are
suppressed by a factor 1/M2, where M is the mass of the heavy particle [71]. For
example, if we add a new heavy quark of mass M to QCD and measure its effects
at a scale Q � M , any new terms are suppressed by Q2/M2. This follows from the
fact that the QCD Lagrangian is already the most general renormalizable Lagrangian
one can write that contains the known quarks and has the QCD gauge symmetry.
Corrections to the Lagrangian induced by effects of the heavy quark can only change
the quark masses and the QCD coupling, and add higher-dimension operators with
coefficients that explicitly contain 1/M2. The shifts of quark masses and αs are visible
only if we can independently measure these parameters at energies above the heavy
quark mass. I we cannot, we cannot know that these shifts have taken place. Then
the only new and observable terms are of order 1/M2,

For a theory with chiral interactions and spontaneously broken symmetry, the
situation can be quite different. The strong statement in the previous paragraph
requires gauge invariance. At previous stages of our knowledge, our description of
particle physics included some members of SU(2) × U(1) gauge multiplets but not
others, for example, s but not c, b but not t, or the longitudinally polarized W boson
but not the Higgs boson. In this situation, corrections involving the missing states
could contribute large terms to appropriately chosen amplitudes [72]. Examples are
provided by the c and t contributions to K–K and B–B mixing, the top quark loop
contribution to precision electroweak observables such as mW , and the top quark loop
contribution to the h→ gg decay amplitude. We have seen already in Section 2.3 that
the large top quark Yukawa coupling can lead to effects that are much larger than
expected naively from perturbaation theory. But now that the full SM particle content
has been discovered, we have returned to the situation in which any new particles
added to the model must have vectorlike couplings and virtual effects suppressed as
1/M2.
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Thus, it is quite plausible that new particles outside the SM might be present
in nature but have only minor effects on observations at currently explored energies.
When we finally reach the new particles thresholds, we turn a corner, and a new realm
of physics will come into view. Large multiplets of new particles will suddenly appear.
The reality of these particles will become obvious. Later, papers will be written about
the surprisingly small effects of these particles on low-energy observables.

The mot powerful way to search for physics beyond the Standard Model, now
more than ever, is to search for new thresholds at the highest energy accelerators. It
is exciting that, this year, the LHC will finally be running close to its design energy.
Over the next fifteen years, the LHC will open up a territory in which to search for
strongly interacting particles about 3 times greater than that currently explored, and a
territory for particles with only electroweak interactions—and signatures appropriate
to hadron colliders—about 4 times larger than the current one

Still, the direct search for new particles at high-energy accelerators is ultimately
limited by the collider energy. Each step to higher energy is now a major technical,
social, and political endeavor. So it is important that it is also possible to search
for these particles through new high-precision probes for the 1/M2 effects that they
induce.

In particular, the next e+e− collider will be able to carry out high-precision stud-
ies of rhe couplings of the Higgs boson and top quark. I have emphasized in this
review that these two particles stand at the very center of the mystery of electroweak
spontaneous symmetry breaking. New particles that would provide an explanation
for this question must necessarily couple to the Higgs boson. These new particles
are also very likely to couple to or mix with the top quark. Today, the Higgs boson
and the top quark are incompletely understood experimentally. The couplings of the
Higgs boson and the electroweak couplings of the top quark are measured only to
the 20% level. The International Linear Collider, a 500 GeV e+e− collider based on
superconducting RF cavities, is now designed and ready for construction. Experi-
ments at that accelerator would bring these measurements below the percent level of
accuracy and would be sensitive to the effects of the new particle scenarios discussed
in this review [73,74].

Above all, we need to keep our faith in the basic tenet of physics—that the phe-
nomena of nature have explanations, and that those explanations can be found by
probing nature at successively deeper levels. New forces and interactions are out
there. In time, we will find them.
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