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We present a unified analysis of the decays of bottomonia Υ(mS) → Υ(nS)ππ (m > n, m =
2, 3, 4, 5, n = 1, 2, 3), charmonia J/ψ → φ(ππ,KK), ψ(2S) → J/ψππ and the isoscalar S-wave
processes ππ → ππ,KK, ηη. In this analysis we extend our recent study of low-lying (m = 2, 3)
radial excitations of bottomonia to modes involving higher (m = 4, 5) excited states. Both data
from the BaBar and Belle Collaborations can be described using a model-independent approach
based on analyticity, unitarity and the uniformization procedure. In the original analysis we showed
that the dipion mass distributions in the two-pion transitions of both charmonia and bottomonia
states are explained by an unified mechanism based on the contribution of the ππ and KK coupled
channels including their interference.
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I. INTRODUCTION

This paper is devoted to the unified description of
BaBar [1] and Belle [2] data on the decays Υ(4S, 5S) →
Υ(ns)π+π− (n = 1, 2, 3). The formalism is based on an-
alyticity, unitarity and the uniformization procedure. In
this work we extend our recent study [3] which focused
on the decays of lower radial excitations of bottomonia.
Now both lower and higher radial excitations of bottomo-
nia are analyzed in a unified picture using all available
data on the two-pion transitions Υ(mS) → Υ(nS)ππ
(m > n, m = 2, 3, 4, 5, n = 1, 2, 3) of the Υ-mesons
from the ARGUS, CLEO, CUSB, Crystal Ball, Belle,
and BaBar Collaborations. It is important to note that
the analysis of bottomonia decays has been done together
with the isoscalar S-wave processes ππ→ππ,KK, ηη and
the charmonium decay transitions J/ψ → φ(ππ,KK),
ψ(2S) → J/ψππ using data from the Crystal Ball, DM2,
Mark II, Mark III, and BES II Collaborations [4].

One of the main objectives of our study is to shed
some light on the nature of scalar mesons. The possibil-
ity for using the two-pion transitions of heavy quarko-
nia as a laboratory for studying the f0 mesons is re-
lated to the expectation that the dipion is produced in
a relative S-wave whereas the final quarkonium state re-
mains a spectator [5]. Many efforts were undertaken to
study scalar mesons, mainly by analyzing multi-channel
ππ scattering. The problem of a unique structure in-
terpretation of the scalar mesons is far away from being
solved completely [6]. Previously we analyzed data on

the decays of low-lying radial excitations of bottomonia
Υ(mS) → Υ(nS)ππ (m > n,m = 2, 3, n = 1, 2), on
multi-channel ππ scattering and on the charmonium de-
cay processes. We showed [3] that the considered bot-
tomonia decay data do not really offer new insights into
the nature of the scalar mesons which were not already
deduced in previous analyses of pseudoscalar meson scat-
tering processes. The results of the analysis have con-
firmed all our earlier conclusions on the scalar mesons [4].
However, the problem must be considered further by al-
lowing for an extended analysis including available data
on the Υ(4S, 5S) decays.
Note that the previous analysis of the process Υ(3S) →

Υ(1S)ππ has already given us an opportunity to ob-
tain interesting conclusions on the mechanism of this
decay [3], which is able to explain the enigmatic two-
humped shape of the dipion mass distribution. This
distribution might be the result of the destructive in-
terference of the relevant contributions to the decay
Υ(3S) → Υ(1S)ππ. However, in this scenario the phase
space cuts off possible contributions, which might in-
terfere destructively with the ππ-scattering contribution
giving the specifical shape of the dipion spectrum. In a
number of works (see, e.g., Ref. [7] and the references
therein, and our discussion in Ref. [3]) various (some-
times rather doubtful) assumptions were made to obtain
the needed result. We have explained this effect on the
basis of our previous conclusions without any additional
assumptions. In Refs. [4, 8, 9] we have shown the fol-
lowing: if a wide resonance cannot decay into a chan-
nel which opens above its mass, and if the resonance is

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515 and HEP.

SLAC-PUB-16313

http://arxiv.org/abs/1506.03023v1


2

strongly coupled to this channel (e.g. f0(500) and the
KK channel), then this resonance should be treated as a
multi-channel state. The closed channel should be in-
cluded while taking into account the Riemann-surface
sheets related to the threshold branch-point of this chan-
nel and performing the combined analysis of the coupled
channels.
In the present extension we include the Υ(4S) and

Υ(5S) which are distinguished from the lower Υ-states
by the fact that their masses are above the BB thresh-
olds. These higher states predominantly decay into pairs
of the B-meson family because these modes are not sup-
pressed by the OZI rule: the Υ(4S) decays into BB pairs
form more than 96% of the total width, for the Υ(5S)
these decay modes make up about 90%. In contrast
strongly reduced decay modes are Υ(4S) → Υ(1S)ππ
and Υ(4S) → Υ(2S)ππ of about (8.1 ± 0.6) × 10−5%
and (8.6± 1.3)× 10−5%, and Υ(5S) → Υ(1S, 2S, 3S)ππ
with (5÷ 8)× 10−3% [6]. The total widths of Υ(5S) and
Υ(4S) are 110 MeV and 20.5 MeV, respectively, and the
one of the Υ(3S) (on which we already have clarified the
mechanism of the two-pion transitions [3]) is 20.32 keV.
The partial decay widths of Υ(5S) → Υ(1S, 2S, 3S)ππ
are almost of the same order as the ones of the decays
Υ(3S) → Υ(1S, 2S)ππ. The decay widths of Υ(4S) →
Υ(1S, 2S)ππ are even smaller than the latter ones by
about two orders of magnitude.
Above comparison of decay widths implies that in the

two-pion transitions of Υ(4S) and Υ(5S) the basic mech-
anism, which explains the dipion mass distributions, can-
not be related to the BB̄ transition dynamics. We shall
show that the two-pion transitions both of bottomonia
and charmonia are explained by a unified mechanism. It
is based on our previous conclusions on the wide reso-
nances [4, 8, 9] and is related to the interference of the
contributions of multi-channel ππ scattering in the final-
state interaction.
We also work out the role of the individual f0 reso-

nances in contributing to the dipion mass distributions
in the decays Υ(4S, 5S) → Υ(nS)π+π− (n = 1, 2, 3). For
this purpose we first summarize and discuss some formu-
las and results from our previous paper [4].

II. THE MODEL-INDEPENDENT

AMPLITUDES FOR MULTI-CHANNEL ππ
SCATTERING

Considering multi-channel ππ scattering, we shall deal
with the 3-channel case (namely with ππ→ππ,KK, ηη)
because it was shown [8, 9] that this is a minimal number
of coupled channels needed for obtaining reasonable and
correct values of the scalar-isoscalar resonance parame-
ters.
The 3-channel S-matrix is determined on the 8-sheeted

Riemann surface. The matrix elements Sij , where i, j =
1, 2, 3 denote the channels, have right-hand cuts along
the real axis of the complex s plane (s is the invari-

ant total energy squared), starting with the channel
thresholds si (i = 1, 2, 3), the left-hand cuts are re-
lated to the crossed channels. The Riemann-surface
sheets are numbered according to the signs of the an-
alytic continuations of the quantities

√
s− si as follows:

signs
(

Im
√
s− s1, Im

√
s− s2, Im

√
s− s3

)

= +++,

− ++, − −+, + −+, + −−, − −−, − +−, + +−
correspond to sheets I, II, · · · , VIII, respectively.
The Riemann surface structure can be represented by

taking the following uniformizing variable [10] where we
have neglected the ππ-threshold branch-point and in-
cluded the KK- and ηη-threshold branch-points and the
left-hand branch-point at s = 0 related to the crossed
channels with

w =

√

(s− s2)s3 +
√

(s− s3)s2
√

s(s3 − s2)
(1)

where s2 = 4m2
K and s3 = 4m2

η. Resonance represen-
tations on the Riemann surface are obtained using for-
mulas from [10]. Analytic continuations of the S-matrix
elements to all sheets are expressed in terms of those on
the physical (I) sheet that have only the resonance zeros
(beyond the real axis), at least around the physical re-
gion. Then multi-channel resonances are classified. For
analytic continuations the resonance poles on sheets II,
IV and VIII, which are not shifted due to the coupling
of channels, correspond to zeros on the physical sheet in
S11, S22 and S33, respectively. They are at the same
points on the energy plane as the resonance poles (for
more details see Ref. [10]). It is convenient to classify
multi-channel resonances according to resonance zeros
on sheet I. In the 3-channel case there are seven types

of resonances corresponding to seven possible situations
when there are resonance zeros on sheet I only in S11 –
(a); S22 – (b); S33 – (c); S11 and S22 – (d); S22

and S33 – (e); S11 and S33 – (f); S11, S22 and S33 –
(g). The resonance of every type is represented by a pair
of complex-conjugate clusters (of poles and zeros on the
Riemann surface).
The S-matrix elements Sij are parameterized using the

Le Couteur–Newton relations [11]. They express the S-
matrix elements of all coupled processes in terms of the
Jost determinant d(

√
s− s1, · · · ,

√
s− sn) which is a real

analytic function with the only square-root branch points
at

√
s− si = 0. The S-matrix elements are taken as

the products S = SBSres; the main (model-independent)
contribution of resonances, given by the pole clusters, is
included in the resonance part Sres; possible remaining
small (model-dependent) contributions of resonances and
the influence of channels which are not taken explicitly
into account in the uniformizing variable are included
in the background part SB. The dres(w)-function for the
resonance part, which now is free from any branch points,
is taken as

dres(w) = w−
M

2

M
∏

r=1

(w + w∗

r ) (2)
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whereM is the number of resonance zeros. For the back-
ground part we have

dB = exp[−i
3

∑

n=1

√
s− sn
2mn

(αn + iβn)] (3)

with

αn = an1 + anσ
s− sσ
sσ

θ(s− sσ) + anv
s− sv
sv

θ(s− sv),

βn = bn1 + bnσ
s− sσ
sσ

θ(s− sσ) + bnv
s− sv
sv

θ(s− sv)

where sσ is the σσ threshold, sv the combined thresh-

old of the ηη′, ρρ, ωω channels, which were obtained
in the analysis. The resonance zeros wr and the back-
ground parameters were fixed by fitting to the data on
ππ → ππ,KK, ηη and the charmonium decay processes
— J/ψ → φ(ππ,KK), ψ(2S) → J/ψππ [4].

The preferred scenario found is when the f0(500) is de-
scribed by the cluster of type (a); the f0(1370), f0(1500)
and f0(1710) with type (c); and f ′

0(1500) by type (g); the
f0(980) is represented only by the pole on sheet II and a
shifted pole on sheet III. The obtained pole-clusters for
the resonances are shown in Table I:

TABLE I: The pole clusters for resonances in the
√
s-plane. The poles, corresponding to the f ′

0(1500), on sheets III, V and VII
are of 2nd order and that on sheet VI of 3rd order in our approximation.

√
sr=Er−iΓr/2.

Sheet f0(500) f0(980) f0(1370) f0(1500) f ′

0(1500) f0(1710)

II Er 521.6 ± 12.4 1008.4 ± 3.1 1512.4 ± 4.9

Γr/2 467.3 ± 5.9 33.5 ± 1.5 287.2 ± 12.9

III Er 552.5 ± 17.7 976.7 ± 5.8 1387.2 ± 24.4 1506.1 ± 9.0

Γr/2 467.3 ± 5.9 53.2 ± 2.6 167.2 ± 41.8 127.8 ± 10.6

IV Er 1387.2 ± 24.4 1512.4 ± 4.9

Γr/2 178.2 ± 37.2 215.0 ± 17.6

V Er 1387.2 ± 24.4 1493.9 ± 3.1 1498.8 ± 7.2 1732.8 ± 43.2

Γr/2 261.0 ± 73.7 72.8± 3.9 142.3 ± 6.0 114.8 ± 61.5

VI Er 573.4 ± 29.1 1387.2 ± 24.4 1493.9 ± 5.6 1511.5 ± 4.3 1732.8 ± 43.2

Γr/2 467.3 ± 5.9 250.0 ± 83.1 58.4± 2.8 179.3 ± 4.0 111.2 ± 8.8

VII Er 542.5 ± 25.5 1493.9 ± 5.0 1500.4 ± 9.3 1732.8 ± 43.2

Γr/2 467.3 ± 5.9 47.8± 9.3 99.9 ± 18.0 55.2± 38.0

VIII Er 1493.9 ± 3.2 1512.4 ± 4.9 1732.8 ± 43.2

Γr/2 62.2± 9.2 298.4 ± 14.5 58.8± 16.4

The obtained background parameters are: a11 = 0.0,
a1σ = 0.0199, a1v = 0.0, b11 = b1σ = 0.0, b1v = 0.0338;
a21 = −2.4649, a2σ = −2.3222, a2v = −6.611, b21 =
b2σ = 0.0, b2v = 7.073; b31 = 0.6421, b3σ = 0.4851;
b3v = 0; sσ = 1.6338 GeV2, sv = 2.0857 GeV2.

The small (zero for the elastic region) values of the ππ
scattering background parameters (obtained after allow-
ing for the left-hand branch-point at s = 0) confirms our
assumption S = SBSres and also that the representation
of multi-channel resonances by the pole clusters on the
uniformization plane is good and quite sufficient.

It is important that we have practically obtained zero

background for ππ scattering in the scalar-isoscalar chan-

nel because a reasonable and simple description of the
background should be a criterion for the correctness of

the approach. This shows that the consideration of the
left-hand branch-point at s = 0 in the uniformizing vari-
able partly solves a problem of some approaches (see,
e.g., Ref. [12]) where the wide-resonance parameters are
strongly controlled by the non-resonant background.

Another important conclusion in our approach is also
related to a practically zero background in ππ scatter-
ing: the contribution to the ππ scattering amplitude
from the crossed channels is given by allowing for the
left-hand branch-point at s = 0 in the uniformizing vari-
able and the meson-exchange contributions in the left-
hand cuts. The zero background in the elastic-scattering
region is obtained only when taking into account the
left-hand branch-point in the proper uniformizing vari-
ables both in the 2-channel analysis of the processes
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ππ → ππ,KK [13] and in the 3-channel analysis of the
processes ππ→ ππ,KK, ηη. This indicates that the ρ-
and f0(500)-meson exchange contributions in the left-
hand cut practically cancel each other. One can show
allowing for gauge invariance that the vector- and scalar-
meson exchanges contribute with opposite signs. There-
fore, the practically zero background in ππ scattering is
an additional confirmation that the f0(500), observed in
the analysis as the pole cluster of type a, is indeed a par-
ticle (though very wide), not some dynamically formed
resonance. Therefore, one must consider at least in the
background the coupled σσ channel which is not taken
into account explicitly in the uniformizing variable (1).
In this connection it is reasonable to interpret the effec-
tive threshold at sσ = 1.6338 GeV2 in the background
phase-shift of the ππ scattering amplitude as related
to the σσ channel. Only in this channel we have ob-
tained a non-zero background phase-shift in ππ scatter-
ing (a1σ = 0.0199).

III. MULTI-CHANNEL ππ SCATTERING IN

TWO-PION TRANSITIONS OF BOTTOMONIA

When carrying out our analysis, data for the processes
ππ → ππ,KK, ηη are taken from many sources (see the
corresponding references in [4]). The combined anal-
ysis including decay data on J/ψ → φ(ππ,KK) and
ψ(2S) → J/ψππ from the Mark III, DM2, BES II,
Mark II and Crystal Ball(80) Collaborations (see corre-
sponding references also in [4]) was found to be important
for getting unique solutions to the f0-meson parameters:
first we solved the ambiguity in the parameters of the
f0(500) [10] in favour of the wider state; second, the pa-
rameters of the other f0 mesons had small corrections [4].
A further addition of decay data on Υ(mS) → Υ(nS)ππ
(m > n,m = 2, 3, n = 1, 2) from ARGUS, CLEO, CUSB,
and the Crystal Ball Collaborations in a combined anal-
ysis did not add any new constraints on the f0 mesons,
thus confirming the previous conclusions about these
states; but the analysis resulted in an interesting expla-
nation of the enigmatic two-humped shape of the dipion
spectrum in the decay Υ(3S) → Υ(1S)ππ: this shape
is proved to be stipulated by a destructive interference
of the ππ and KK coupled-channel contributions to the
final state of this decay [3].
In the present manuscript we further extend the ana-

lyis of the two-pion transitions of radially-excited Υ-
mesons to higher states — Υ(4S) and Υ(5S). The used
formalism for calculating the di-meson mass distributions
in the Υ(mS) decays is analogous to the one proposed in
Ref. [5] for the decays J/ψ → φ(ππ,KK) and V ′ → V ππ
(V = ψ,Υ). I.e., it was assumed that the pion pairs in
the final state have zero isospin and spin. Only these
pairs of pions undergo final state interactions whereas
the final Υ(nS) meson (n < m) acts as a spectator. The
amplitudes for the decays Υ(mS) → Υ(nS)ππ (m > n,
m = 2, 3, 4, 5, n = 1, 2, 3) include the scattering ampli-

tudes Tij (i, j = 1− ππ, 2−KK) as follows

Fmn(s) = (ρ0mn + ρ1mn s)T11 + (ω0
mn + ω1

mn s)T21, (4)

where indices m and n correspond to Υ(mS) and Υ(nS),
respectively. The free parameters ρ0mn, ρ

1
mn, ω

0
mn, and

ω1
mn depend on the couplings of the Υ(mS) to the chan-

nels ππ and KK. The model-independent amplitudes
Tij are expressed through the S-matrix elements shown
in the previous section

Sij = δij + 2i
√
ρ1ρ2Tij (5)

where ρi =
√

1− si/s and si is the reaction threshold.
The expressions for the dipion mass distributions in the
decay Υ(mS) → Υ(nS)ππ are

N |F |2
√

(s− s1)λ(m2
Υ(mS), s,m

2
Υ(nS)) , (6)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz
is the Källen function. The normalization N is de-
termined by a fit to the specific experiment: for
Υ(2S) → Υ(1S)π+π−, 4.3439 for ARGUS [15],
2.1776 for CLEO(84) [16], 1.2011 for CUSB [17]; for
Υ(2S) → Υ(1S)π0π0, 0.0788 for Crystal Ball(85) [18];
for Υ(3S) → Υ(1S)(π+π− and π0π0), 0.5096 and 0.2235
for CLEO(07) [19], and for Υ(3S) → Υ(2S)(π+π−

and π0π0), 7.7397 and 3.8587 for CLEO(94) [20], respec-
tively; for Υ(4S) → Υ(1S)ππ, 7.1476 for BaBar(06)
[1] and 0.5553 for Belle(07) [2]; for Υ(4S) → Υ(2S)ππ,
58.143 for BaBar(06); for Υ(5S) → Υ(1S)ππ,
Υ(5S) → Υ(2S)ππ and Υ(5S) → Υ(3S)ππ respec-
tively 0.1626, 4.8355 and 10.858 for Belle(12) [2].
Parameters of the coupling functions of the decay
particles Υ(mS) (m = 2, ..., 5) to channel i, obtained in
the analysis, are:
(ρ021, ρ

1
21, ω

0
21, ω

1
(21)) = (0.4050, 47.0963, 1.3352,−21.4343),

(ρ031, ρ
1
31, ω

0
31, ω

1
(31)) = (1.0827,−2.7546, 0.8615, 0.6600),

(ρ032, ρ
1
32, ω

0
32, ω

1
(32)) = (7.3875,−2.5598, 0.0, 0.0),

(ρ041, ρ
1
41, ω

0
41, ω

1
(41)) = (0.6162,−2.5715,−0.8467, 0.2128),

(ρ042, ρ
1
42, ω

0
42, ω

1
42)) = (2.329,−7.3511, 1.8096,−10.1477),

(ρ051, ρ
1
51, ω

0
51, ω

1
(51)) = (0.7078, 4.0132, 4.838,−3.9091),

(ρ052, ρ
1
52, ω

0
52, ω

1
(52)) = (0.8133, 2.2061,−0.7973, 0.3247),

(ρ053, ρ
1
53, ω

0
53, ω

1
(53)) = (0.8946, 2.538, 0.627,−0.0483).

A satisfactory combined description of all consid-
ered processes is obtained with a total χ2/ndf =
824.236/(714− 91) ≈ 1.32; for ππ scattering, χ2/ndf ≈
1.15; for ππ → KK, χ2/ndf ≈ 1.65; for ππ → ηη,
χ2/ndp ≈ 0.87; for the decays J/ψ → φ(π+π−,K+K−),
χ2/ndp ≈ 1.36; for ψ(2S) → J/ψ(π+π−, π0π0),
χ2/ndp ≈ 2.43; for Υ(2S) → Υ(1S)(π+π−, π0π0),
χ2/ndp ≈ 1.01; for Υ(3S) → Υ(1S)(π+π−, π0π0),
χ2/ndp ≈ 0.67, for Υ(3S) → Υ(2S)(π+π−, π0π0),
χ2/ndp ≈ 0.61, for Υ(4S) → Υ(1S)(π+π−), χ2/ndp ≈
0.27, for Υ(4S) → Υ(2S)(π+π−), χ2/ndp ≈ 0.27,
for Υ(5S) → Υ(1S)(π+π−), χ2/ndp ≈ 1.80, for
Υ(5S) → Υ(2S)(π+π−), χ2/ndp ≈ 1.08, for Υ(5S) →
Υ(3S)(π+π−), χ2/ndp ≈ 0.81.
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FIG. 1: The decays Υ(4S) → Υ(1S)ππ and Υ(4S) →
Υ(2S)ππ. The solid lines correspond to contribution of all
relevant resonances; the dotted, of the f0(500), f0(980), and
f ′

0(1500); the dashed, of the f0(980) and f
′

0(1500).

In Figs. 1 and 2 we show the fits (solid lines) to the
experimental data of the BaBar [1] and Belle [2] Col-
laborations on the bottomonia decays — Υ(4S, 5S) →
Υ(nS)π+π− (n = 1, 2, 3) — in the combined analysis
with the lower bottomonia decays — Υ(mS) → Υ(nS)ππ
(m > n,m = 2, 3, n = 1, 2) — with the processes
ππ → ππ,KK, ηη and the charmonia decays — J/ψ →
φ(ππ,KK), ψ(2S) → J/ψππ. The curves demonstrate
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FIG. 2: The decays Υ(5S) → Υ(nS)π+π− (n = 1, 2, 3).
The solid lines correspond to contribution of all relevant reso-
nances; the dotted, of the f0(500), f0(980), and f

′

0(1500); the
dashed, of the f0(980) and f ′

0(1500).

an interesting behavior — a bell-shaped form in the
near-ππ-threshold region (especially for the Υ(4S) →
Υ(2S)π+π−), smooth dips near a dipion mass of 0.6 GeV
in Υ(4S, 5S) → Υ(1S)π+π− and of about 0.44 GeV in
Υ(4S) → Υ(2S)π+π−, and sharp dips of about 1 GeV in
the Υ(4S, 5S) → Υ(1S)π+π− transition. This shape of
the dipion mass distribution is obviously explained by the



6

interference between the ππ scattering and KK → ππ
contributions to the final states of these decays — the
constructive one in the near-ππ-threshold region and by
a destructive one in the dip regions. Whereas the data
on Υ(5S) → Υ(1S)π+π− confirm the sharp dips near
1 GeV, the scarce data on Υ(4S) → Υ(1S)π+π− do not
allow for such a unique conclusion yet. We further inves-
tigated the role of the individual f0 resonances in con-
tributing to the shape of the dipion mass distributions
in the decays Υ(4S, 5S) → Υ(ns)π+π− (n = 1, 2, 3). In
this case we switched off only those resonances (f0(500),
f0(1370), f0(1500) and f0(1710)), removal of which can
be somehow compensated by correcting the background
(maybe, with elements of the pseudo-background) to
have the more-or-less acceptable description of the multi-
channel ππ scattering.
First, when leaving out before-mentioned resonances,

a minimal set of the f0 mesons consisting of the f0(500),
f0(980), and f

′

0(1500) is sufficient to achieve a description
of the processes ππ→ππ,KK, ηη with a total χ2/ndf ≈
1.20. The obtained, adjusted background parameters are:
a11 = 0.0, a1σ = 0.0321, a1v = 0.0, b11 = −0.0051,
b1σ = 0.0, b1v = 0.04; a21 = −1.6425, a2σ = −0.3907,
a2v = −7.274, b21 = 0.1189, b2σ = 0.2741, b2v = 5.823;
b31 = 0.7711, b3σ = 0.505, b3v = 0.0.
Second, from these three mesons only the f0(500) can

be switched off while still obtaining a reasonable de-
scription of multi-channel ππ-scattering (though with
an appearance of the pseudo-background) with a total
χ2/ndf ≈ 1.43 and with the corrected background pa-
rameters: a11 = 0.3513, a1σ = −0.2055, a1v = 0.207,
b11 = −0.0077, b1σ = 0.0, b1v = 0.0378; a21 = −1.8597,
a2σ = 0.1688, a2v = −7.519, b21 = 0.161, b2σ = 0.0,
b2v = 6.94; b31 = 0.7758, b3σ = 0.4985, b3v = 0.0.
In Figs. 1 and 2 variants of the calculations of the

dipion mass distributions with contributions from the
f0(500), f0(980), and f

′

0(1500) and from the f0(980), and
f ′

0(1500) are shown by the dotted and dashed lines, re-
spectively. It is seen that the sharp dips near 1 GeV in
the Υ(4S, 5S) decays are related to the f0(500) contri-
bution in the interfering amplitudes of ππ scattering and
the KK → ππ process. One should also note a consider-
able contribution of the f0(1370) to the bell-shaped form
in the near-ππ-threshold region, especially in the decay

Υ(4S) → Υ(2S)ππ.

IV. SUMMARY

We performed a combined analysis of data on isoscalar
S-wave processes ππ → ππ,KK, ηη, on the decays of the
charmonia — J/ψ → φ(ππ,KK), ψ(2S) → J/ψ ππ —
and of the bottomonia — Υ(mS) → Υ(nS)ππ (m > n,
m = 2, 3, 4, 5, n = 1, 2, 3) from the ARGUS, Crystal Ball,
CLEO, CUSB, DM2, Mark II, Mark III, BES II, BaBar,
and Belle Collaborations.

Here we specifically focus on the unified description of
BaBar [1] and Belle [2] data on the decays Υ(4S, 5S) →
Υ(ns)π+π− (n = 1, 2, 3). It is shown that the dipion
mass distributions in the two-pion transitions both of
charmonia and bottomonia are explained by an unified
mechanism related to contributions of the ππ and KK
coupled channels and their interference. The role of the
individual f0 resonances in making up the shape of the
dipion mass distributions in these decays is considered.

When describing the bottomonia decays, we did not
change the resonance parameters in comparison with the
ones obtained in the combined analysis of the processes
ππ → ππ,KK, ηη and charmonia decays [4, 14]. Thus,
the results of the analysis confirm all of our earlier con-
clusions on the scalar mesons [4].
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V. E. Lyubovitskij, R. Kamiński, and M. Nagy, Nucl.
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