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We report on an experiment performed at the Facility for Advanced Accelerator Experimental
Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control al-
gorithm, one with known, bounded update rates, despite operating on analytically unknown cost
functions, was utilized in order to provide quasi real time bunch property estimates of the electron
beam. Multiple parameters, such as arbitrary RF phase settings and other time-varying acceler-
ator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum
with a measured energy spectrum. The simple adaptive scheme was digitally implemented using
Matlab and the Experimental Physics and Industrial Control System (EPICS). The main result
is a non-intrusive, non-destructive, real-time diagnostic scheme for prediction of bunch profiles, as
well as other beam parameters, the precise control of which are important for the plasma wakefield
acceleration (PWFA) experiments being explored at FACET.

PACS numbers: 41.85.Lc, 02.30.Yy, 29.20.-c, 02.60.-x

I. INTRODUCTION

A. Motivation

The Facility for Advanced Accelerator Experimental
Tests (FACET) at SLAC National Accelerator Labora-
tory produces high energy electron beams for plasma
wakefield acceleration [1]. For these experiments, precise
control of the longitudinal beam profile is very impor-
tant. FACET uses an x-band transverse deflecting cav-
ity (TCAV) to streak the beam and measure the bunch
profile (Figure 1a). Although the TCAV provides an ac-
curate measure of the bunch profile, it is a destructive
measurement; the beam cannot be used for plasma wake-
field acceleration (PWFA) once it has been streaked. In
addition, using the TCAV to measure the bunch profile
requires adjusting the optics of the final focus system
to optimize the resolution and accuracy of measurement.
This makes it a time consuming process and prevents on-
the-fly measurements of the bunch profile during plasma
experiments.

There are two diagnostics that are used as an alterna-
tive to the TCAV that provide information about the lon-
gitudinal phase space in a non-destructive manner. The
first is a pyrometer that captures optical diffraction radi-
ation (ODR) produced by the electron beam as it passes
through a hole in a metal foil. The spectral content of the
ODR changes with bunch length. The pyrometer is sen-
sitive to the spectral content and the signal it collects is
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proportional to 1/σz, where σz is the bunch length. The
pyrometer is an excellent device for measuring variation
in the shot-to-shot bunch profile but provides no infor-
mation about the shape of the bunch profile or specific
changes to shape. The second device is a non-destructive
energy spectrometer consisting of a half-period vertical
wiggler located in a region of large horizontal dispersion.
The wiggler produces a streak of x-rays with an intensity
profile that is correlated with the dispersed beam pro-
file. There x-rays are intercepted by a scintillating YAG
crystal and imaged by a CCD camera (Figure 1b). The
horizontal profile of the x-ray streak is interpreted as the
energy spectrum of the beam [2].

The measured energy spectrum is observed to correlate
with the longitudinal bunch profile in a one-to-one man-
ner if certain machine parameters, such as chicane optics,
are fixed. To calculate the beam properties based on an
energy spectrum measurement, the detected spectrum is
compared to a simulated spectrum created with the 2D
longitudinal particle tracking code, LiTrack [3]. The en-
ergy spread of short electron bunches desirable for plasma
wakefield acceleration can be uniquely correlated to the
beam profile if all of the various accelerator parameters
which influence the bunch profile and energy spread are
accounted for accurately. Unfortunately, throughout the
2km facility, there exist systematic phase drifts of var-
ious high frequency devices, mis-calibrations, and time-
varying uncertainties due to thermal drifts. Therefore, in
order to effectively and accurately relate an energy spec-
trum to a bunch profile, a very large parameter space
must be searched and fit by LiTrack, which effectively
limits and prevents the use of the energy spectrum mea-
surement as a real time measurement of bunch profile.

For dealing with many parameter systems, many op-
timization schemes, [4], including in particular, genetic
algorithms (GA), have been used very successfully, in-
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cluding the design of magnet and radio frequency (rf )
cavities [5], photoinjectors [6], damping rings [7], stor-
age ring dynamics [8], global optimization of a lattice [9],
neutrino factory design [10], simultaneous optimization
of beam emittance and dynamic aperture [11], free elec-
tron laser linac drivers [12] and various other accelerator
physics applications [13]. The major benefit of GA-type
searches is that they result in global optimization, at the
cost of a lengthy search over a large range of the pa-
rameter space, and the result is only optimal relative
to a known model. Robust conjugate direction search
(RCDS) is another algorithm which is able to quickly
optimization many parameter systems, which in addi-
tion is model-independent, not requiring a detailed sys-
tem knowledge, with convergence rates exceeding those
of some GA approaches [14]. However, both the GA and
RCDS approaches, are best suited for time-invariant sys-
tems, and the goal here was to quickly track an uncertain,
time-varying system. Therefore, we relied on a local,
model-independent extremum seeking algorithm, whose
convergence can suffer due to local minima, but whose
simplicity and speed of convergence allows for a quasi real
time tracking of a many parameter time-varying system.

B. Main Result

At FACET, we coupled the above described technique
with a new version of an extremum seeking (ES) algo-
rithm, and were successful in providing a quasi real-time
estimate of the electron bunch profile, by adaptively iden-
tifying and tracking the many uncertain, time-varying
parameters required by the LiTrack code. For the ES al-
gorithm, the cost to be minimized was the χ2 residual be-
tween the measured and simulated energy spectra of the
electron beam. System parameters such as various ar-
bitrary phase shifts and beam properties (charge, initial
phase space emittance) were the inputs to LiTrack. The
adaptive scheme minimized the cost by varying an arbi-
trary number of parameters simultaneously. We simulate
FACET while adaptively tuning multiple free parameters
in a code package called LiTrackES [15, 16].

II. ADAPTIVE TUNING METHOD AT FACET

ES, as described here, was recently developed for the
stabilization of uncertain, open-loop unstable systems
[17, 18]. The mechanism behind this new form of ES,
that of introducing high frequency oscillations into a sys-
tem’s dynamics, is closely related to the field of vibra-
tional control, such as stabilizing the vertical equilibrium
point of a pendulum by quickly oscillating its pivot point
[19, 20]. Recently, a new, bounded form of ES has been
developed [21], one with analytically guaranteed update
rates and control efforts, and implemented in simulation
[22] and demonstrated in hardware [23] to tune multiple
components of particle accelerators. Although operating

on analytically unknown functions, limits are guaranteed
by the unknown cost function entering the scheme’s dy-
namics as the argument of a known, bounded oscillatory
function, such as sine or cosine. A detailed, analytic
description of the algorithm and how it was applied to
FACET is presented in Appendix A and B.

Figures 1 - 3 show the overall setup of the tuning proce-
dure at FACET. A simulation of the accelerator, LiTrack
is run in parallel to the machines operation. The simula-
tion was initialized with guesses and any available mea-
surements of actual machine settings, p = (p1, . . . , pn).
We emphasize that these are only guesses because even
measured values are noisy and have arbitrary phase shift
errors. The electron beam in the actual machine was
accelerated and then passed through a series of deflect-
ing magnets, as shown in Figures 1b and 2, which cre-
ated x-rays, whose intensity distribution can be corre-
lated to the electron bunch density via LiTrack. This
non-destructive measurement is available at all times,
and used as the input to the ES scheme, which is then
matched by adaptively tuning machine parameters in
the simulation. Once the simulated and actual spec-
trum were matched, certain beam properties could be
predicted by the simulation.

Each parameter setting has its own influence on elec-
tron beam dynamics, which in turn influenced the sep-
aration, charge, length, etc, of the leading and trailing
electron bunches.

The cost that our adaptive scheme was attempting to
minimize was then the difference between the actual, de-
tected spectrum, and that predicted by LiTrack:

C(x, x̂,p, p̂, t) =

∫ ∣∣∣ψ̃(x,p, t, ν)− ψ̂(x̂, p̂, t, ν)
∣∣∣2 dν,

(1)

in which ψ̃(x,p, t, ν) was a noisy measurement of the ac-
tual, time-varying (due to phase drift, thermal cycling...)

energy spectrum, and ψ̂(x̂, p̂, t, ν) was the LiTrack, simu-
lated spectrum, x(t) = (x1(t), . . . , xn(t)) represents vari-
ous aspects of the beam, such as bunch length, beam en-
ergy, bunch charge, etc. at certain locations throughout
the accelerator, p(t) = (p1(t), . . . , pn(t)) represents vari-
ous time-varying uncertain parameters of the accelerator
itself, such as RF system phase drifts and RF field am-
plitudes throughout the machine, x(t) are approximated
by their simulated estimates x̂(t) = (x̂1(t), . . . , x̂n(t)) and
actual system parameters, p(t), are approximated by vir-
tual parameters p̂(t) = (p̂1(t), . . . , p̂n(t)).

The problem was then to minimize the measurable,
but analytically unknown function C(x, x̂,p, p̂, t) : R4n×
R+ → R, by adaptively tuning the simulation parameters
p̂. The hope was that, by finding simulation machine set-
tings which resulted in matched spectrums, we would also
match other properties of the real and simulated beams,
something we could not simply do by setting the simu-
lation parameters to the exact machine settings, due to
unknowns, such as time-varying, arbitrary phase shifts.
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FIG. 1. The energy spectrum is recorded as the electron bunch passes through a series of magnets and radiates x-rays.
The intensity distribution of the x-rays is correlated to the energy spectrum of the electron beam (a). This non-destructive
measurement is available at all times, and used as the input to the ES scheme, which is then matched by adaptively tuning
machine parameters in the simulation. For the TCAV measurement, the electron bunch is passed through a high frequency
(11.4 GHz) RF cavity with a transverse mode, in which it is streaked and passes through a metallic foil (b). The intensity
of the optical transition radiation (OTR) is proportional to the longitudinal charge density distribution. This high accuracy
longitudinal bunch profile measurement is a destructive technique.
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FIG. 2. Typical energy spectrum measurement (a) . Typical
bunch profile measurement (b).

The first step of the adaptive scheme was to
choose physically realizable constraints for all pa-

rameters: pmax = (p1,max, . . . , pm,max), pmin =
(p1,min, . . . , pm,min). Implementing initial parameter set-
tings p(1), which are chosen based on the physics model,
experience, and available measurements, allowed us to
measure C(1, t1) = C(x(1), x̂(1),p(1), p̂(1), t1). The it-
erative update scheme was then:

pi(n+ 1) = pi(n) + ∆
√
αωi cos (ωin∆ + kC(n, tn)) , (2)

where tn represents actual time at which parameter up-
dates are made, something limited by sampling rates
and LiTrackES simulation speed. In our application, the
beam repetition rate was ∼1Hz, and dt = tn+1 − tn ≈
0.6s.

Update law (2) is based on the finite difference approx-
imation of the derivative:

pi(t+ ∆)− pi(t)
∆

≈ ∂pi
∂t

=
√
αωi cos (ωit+ kC(p(t), t)) ,

(3)
which we may expand as

cos (ωit+ kC) = cos(ωit) cos (kC)− sin (ωit) sin (kC)
(4)

and rewrite the pi (1 ≤ i ≤ n) dynamics as

ṗi =
√
ωi cos(ωit)

√
α cos (kC)−

√
ωi sin(ωit)

√
α sin (kC) ,

(5)
which, according to Theorem 1, resulted in an average
parameter and cost relationship of the form:

˙̄pi = −kα
2

∂C (p̄, t)

∂p̄i

(
cos2 (kC (p̄, t)) + sin2 (kC (p̄, t))

)
= −kα

2

∂C (p̄, t)

∂p̄i
, (6)
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FIG. 3. The actual FACET accelerator (a) is run along with the LiTrack simulator (b), whose initial parameter inputs, pi(0),
are a combination of accurately measured settings and guesses for time-varying, not easily detectable actual settings, such as
drifting RF phase. The measured and predicted energy spectrums are compared (c) and a cost, C(n+ 1) is calculated based on
the mismatch. The cost is fed into the adaptive scheme (d), as described above, and the parameters are automatically tuned
and updated (e). When the cost is oscillating near minimum, the bunch length prediction is most accurate (f).
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FIG. 4. Convergence of the LiTrack spectrum to the actual, time-varying spectrum for a fixed RMS-width beam.

and therefore

˙̄p = −kα
2
∇C, (7)

which is a gradient descent towards the minimum of C.
The constraints were simply implemented by checking
the updated parameters at each step and confining them
to their bounds if necessary. Because the values of differ-
ent parameters pi differed by orders of magnitude, they
each required individual values of ki and αi.

The ES algorithm is constantly updating the virtual
machine parameters to provide a better match between
the simulated and energy spectrum. It outputs a new
estimate of the longitudinal bunch profile for every iter-
ation of the loop.

III. RESULTS

LiTrackES simulates large components of FACET as
single elements. The critical elements of the simulation
are the North Damping Ring (NDR) which sets the initial
bunch parameters including the bunch length and energy
spread, the North Ring to Linac (NRTL) which is the first
of three bunch compressors, Linac Sectors 2-10 where
the beam is accelerated and chirped, the second bunch
compressor in Sector 10 (LBCC), Linac Sectors 11-19
where the beam is again accelerated and chirped, and
finally the FACET W-chicane which is the third and final
bunch compressor.

We calibrated the LiTrackES algorithm using simulta-
neous measurements of the energy spectrum and bunch
profile while allowing a set of unknown parameters to
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FIG. 5. (A) The energy spectrum was detected and imported into LiTrackES in order to calculate a cost on which the adaptive
convergence was based. (B) LiTrackES was able to adaptively tune parameters p̂i(t) in order to track the detected energy
spectrum with the simulated spectrum. (C) The TCAV was on and recording the longitudinal beam profile during the adaptive
process, these values were not used as inputs to LiTrackES. (D) Based only on energy spectrum readings, LiTrackES was able
to predict the longitudinal electron bunch profile, tracking the actual bunch profile measurements with the LiTrackES output.

05:00 05:30 06:00 06:30 07:00
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

Ph
as

e 
(d

eg
)

 

 

Predicted Phase
Measured Phase
<Predicted Phase>
<Measured Phase>

FIG. 6. Estimation of the RF phase in the first ten sectors
of the linac using LiTrackES compared to the vector sum of
klystron phases.

converge. After convergence we left a subset of these
calibrated parameters fixed, as they are known to vary
slowly or not at all and performed our tuning on a much
smaller subset of the parameters:

• p1: NDR bunch length

• p2: NRTL energy offset

• p3: NRTL compressor amplitude

• p4: NRTL chicane T566

• p5: Phase Ramp

“Phase ramp” refers to a net phase of the NDR and
NRTL RF systems with respect to the main linac RF.
Changing the phase ramp parameter results in a phase
set offset in the linac relative to some desired phase.

In this experiment, we had the added benefit of con-
tinuously observing the bunch profile using the TCAV,
while predicting it based on a match with the measured
energy spectrum, so that we could have a more detailed
comparison of the predicted and actual beam character-
istics. Our approach was to periodically vary FACET’s
phase ramp, which resulted in a significant change in the
longitudinal bunch profile. We then allowed LiTrackES
to adapt to the changing energy spectrum and thereby
attempt to predict the new beam profile. The results of
the experiment are shown in Figures 5 - 9.

A. Phase Ramp Prediction

The phase ramp parameter is used to tune out corre-
lated phase errors that accumulate throughout the linac.
As an example, phase ramp is tuned diurnally to offset
the contraction and expansion of the Main Drive Line
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FIG. 7. A top-down view of the actual and predicted bunch profile measurements shows that LiTrackES was able to track
changes in the bunch profile, including a successful prediction of when there was a single bunch and when it was split in two
as is done in driver-witness plasma wakefield acceleration experiments.
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FIG. 8. Moving averages of the predicted and actual bunch
profiles were used in order to estimate bunch width with a
measurement of the full width half max.

which provides the reference RF for all systems in the
linac. Adjustments to phase ramp occur a few times per
day and the beam is allowed to settle after the changes
are made. The phase drifts that occur between changes
to the phase ramp parameter are not measured. Instead,
certain beam features, such as the energy spectrum and
bunch profile will change noticeably. If they deviate too
much from their desired state, an adjustment to phase
ramp is made to bring them back. Tracking of phase
ramp changes is demonstrated in Figure 6.

B. Impact of Phase Ramp on Bunch Profile

Phase ramp is one of the few parameters that are reg-
ularly tuned to achieve the desired “two-bunch” profiles
for PWFA experiments. This is because phase ramp is
directly tied to the injection phase of the linac. The beam
is injected 21o ahead of crest in the first ten sectors of
the linac. The beam is both accelerated and chirped in
this linac section and then compressed by a magnetic
chicane at the end of Sector 10. The extent to which
the bunch is compressed depends sensitively on the beam
chirp, and therefor the phase in the first ten linac sectors.
For this reason, a feedback that can actively determine
phase drift in the linac would benefit PWFA experiments
at FACET. The LiTrackES algorithm demonstrates this
ability as shown in Figure 6.

IV. CONCLUSIONS AND FUTURE WORK

LiTrackES, the combination of ES and LiTrack, as
demonstrated, is able to provide a quasi real time es-
timate of many machine and electron beam properties
which are either inaccessible or require destructive mea-
surements. We plan to improve the convergence rate of
LiTrackES by fine tuning the adaptive scheme’s parame-
ters, such as the gains ki, perturbing amplitudes αi and
dithering frequencies ωi. Furthermore, we plan on taking
advantage of several simultaneously running LiTrackES
schemes, which can communicate with each other in an
intelligent way, and each of which has slightly different
adaptive parameters/initial parameter guesses, which we
believe can greatly increase both the rate and accuracy
of the convergence. Another major goal is the extension
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FIG. 9. While predicting the beam profile, an estimate of the full width half maxes of the bunch peaks was made, which
sometimes coincided when the beam was a single bunch.

of this algorithm from monitoring to tuning. We hope
to one day utilize LiTrackES as an actual feedback to
the machine settings in order to tune for desired electron
beam properties.

Appendix A: Algorithm Theoretical Background

The ES scheme is applicable to systems of differential
equations of the form

ẋi = fi(x, t) + gi(x, t)ui(x, t), (A1)

where ḣ ≡ ∂h
∂t , in which f(x, t) = (f1(x, t), . . . , fn(x, t))

and g(x, t) = (g1(x, t), . . . , gn(x, t)) are unknown or un-
certain functions and u(x, t) = (u1(x, t), . . . , un(x, t))
are control inputs of our choice. Our goal is to min-
imize an analytically unknown, but available for mea-
surement time-varying “cost function,” V (x, t), which
depends on multiple parameters, x = (x1(t), . . . , xn(t)),
whose measurement may be noise corrupted, so that the
actual available measurements are of the form Ṽ (x, t) =
V (x, t) + n(t), in which n(t) is uncertain, additive mea-
surement noise.

According to the results of [17, 18, 22], choosing con-
trollers of the form

ui(x, t) =
√
αωi cos

(
ωit+ kṼ (x, t)

)
, (A2)

results in an average gradient descent of the function
V (x, t) of the form

˙̄xi = fi(x̄, t)−
kα

2
g2
i (x̄, t)

∂V (x̄, t)

∂x̄i
, x̄i(0) = xi(0).

(A3)

Remark 1 Several important benefits of this controller
are:

• The minimization of V (x̄, t), according to (A3), is
achieved by choosing a sufficiently large value of
the factor kα > 0, relative to an upper bound on
|fi(x, t)| and a lower bound on

∣∣g2
i (x, t)

∣∣, without
knowing their analytic forms.

• We do not need to know the sign of the unknown
functions gi(x, t) and they may change their signs
as a function of time, that is, we do not need to
know in which direction our control inputs are act-
ing, whether they are pulling or pushing, because
g2
i (x, t) ≥ 0.

• Although we are only able to measure the noise-
corrupted signal Ṽ (x̄, t) = V (x̄, t) + n(t), on aver-
age the gradient descent takes place relative to the
actual function of interest V (x̄, t), as in (A3).

Remark 2 The cos(·) terms in (B5) may be replaced
by sin(·) functions, or the two can be mixed together.
The only requirement, for the convergence of the scheme,
is that the perturbing functions are orthogonal in the
frequency domain, such as sin(ωi) and sin(ωj), where
ωi 6= ωj, or cos(ωi) and sin(ωi).

Remark 3 The terms, k, α, and ωi in the controller
(A2) have varying influence on the overall convergence.

• The term k can be thought of as the control gain.
Increasing k artificially inflates the value of the cost
function, via the product kV (x̄, t) and its gradient,
resulting in faster convergence. Furthermore, if de-
sired, such as for parameters of varying orders of
magnitude, each parameter may implement its own
unique ki.

• The term α plays two roles. First, as another factor
of the overall gain because it enters the average dy-

namics via the product −kα2
∂V (x̄,t)
∂x̄i

. Also, the term
α plays the role of the dithering amplitude, which is
the extent to which a parameter that we are adapt-
ing will oscillate and therefore it’s ability to search
for a minimum and to escape local minimums, both
of which are improved with increased α. Increasing
α too much may be problematic because at steady

state, when ∂V (x̄,t)
∂x̄i

≈ 0, the perturbed parameters
will perform oscillations about their optimal values
of magnitude

√
α
ω . Furthermore, if desired, such

as for parameters of varying orders of magnitude,
each parameter may implement its own unique αi.
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• The terms ωi are the frequencies at which param-
eters are dithered. In order for the scheme to be
effective, and for the averaging analysis to hold,
the ωi must be sufficiently large compared to all
other system dynamics and relative to the values
of k and α. Once a sufficiently large ωi is chosen,
if k or α is increased too much, the scheme may
become unstable unless ωi is increased sufficiently.
Furthermore, each parameter must have a different
ωi so that they all evolve independently, perform-
ing gradient descents relative to their own partial
derivatives.

For completeness, we present the complete statement
of the general averaging result for highly oscillatory, un-
certain systems of differential equations, which we have
described above. The proof and more details regarding
the adaptive scheme are available in [17, 18, 22].

Theorem 1 [17, 18, 22] Consider the following nonlin-
ear system of differential equations.

ẋ = f(x, t) +

n∑
i=1

eigi(x, t)
√
ωi cos

(
ωit+ kṼ (x, t)

)
,

(A4)
where ωi 6= ωj, ∀i 6= j, the functions

f(x, t) : Rn × R→ Rn (A5)

gi(x, t) : Rn × R→ R (A6)

Ṽ (x, t) : Rn × R→ R (A7)

are continuously differentiable, and the functions ei are
the ith basis vectors of Rn. The components xi(t) of x(t)
satisfy the dynamics

ẋi = fi(x, t) + gi(x, t)
√
ωi cos

(
ωit+ kṼ (x, t)

)
. (A8)

The function Ṽ (x, t) = V (x, t) + n(t), is a noise-
corrupted measurement of the analytically unknown func-
tion V (x, t). Relative to system (A4), we consider the
following average system of differential equations

˙̄x = f(x̄, t)− kα

2
g(x̄, t)gT (x̄, t) (∇V (x̄, t))

T
, (A9)

where x̄(0) = x(0) and g = (g1, . . . , gn). The components
x̄i(t) of the trajectory x̄(t) of (A9) satisfy the dynamics

˙̄xi = fi(x̄, t)−
kα

2
g2
i (x, t)

∂V (x̄, t)

∂x̄i
, x̄i(0) = xi(0).

(A10)
For any T > 0, any compact set K ⊂ Rn, and any δ > 0,
there exists ω? such that for all ω > ω?, the distance be-
tween the trajectory x(t) of system (A4) and the average
system trajectory x̄(t) of system (A9), satisfy the bounds

max
x,x̄∈K,t∈[0,T ]

‖x(t)− x̄(t)‖ < δ. (A11)

Furthermore, if a trajectory, x?(t), of the average system
(A9) is asymptotically stable, then the trajectory of the

actual system (A4) approaches and remains within δ of
that trajectory as well, that is

lim
t→∞

‖x̄(t)− x?(t)‖ = 0 =⇒ lim
t→∞

‖x(t)− x?(t)‖ < δ.

(A12)

Appendix B: Application to Predicting FACET
Beam Properties

In this work, in applying this new form of ES to the
parameter estimation problem [24], we consider FACET
as a system of the form:

ẋ = f(x,p, t), (B1)

where f(x,p, t) represents the actual, analytically
uncertain dynamics of the accelerator, x(t) =
(x1(t), . . . , xn(t)) represents various aspects of the beam,
such as bunch length, beam energy, bunch charge, etc. at
certain locations throughout the accelerator, and p(t) =
(p1(t), . . . , pn(t)) represents various time-varying uncer-
tain parameters of the accelerator itself, such as RF sys-
tem phase drifts and RF field amplitudes throughout the
machine.

We consider, relative to (B1), the approximation of
FACET given by LiTrack:

˙̂x = f̂ (x̂, p̂, t) , (B2)

where f̂ (x̂, p̂, t) represents the approximated simulation
of the system’s dynamics, where actual beam proper-
ties x(t) are approximated by their simulated estimates
x̂(t) = (x̂1(t), . . . , x̂n(t)) and actual system parameters,
p(t), are approximated by virtual parameters p̂(t) =
(p̂1(t), . . . , p̂n(t)).

Our goal is to closely approximate certain actual beam
properties, xi(t), such as the longitudinal beam profile,
by their virtual estimates x̂i(t), which is only possible
if we closely approximate the true machine parameters
p(t), by adaptively tuning the virtual parameters p̂(t).

We perform this adaptation based on a cost function,
C, whose values depend on the comparison between a
detected, analytically uncertain and noisy measurement

ỹ = h(x,p, t) + n(t) (B3)

and a simulation of that same measurement

ŷ = ĥ (x̂, p̂, t) . (B4)

The adaptive tuning law is

˙̂pi =
√
αiωi cos (ωit+ kiC [ỹ (x,p, t) , ŷ (x̂, p̂, t)]) , (B5)

which, according to Theorem 1, has average dynamics

˙̂̄pi = −kiαi
2

∂C

∂ ¯̂pi
, (B6)
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performing a gradient descent to locally minimizing val-
ues p̂i(t) of C(t), where the goal is to match the actual
accelerator parameters p(t), and to match the output of
the simulation, x̂(t), to the actual electron beam x(t).

The uniqueness of this convergence heavily depends on

the actual analytic forms of C, h, and f , such a conver-
gence may not always provide an accurate or unique pre-
diction of actual beam xi(t) and machine pi(t) parameter
values based on their virtual observers x̂i(t) and p̂i(t). In
this case, as will be shown below, we are able to closely
track the actual beam characteristics.
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