Institut für Kern- und Teilchenphysik, Technische Universität Dresden

Hadronic and rare B decays with the BaBar and Belle experiments*

Xavier Prudent

Abstract

We review recent experimental results on B_{d} and B_{s} mesons decays by the BaBar and Belle expeiments. These include measurements of the color-suppressed decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}, h^{0}=\pi^{0}, \eta, \eta^{\prime}, \omega$, observation of the baryonic decay $\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{\Lambda} K^{-}$, measurements of the charmless decays $B \rightarrow \eta h, h=\pi, K, B \rightarrow K \pi$, and observation of CP eigenstates in the B_{s} decays: $B_{s}^{0} \rightarrow J / \psi f_{0}(980), B_{s}^{0} \rightarrow J / \psi f_{0}(1370)$ and $B_{s}^{0} \rightarrow J / \psi \eta$. The theoretical implications of these results will be considered.

PACS numbers: 14.20.Mr

1. Introduction

Given the large mass of the top quark, B mesons are the only weakly decaying mesons containing quarks of the third generation. Their decays are thus a unique window on the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, describing the couplings of the third generation of quarks to the lighter quarks. Hadronic B mesons decays occur primarily through the Cabibbo favored $b \rightarrow c$ transition. In the Standard Model these decays can also occur through Cabibbo suppressed $b \rightarrow u$ transitions or through one loop diagrams, such as penguin diagrams, which involve a virtual $W^{ \pm}$boson and a heavy quark. This proceeding reviews recent results [1] 2] 3] [4] [5] from the BaBar [7] and Belle [8] experiments which took data during the past decade at the high luminosity B-factories PEP-II [9] and KEKB [10].

2. Color-suppressed decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}, h^{0}=\pi^{0}, \eta, \eta^{\prime}, \omega$

In such decays, the effect of color suppression is obscured by the exchange of soft gluons (final state interactions), which enhance $W^{ \pm}$exchange diagrams. Previous measurements of the branching fractions of the color-suppressed decays $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$ invalidated the factorization

[^0]model [11] 12] [13]. However more precise measurements are needed to confirm that result and to constrain the different QCD models: SCET (Soft Collinear Effective Theory) and pQCD (perturbative QCD). BaBar measured the branching fractions from exclusive reconstruction using a data sample of $454 \times 10^{6} B \bar{B}$ pairs [1], the measured values can be found in the Table 1 compared to theoretical predictions. The values measured are higher by a factor of about three to five than the values predicted by factorization. The pQCD predictions are closer to experimental values but are globally higher, except for the $D^{(*) 0} \pi^{0}$ modes. SCET 14 [15 16 does not give prediction on the branching fractions themselves, but predicts that the ratios $B F\left(\bar{B}^{0} \rightarrow D^{* 0} h^{0}\right) / B F\left(\bar{B}^{0} \rightarrow D^{0} h^{0}\right)$ are about equal to one for $h^{0}=\pi^{0}, \eta, \eta^{\prime}$. The ratios of branching fractions are given in Table 2 and are compatible with one. This SCET prediction holds only for the longitudinal component $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$, in the case of $h^{0}=\omega$ nontrivial long-distance QCD interactions may increase the transverse amplitude. The longitudinal fraction f_{L} of B decays to a pair of vector mesons is predicted to be one in the factorization description. The longitudinal fraction of the decay $\bar{B}^{0} \rightarrow D^{(*) 0} \omega$ was measured for the first time in the same data sample, yielding $f_{L}=(66.5 \pm 4.7$ (stat.) ± 1.5 (syst.) $) \%$ [1], deviating thus significantly from the factorization's prediction. This reinforces the conclusion drawn from the branching fraction measurements on the validity of factorisation in color-suppressed decays and supports expectations from SCET.

Table 1. Comparison of the measured branching fractions $B F$, with the predictions by factorization [17, 18, 19, 20] and pQCD [21, 22]. The first quoted uncertainty is statistical and the second is systematic.

$B F\left(\times 10^{-4}\right)$	This measurement	Factorization	pQCD
$B^{0} \rightarrow D^{0} \pi^{0}$	$2.69 \pm 0.09 \pm 0.13$	$0.58[17] ; 0.70[18]$	$2.3-2.6$
$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$	$3.05 \pm 0.14 \pm 0.28$	$0.65[17 ; 1.00[18]$	$2.7-2.9$
$\bar{B}^{0} \rightarrow D^{0} \eta$	$2.53 \pm 0.09 \pm 0.11$	$0.34[17] ; 0.50[18]$	$2.4-3.2$
$\bar{B}^{0} \rightarrow D^{* 0} \eta$	$2.69 \pm 0.14 \pm 0.23$	$0.60[18]$	$2.8-3.8$
$\bar{B}^{0} \rightarrow D^{0} \omega$	$2.57 \pm 0.11 \pm 0.14$	$0.66[17] ; 0.70[18]$	$5.0-5.6$
$\bar{B}^{0} \rightarrow D^{* 0} \omega$	$4.55 \pm 0.24 \pm 0.39$	$1.70[18]$	$4.9-5.8$
$\bar{B}^{0} \rightarrow D^{0} \eta^{\prime}$	$1.48 \pm 0.13 \pm 0.07$	$0.30-0.32[20 ; 1.70-3.30[19]$	$1.7-2.6$
$\bar{B}^{0} \rightarrow D^{* 0} \eta^{\prime}$	$1.48 \pm 0.22 \pm 0.13$	$0.41-0.47[19]$	$2.0-3.2$

Table 2. Ratios of branching fractions $B F\left(\bar{B}^{0} \rightarrow D^{* 0} h^{0}\right) / B F\left(\bar{B}^{0} \rightarrow D^{0} h^{0}\right)$. The first uncertainty is statistical, the second is systematic.

$B F$ ratio	This measurement
$D^{* 0} \pi^{0} / D^{0} \pi^{0}$	$1.14 \pm 0.07 \pm 0.08$
$D^{* 0} \eta(\gamma \gamma) / D^{0} \eta(\gamma \gamma)$	$1.09 \pm 0.09 \pm 0.08$
$D^{* 0} \eta\left(\pi \pi \pi^{0}\right) / D^{0} \eta\left(\pi \pi \pi^{0}\right)$	$0.87 \pm 0.12 \pm 0.05$
$D^{* 0} \eta / D^{0} \eta($ Combined $)$	$1.03 \pm 0.07 \pm 0.07$
$D^{* 0} \omega / D^{0} \omega$	$1.80 \pm 0.13 \pm 0.13$
$D^{* 0} \eta^{\prime}(\pi \pi \eta) / D^{0} \eta^{\prime}(\pi \pi \eta)$	$1.03 \pm 0.22 \pm 0.07$
$D^{* 0} \eta^{\prime}\left(\rho^{0} \gamma\right) / D^{0} \eta^{\prime}\left(\rho^{0} \gamma\right)$	$1.06 \pm 0.38 \pm 0.09$
$D^{* 0} \eta^{\prime} / D^{0} \eta^{\prime}($ Combined $)$	$1.04 \pm 0.19 \pm 0.07$

3. Baryonic decay $\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{\Lambda} \boldsymbol{K}^{-}$

Baryonic decays account for $(6.8 \pm 0.6) \%$ [23] of all B mesons decays, however little is know about these processes. The reconstruction of exclusive final states allow to compare decay rates, and hence to increase our understanding of the fragmentation of B mesons into hadrons. The first measurement of the decay channel $\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{\Lambda} K^{-}$is reported here [2], using the full BaBar $\Upsilon(4 S)$ sample, thus $471 \times 10^{6} B \bar{B}$ pairs. The background-substracted distributions of the invariant masses $m\left(\Lambda_{c} K\right), m\left(\Lambda_{c} \Lambda\right)$ and $m\left(\Lambda_{K}\right)$ are given in the Fig. 1. A resonant structure is observed above $3.5 \mathrm{GeV} / c^{2}$ in $m\left(\Lambda_{c} K\right)$, while no threshold enhancement is observed in $m\left(\Lambda_{c} \Lambda\right)$, in contrary to other three-body baryonic B decays [24]. The branching fraction is measured after rescaling the simulated efficiency to the data distribution, yielding: $B F\left(\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{\Lambda} K^{-}\right)=(3.8 \pm 0.8$ (stat. $) \pm 0.2($ syst. $\left.) \pm 1.0\left(\Lambda_{c}^{+}\right)\right) \times 10^{-5}$ [2], where the third uncertainty arises from uncertainty on the branching fraction of $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$. This is the first measurement of this channel, with a significance above seven standard deviations.

4. Charmless decays $B \rightarrow \eta h(h=\pi, K)$

Charmless decays are sensitive probes for the measurement of the CP violation. In the Standard Model, the decays $B \rightarrow \eta K$ proceed through $b \rightarrow$ s penguin and $b \rightarrow u$ tree transitions. The interference of these transitions can result in a large direct CP asymmetry $A_{C P}$ [25], defined as:

$$
\begin{equation*}
A_{C P}=\frac{\Gamma(\bar{B} \rightarrow \eta h)-\Gamma(B \rightarrow \eta \bar{h})}{\Gamma(\bar{B} \rightarrow \eta h)+\Gamma(B \rightarrow \eta \bar{h})} \tag{1}
\end{equation*}
$$

where $\Gamma(B \rightarrow \eta h)$ is the partial width obtained for the $B \rightarrow \eta h$ decay. Similar non-zero direct CP violation could be observed for $B^{+} \rightarrow \eta \pi^{+}$, given to the interference between $b \rightarrow d$ penguin and $b \rightarrow u$ tree diagrams. Previous measurements by Belle [26] and BaBar [27] pointed to large negative $A_{C P}$, but preciser measurements are necessary to exclude the non-zero $A_{C P}$ in $B^{+} \rightarrow \eta \pi^{+}$. The branching fractions and $A_{C P}$ (for the charged modes) has been measured in the final Belle data sample [3], thus $772 \times 10^{6} B \bar{B}$, and are given in the Table 3. The first observation of $B^{0} \rightarrow \eta K^{0}$ is also reported, with a significance of 5.4σ (3).

Table 3. Measured branching fractions $B F$ and direct CP asymmetry $A_{C P}$ of $B \rightarrow \eta h, h=K, \pi$. The first uncertainty is statistical, the second is systematic.

Observables	Measured values
$B F\left(B^{0} \rightarrow \eta K^{0}\right)$	$\left(1.27_{-0.29}^{+0.33} \pm 0.08\right) \times 10^{-6}$
$B F\left(B^{+} \rightarrow \eta K^{+}\right)$	$(2.12 \pm 0.23 \pm 0.11) \times 10^{-6}$
$B F\left(B^{+} \rightarrow \eta \pi^{+}\right)$	$(4.07 \pm 0.26 \pm 0.21) \times 10^{-6}$
$A_{C P}\left(B^{+} \rightarrow \eta K^{+}\right)$	$-0.38 \pm 0.11 \pm 0.01$
$A_{C P}\left(B^{+} \rightarrow \eta \pi^{+}\right)$	$-0.19 \pm 0.06 \pm 0.01$

5. Charmless decays $B \rightarrow K \pi$

In a similar way as for the $B \rightarrow \eta h$ decays (see Section (4), the $B \rightarrow K \pi$ channels proceed through two diagrams: $b \rightarrow u$ tree and $b \rightarrow s$ penguins ones, both color-allowed or color-suppressed [28], whose interference are predicted to lead to a non-null direct CP assymetry $A_{C P}\left(K^{ \pm} \pi^{\mp}\right)$:

$$
\begin{equation*}
A_{C P}\left(K^{ \pm} \pi^{\mp}\right)=\frac{\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)-\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)+\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} . \tag{2}
\end{equation*}
$$

Previous measurements of the direct CP asymmetry in $B \rightarrow K \pi$ decays by Belle [28 pointed a significant and unexplained difference between $A_{C P}\left(K^{ \pm} \pi^{\mp}\right)$ and $A_{C P}\left(K^{ \pm} \pi^{0}\right)$. Using the final sample, thus $772 \times 10^{6} B \bar{B}$ pairs plus an improved tracking, Belle measured the branching fractions and the direct asymmetries of $B \rightarrow K \pi$ modes (4) (see Table[4). These values are compatible with the previous measurements by BaBar [29, CDF [30] and LHCb 31]. The possible isospin violating in $B \rightarrow K \pi$ decays can be investigated comparing the $B F$ ratios between the different modes with the SM prediction from the $S U(3)$ symmetry. The results, given in the Table 5 are consistent with the different theoretical approaches [4].

Table 4. Measured branching fractions $B F$ and direct CP asymmetry $A_{C P}$ of $B \rightarrow K \pi$. The first uncertainty is statistical, the second is systematic.

Channel	$B F$	$A_{C P}$
$B^{ \pm} \rightarrow K^{ \pm} \pi^{0}$	$(12.62 \pm 0.31 \pm 0.56) \times 10^{-6}$	$0.043 \pm 0.024 \pm 0.002$
$B^{0} \rightarrow K^{ \pm} \pi^{\mp}$	$(20.00 \pm 0.34 \pm 0.63) \times 10^{-6}$	$-0.069 \pm 0.014 \pm 0.007$
$B^{ \pm} \rightarrow K^{0} \pi^{ \pm}$	$\left(23.97_{-0.52}^{+0.53} \pm 0.69\right) \times 10^{-6}$	$-0.014 \pm 0.021 \pm 0.006$
$B^{0} \rightarrow K^{0} \pi^{0}$	$(9.66 \pm 0.46 \pm 0.49) \times 10^{-6}$	-

Table 5. Widths Γ ratios derived from the measured branching fractions (see Table (4), compared to the SM prediction from the $S U(3)$ symmetry. The first uncertainty is statistical, the second is systematic.

Ratio	This measurement	$S M$
$2 \Gamma\left(K^{+} \pi^{0}\right) / \Gamma\left(K^{0} \pi^{+}\right)$	$1.05 \pm 0.03 \pm 0.05$	1.15 ± 0.05
$\Gamma\left(K^{+} \pi^{-}\right) / 2 \Gamma\left(K^{0} \pi^{0}\right)$	$1.04 \pm 0.05 \pm 0.06$	1.12 ± 0.05

6. Observations of $B_{s}^{0} \rightarrow J / \psi f_{0}$ and $B_{s}^{0} \rightarrow J / \psi \eta$

The $b \rightarrow c \bar{c} s$ transition, occuring for instance in the decay $B_{s}^{0} \rightarrow J / \psi \phi$, benefits from a relatively large branching fraction. It has thus been used to extract the B_{s}^{0} decay width difference $\Delta \Gamma$ and the CP violating phase β_{s} [32] [33], sensitive to potential New Physics. Such study requires however an angular analysis, owing to the Scalar \rightarrow Vector Vector nature of the channel. The same $b \rightarrow c \bar{c} s$ transition can lead to the decay channel $B_{s}^{0} \rightarrow J / \psi f_{0}$, thus Scalar \rightarrow Vector Scalar, for which no angular analysis is so needed; furthermore leading order QCD, together with measurements of D_{s} decays to ϕ and f_{0} mesons, predicts its branching fraction to be $(3.1 \pm 2.4) \times 10^{-4}[5$. Using its final data sample at $\Upsilon(5 S)$, thus $121.4 / \mathrm{fb}$ or $(1.24 \pm 0.23) \times 10^{7} B_{s}^{*} \bar{B}_{s}^{*}$ pairs, Belle measured the $B_{s}^{0} \rightarrow J / \psi f_{0}$ branching fraction, yielding together with LHCb [34] its first observation [5]. The distributions of the invariant mass of the di-pion system from $f_{0} \rightarrow \pi^{+} \pi^{-}$are given in the Figure 2, where the $f_{0}(980)$ resonance can be seen, close to another scalar resonance, whose fitted parameters are: $m_{0}=(1.405 \pm 0.015 \text { (stat.) })_{-0.007}^{+0.001}$ (syst.)) GeV / c^{2} and $\Gamma_{0}=(0.054 \pm 0.033 \text { (stat. })_{-0.003}^{+0.014}$ (syst.) $) \mathrm{GeV}$, which are consistent with the $f_{0}(1370)$ parameters [23]. The measured branching fractions, signal yields and significances are given in the Table 6 .

Belle also observed for the first time the decay $B_{s}^{0} \rightarrow J / \psi \eta$ using its full $\Upsilon(5 S)$ dataset [6]. The distributions in data of the beam-constrained mass

Table 6. Branching fractions, fitted signal yields and significance S of the measurements performed in data on the $B_{s}^{0} \rightarrow J / \psi f_{0}(X)$ channels. The quoted uncertainties account for respectively the statistics, systematics and the number of $B_{s}^{(*)} \bar{B}_{s}^{(*)}$ in the data sample.

Mode	Yield	S	$B F \times 10^{-4}$
$B_{s}^{0} \rightarrow J / \psi f_{0}(980)$	63_{-10}^{+16}	8.4σ	$1.16_{-0.19-0.17-0.18}^{+0.31+0.15+0.26}$
$B_{s}^{0} \rightarrow J / \psi f_{0}(1370)$	19_{-8}^{+6}	4.2σ	$0.34_{-0.14-0.02-0.05}^{+0.11+0.03+0.08}$

$M_{b c}$ and of the energy difference ΔE [5] for the sub-channel $B_{s}^{0} \rightarrow J / \psi \eta$ with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ are given in the Figure 3 where the B signal can clearly be seen at $M_{b c} \simeq 5.42 \mathrm{GeV} / c^{2}$ and $\Delta E \simeq 0 \mathrm{GeV}$. The measured branching fraction yields:

$$
\begin{equation*}
B F\left(B_{s}^{0} \rightarrow J / \psi \eta\right)=\left(5.11 \pm 0.50(\text { stat. }) \pm 0.35(\text { syst. }) \pm 0.68\left(\mathrm{f}_{s}\right) \times 10^{-4}\right) \tag{3}
\end{equation*}
$$

where the last uncertainty accounts for the $B_{s}^{(*)} \bar{B}_{s}^{(*)}$ production fraction at the $\Upsilon(5 S)$.

The observation of these channels offers new CP channels for the study of the B_{s} mixing property, paving the way for LHC experiments.

REFERENCES

[1] BaBar Collaboration. Phys. Rev. D, 84:112007, 2011.
[2] BaBar Collaboration. Phys. Rev. D, 84:071102, 2011.
[3] C.-T. Hoi and P. Chang for the Belle Collaboration. In Belle Preprint 2011-14 arXiv:1110.2000v1 [hep-ex], 2011.
[4] Paoti Chang for the Belle Collaboration. In Proceedings for EPS-HEP Grenoble, 2011.
[5] Belle Collaboration. Phys. Rev. Lett., 106:121802, 2011.
[6] Belle Collaboration. In http://belle.kek.jp/results/summer11/Bs_JpsiEta/, 2011.
[7] BaBar Collaboration. Nucl. Instrum. Methods A, 479:1, 2002.
[8] A. Abashian et al. Nucl. Instrum. Methods, A 479:117, 2002.
[9] PEP-II. In Conceptual Design Report, SLAC-0418, 1993.
[10] S. Kurokawa and E. Kikutani. Nucl. Instrum. Methods A, 499:1, 2003.
[11] BaBar Collaboration. Phys. Rev. D, 69:032004, 2004.
[12] Belle Collaboration. Phys. Rev. D, 72:011103, 2005.
[13] Belle Collaboration. Phys. Rev. D, 74:092002, 2006.
[14] C.W. Bauer, D. Pirjol, and I.W. Stewart. Phys. Rev. D, 65:054022, 2002.
[15] A.E. Blechman, S. Mantry, , and I.W. Stewart. Phys. Lett. B, 608:77, 2005.
[16] S. Mantry, D. Pirjol, , and I.W. Stewart. Phys. Rev. D, 68:114009, 2003.
[17] C.K. Chua, W.S. Hou, and K.C. Yang. Phys. Rev. D, 65:096007, 2002.
[18] M. Neubert and B. Stech. In Heavy Flavours II, eds. A.J. Buras and M. Lindner (World Scientific, Singapore, 1998), p. 294., 1998.
[19] A. Deandrea and A.D. Polosa. Eur. Phys. J., 677:22, 2002.
[20] J.O. Eeg, A. Hiorth, and A.D. Polosa. Phys. Rev. D, 65:054030, 2002.
[21] Y.Y. Keum, T. Kurimoto, H. Li, C.D. Lü, and A.I. Sanda. Phys. Rev. D, 69:094018, 2004.
[22] C.D. Lü. Phys. Rev. D, 68:097502, 2003.
[23] K. Nakamura et al. (Particle Data Group). J. Phys. G, 37:075021, 2010.
[24] Xavier Prudent for the BaBar Collaboration. In Proceedings for ICHEP2008, arXiv:0809.2929v2 [hep-ex], 2008.
[25] H. J. Lipkin. Phys. Lett. B, 254:247, 1991.
[26] Belle Collaboration. Phys. Rev. D, 75:071104, 2007.
[27] BaBar Collaboration. Phys. Rev. D, 80:112002, 2009.
[28] Belle Collaboration. Nature, 452:332, 2008.
[29] BaBar Collaboration. In Proceedings for ICHEP2008, arXiv:0807.4226 [hepex], 2008.
[30] CDF Collaboration. Phys. Rev. Lett., 106:181802, 2011.
[31] LHCb Collaboration. In arXiv:1106.1197 [hep-ex], 2011.
[32] CDF Collaboration. Phys. Rev. Lett., 100:161802, 2008.
[33] D0 Collaboration. Phys. Rev. Lett., 101:241801, 2008.
[34] LHCb Collaboration. Phys. Rev. Lett. B, 698:115-122, 2011.

Fig. 1. Background-substracted distributions of the invariant masses $m\left(\Lambda_{c} K\right)$, $m\left(\Lambda_{c} \Lambda\right)$ and $m\left(\Lambda_{K}\right)$ in data (points) and simulated Monte Carlo non-resonant signal sample (full histogram)

Fig. 2. Invariant mass of the di-pion system in data (points). The total fitted distribution is given by the solid line, the dash-dotted cuvred give the total background, the dashed curves other J / ψ background, and the dotted curves show the non-resonant component.

Fig. 3. The distributions in data (points) of the beam-constrained mass $M_{b c}$ and of the energy difference ΔE for the sub-channel $B_{s}^{0} \rightarrow J / \psi \eta$ with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$. The total fit function is given by the solid line, the total background contribution by the dotted line, and the continuum background is represented by the dashed line.

[^0]: * Presented at Cracow Epiphany Conference, 9-11 January 2012

