
An exact general remeshing scheme

applied to physically conservative voxelization

Devon Powell & Tom Abel
dmpowel1@stanford.edu, tabel@stanford.edu

Abstract

We present an exact general remeshing scheme to compute exact integrals of polynomial
functions over the intersections between convex polyhedral cells of old and new meshes. In
physics applications this allows one to ensure global mass, momentum, and energy conserva-
tion while applying higher-order polynomial interpolation. We elaborate on applications of
our algorithm arising in the analysis of cosmological N-body data, computer graphics, and
continuum mechanics problems.

A particular case we discuss most thoroughly is to remesh tetrahedral cells onto a Carte-
sian grid such that the volume integral over the domain of the polynomial function given on
the input mesh is ensured to equal the equivalent volume integral over the output mesh. We
refer to this as “physically conservative voxelization”.

At the core of our method is an algorithm for intersecting two convex polyhedra by suc-
cessively clipping one against the faces of the other. This algorithm is an implementation
of the ideas presented abstractly by Sugihara (1994), who suggests using the planar graph
representations of convex polyhedra to ensure topological consistency of the output. This
makes our implementation robust to geometric degeneracy in the input. We employ a sim-
plicial decomposition to calculate moment integrals up to quadratic order over the resulting
intersection domain.

We also address practical issues arising in a software implementation, including numerical
stability in geometric calculations, management of cancellations errors, and extension to two
dimensions. In a comparison to recent work, we show substantial performance gains. We
provide a C implementation intended to be a fast, accurate, and robust tool for geometrical
calculations on polyhedral mesh elements.

Keywords: remesh, remap, rasterization, voxelization, conservative, dark matter, plasma,
Vlasov, Poisson, hydrodynamics

1. Introduction

Several areas of computational physics require one to remesh (also “remap” or “resam-
ple”), physical quantities between meshes made of convex polyhedra in a physically conser-
vative manner. By “physically conservative,” we mean that mesh cells from the old and new
meshes are overlain, the volumes of intersection between old and new cells constructed, and
the quantity of interest transferred from the old to the new mesh cells such that the total
integral over the output and input are equal.

Preprint submitted to Elsevier March 11, 2015

ar
X

iv
:1

41
2.

49
41

v3
 [

ph
ys

ic
s.

co
m

p-
ph

]
 9

 M
ar

 2
01

5
SLAC-PUB-16295

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.

One instance of this is in numerical hydrodynamics, where a highly distorted mesh must
be relaxed and remeshed in order to avoid loss of accuracy. In this context, the subject of
this paper is known as a “direct remap.” This is of interest in some flavors of Arbitrary
Lagrangian-Eulerian (ALE) hydrodynamics (see e.g. Donea et al. 2004) and, more recently,
in the “re-ALE” scheme pioneered by Loubère et al. (2010). The precise problem of inter-
secting arbitrary polyhedra for direct remapping of hydrodynamical quantities is attacked
by Grandy (1999), who gives a description of a first-order scheme for polyhedral grids, as
well as a throrough review of the topic. Dukowicz and Kodis (1987) and Dukowicz et al.
(1991) present algorithms for the same problem, including higher-order interpolation during
the remap step.

Interface reconstruction for multiphase flows (specifically, piecewise-linear interface recon-
struction, or PLIC) relies on calculating the volume of a mesh cell that has been truncated
against the interface plane. This is akin to the intersection of two polyhedra, though in
this case the problem is restricted to intersecting a polyhedron with another plane. Hirt
and Nichols (1981) describe the so-called “volume-of-fluid” (VOF) methods, which enforce
volume conservation of material in a grid cell during this clipping operation. Renardy et al.
(2001) provide a good overview of the basic concepts involved. López and Hernández (2008)
give a Fortran toolkit of the necessary operations for VOF, against which we give a direct
comparison in the results section.

A physically conservative remesh is also useful for visualization purposes. Specifically, we
refer to “voxelization” (also “scan-line conversion” or “rasterization”), a geometric operation
in which polyhedra are mapped onto a 3D Cartesian lattice of cubical grid cells (“voxels”).
The current state-of-the-art in voxelization as a computer graphics application is given by
Duff (1989), who generates anti-aliased images by computing exact convolution integrals for
separable polynomial filters. More recently, Auzinger et al. (2012) and Auzinger and Wim-
mer (2013) compute exact convolution integrals for non-separable (spherically-symmetric)
polynomial filters. Catmull (1978) describes area-sampling in 2D, which is equivalent to
convolving the continuous image with the pixel shape. Again, the problem of intersecting
convex polyhedra arises, as voxelization on a conceptual level is simply the computation of
integrals over the intersection volumes between cubical grid cells and input polyhedra.

The particular application for which we developed the method presented here is the exact
mass-conservative voxelization of tetrahedra for the simulation and analysis of cosmological
N -body systems using the method of Abel et al. (2012). This approach to the N-body
problem treats dark matter particles as tracers, and interprets the mass as being interpolated
between the tracers in tetrahedral mass elements. This approach has the advantage of giving
a well-defined density field everywhere in space, eliminating the need to consider particle
discreteness effects. It has since been explored in more detail by Angulo et al. (2014), who
create smooth maps of the gravitational lensing potential around dark matter haloes, Hahn
et al. (2013), who show that this method eliminates artificial clumping in N-body simulations,
and Hahn et al. (2014), who look at statistics of cosmic velocity fields. Kaehler et al. (2012)
use voxelization in a visualization context to produce stunning and informative renderings
of cosmic structures.

We refer in this paper to the specific case of “physically conservative voxelization” of
tetrahedra, in which a scalar density defined across the input tetrahedron is integrated over
each domain formed by the intersection of the tetrahedron with each grid cell that intersects

2

the tetrahedron (see Figures 1 and 2 for illustrations). Hence, the sum over each voxel in
the output should exactly equal the total integral over the input.

Thus, this paper describes a specific application of a physically conservative remesh, while
remaining cognizant of the fact that the concepts presented here form a general conservative
remesh scheme applicable to any of the aforementioned problems. Our goal is to present a
unified approach for intersecting two convex polyehedra in a geometrically robust way, and
for accurately computing the integral of a polynomial function over the resulting intersection
domain.

Figure 1: An illustration of physically conservative voxelization. Left: An input tetrahedron.
Middle: The input tetrahedron, split between underlying cubical grid cells (voxels) to form
a set of non-overlapping integration domains, each of which is the intersection of a cube and
the tetrahedron. Right: the voxelized tetrahedron. The total volume integral is conserved
to high precision between the left and right figures.

As we discuss in Section 3, there are two basic operations that form the core of our algo-
rithm: a clipping operation, in which a cube is repeatedly truncated against the faces of a
tetrahedron (this is equivalent to intersecting two convex polyhedra), and a reduction oper-
ation, in which we integrate a polynomial density over the the convex polyhedron resulting
from the clipping operation.

The integration of polynomial fields over arbitrary polyhedral domains has been well-
studied in the literature. One approach is to reduce the dimensionality of a volume integral
using the divergence theorem. Dukowicz and Kodis (1987), Liggett (1988), Mirtich (1996),
and Margolin and Shashkov (2003) all use the divergence theorem to reduce such volume
integrals to line integrals. In particular, the two-dimensional case in Cartesian coordinates
is well known (Stone 1986), including formulae for moments over the polygons (Bockman
1989). A second approach to this problem is to decompose the domain into simplices (tetra-
hedra in 3D, triangles in 2D) and carry out the integration over each simplex separately using
existing formulae derived using barycentric coordinates (see Section 3.3). This method is
well-established in implementations of the finite element method (FEM), where mesh ele-
ments are often simplices. Most recently, De Loera et al. (2011) present software for the exact
integration of polynomials over convex polyhedral domains using simplicial decomposition.
Liu and Vinokur (1998) present a similar algorithm.

The clipping operation is more subtle. The classic method for clipping a polyhedron

3

Figure 2: Another illustration of physically conservative voxelization. Here we show slices
through a voxelized triangular prism with constant (left), linear (middle) and quadratic
(right) density fields defined over the domain. Top row: The input, with continuous poly-
nomial density. The top-left panel also shows the grid to which we are voxelizing. Bottom
row: The voxelized output. Mass is conserved to high precision between the top and bottom
rows.

against a plane is Sutherland-Hodgman clipping (Sutherland and Hodgman 1974), which
simply tests vertices against the clip plane and excludes those vertices lying on the “wrong”
side. This method requires some sort of lookup table for reconstructing the boundary connec-
tivity of the resulting polyhedron, as implemented by Stephenson and Christiansen (1975).
However, this method is not geometrically robust, meaning that it can admit geometri-
cal inconsistencies if vertices lie on the clip plane to within roundoff error. In this case,
vertices may be duplicated or omitted, giving an invalid representation for the output poly-
hedron. This is catastrophic for, say, the integration process, which requires complete and
self-consistent geometrical information.

Because ours is a computational physics application, geometrical robustness to the input
data is a necessity; we require accurate and conservative output for all possible input cases.
Previous work in computational physics (e.g. Dukowicz et al. 1991, Grandy 1999) has
dealt with this issue by using auxiliary algorithms for detecting and artificially removing

4

such geometrical ambiguities, or by dealing with them on a case-by-case basis. We instead
propose to handle geometric degeneracies in a cleaner way, by implementing an algorithm
that is naturally immune to them, and hence manifestly robust.

The question of how to design a geometrically robust method for intersecting polyhedra
(intersecting two convex polyhedra is equivalent to repeatedly clipping one against the faces
of the other) is addressed in detail by Stewart (1994), who gives a thorough review of the
literature. The author divides ways of achieving geometric robustness into three main classes.
The first is exact arithmetic, meaning that the input polyhedron is represented exactly
(e.g. integer or rational coordinates), removing the possibility of geometric ambiguity from
subsequent tests. Either some form of high-precision arithmetic is used (e.g. Sugihara and Iri
1990), or the vertices/edges of an input polyhedron are perturbed in such a way that a finite-
precision algorithm can never encounter a geometrically ambiguous decision (e.g. Milenkovic
1988). The second is the representation and model approach developed by Hoffmann et al.
(1988), which makes geometric decisions guaranteeing that the mapping from input to output
representations always corresponds to valid input and output models. The final class are
the topological consistency methods. They work by guaranteeing that the output is always
valid in a topological sense. Such methods are not in general provably robust, but empirical
tests have shown that they indeed are. Sugihara and Iri (1989) achieve this by eliminating
redundant numerical tests. Other examples include Karasick (1989), who employs rules on
how geometric intersections are allowed to occur, and Bruderlin (1991), who checks close-by
features that may be merged for whether they result in a valid polyhedron.

Our choice of which of these aforementioned algorithms to use for our application is
informed by the fact that we want to perform both the clipping and reduction operations on
the same polyhedral representation, so as to avoid the extra computation needed in changing
representations.

We choose to represent convex polyhedra using their planar graphs and perform the
clipping operation in a way that preserves the topological validity of the output graph, as
suggested by Sugihara (1994). This is a member of the topological consistency methods, and
it ensures that our method is robust by making geometric decisions combinatorially, using
numerical comparisons only as a guide. This representation for convex polyhedra lends
itself naturally to a simplicial decomposition approach for the integration step, which can
be accomplished easily by traversing the graph.

The layout of this paper is as follows. In Section 2, we discuss the original application for
this work (the analysis and simulation of dark matter in cosmology), as well as elaborating
on other potential applications in computer graphics and hydrodynamics. Section 3 presents
in detail the main concepts in the voxelization algorithm, while Section 4 discusses some
subtleties arising in a practical implementation. Finally, we present results concerning ac-
curacy, robustness, and performance of our C implementation, comparing to previous work,
in Section 5.

2. Motivation

2.1. Cosmological N-body data

The application for which we developed the method presented here is the physically
conservative voxelization of tetrahedra for the simulation and analysis of cosmological N -

5

Figure 3: Visual comparison of methods for depositing dark matter mass onto a regular grid.
Top Left: scatter plot of particle locations. Top right: Cloud-in-cell (CIC) deposit. Bottom
left: Conservative voxelization, with piecewise-constant density. Bottom right: Conservative
voxelization, with piecewise-linear density. The bottom two panels use the method of Abel
et al. (2012) to properly capture the phase-space structure of the dark matter, using the
physically conservative voxelization scheme presented here to conserve mass to machine
precision. This is the motivation for the present work.

6

body systems using the approach of Abel et al. (2012).
Dark matter, like any continuous system in physics, can be represented by a probability

distribution function (PDF) in phase space. The computational solution of this system re-
quires the discretization of this continuous PDF, something traditionally done using Dirac-δ-
like particles. As such, the results of commonly used N-body codes such as Gadget2 (Springel
2005), HACC (Habib et al. 2012), 2HOT (Warren 2013), Enzo (Bryan et al. 2014), Ramses
(Teyssier 2002), NyX (Almgren et al. 2013), and ART (Kravtsov et al. 1997) are given in a
particle description. While these codes differ in the ways they compute gravitational forces,
decompose the domain, apply force-softening to particles, etc., they are all fundamentally
N-body codes that interpret dark matter mass as being concentrated at point locations.

This can be problematic when it comes to the analysis of such N-body data. In many
applications (e.g. solution of the Poisson equation, identification of cosmic voids, visualiza-
tion), we desire the density field to be represented continuously, so that there is no ambiguity
in the local density of a particle distribution. Simply binning particles into their nearest grid
cell (known as cloud-in-cell, or CIC; see e.g. Hockney and Eastwood 1988) is a ubiquitous
technique for doing so, and is traditionally used in the force computation step for parti-
cle mesh (PM) codes. Voronoi tessellation around particles has also seen some success (e.g.,
Neyrinck 2008). However, both of these methods are subject to Poisson counting uncertainty
due to their particle nature.

Abel et al. (2012) study N-body (dark matter) simulation data by representing the cold
phase-space distribution of dark matter as a three-dimensional “sheet” tessellated into sim-
plices. When modeling a cold fluid in phase space, one only needs to represent a three-
dimensional manifold moving in the six-dimensional phase space. The tetrahedral tessella-
tion is thus a piecewise-linear approximation to a smooth three-manifold embedded in R6.
Rather than carrying mass themselves, the particle positions serve merely as “tracers” of
the underlying phase-space distribution. The mass itself is interpolated between particles
with neighboring Lagrangian coordinates. In this scheme, Lagrangian space is tessellated
into tetrahedral cells which carry the mass, rather than the particles, which serve as ver-
tices of the tetrahedra. Such an approach unambiguously gives the density and velocity of
the distribution everywhere in configuration space, as opposed to traditional particle-based
schemes, which are subject to sampling noise. When the vertices move on characteristics
and the mass inside the volumes they span can be assumed invariant, the full microphysical
phase-space structure is captured by such a three-dimensional sheet.

This scheme has the advantage of giving a well-defined density field everywhere in space,
eliminating the need to consider particle discreteness effects. The method has since been
explored in more detail by Angulo et al. (2014), who create smooth maps of the gravitational
lensing potential around dark matter haloes, Hahn et al. (2013), who show that this method
eliminates artificial clumping in N-body simulations, and Hahn et al. (2014), who look at
statistics of cosmic velocity fields.

This description of dark matter as a collection of mass-carrying tetrahedra is very useful.
However, this density field is still represented in Lagrangian space; we require a way to
project tetrahedral mass elements onto a Cartesian grid in 3D configuration space.

Angulo et al. (2014) recursively split tetrahedra until each one is smaller than a grid
cell, then deposits the mass to the nearest cell. This conserves mass, but is relatively slow
compared to the method described here, and introduces some small-scale noise. Hahn et al.

7

(2013) use a CIC deposit, the mass-conserving particle-based method mentioned above, to
generate the density field used in solving the Poisson equation. This method works well for
simulating gravitational forces between particles, but is unsuitable for visualization or for
more advanced simulation methods such as Hahn and Angulo (2015). Hahn et al. (2014) use
a multisampling approach, in which the mass distribution is sampled several times within
each grid cell, and the results averaged. This method works very well for visualization
and some analysis purposes. However, for certain other applications, including solving for
gravitational forces using the Poisson equations, we need the total mass to be conserved. If
the main focus is scientific visualization of cosmological N–body simulations, Kaehler et al.
(2012) explore the advantages of this method over a variety of other techniques and also
discuss some key ideas of how to frame the problem so that primitives of typical computer
graphics hardware can be exploited optimally.

So, we desire the total mass contained in a grid cell to exactly equal the integral of
the input density field over the cell, while avoiding aliasing noise, and to do it quickly and
accurately. The problem reduces to finding the integral of a polynomial density field over
each domain resulting from the intersection of the input tetrahedron with the cubical grid
cells. In other words, we require a physically conservative voxelization scheme for depositing
tetrahedral mass elements to a grid.

2.2. Computer graphics and visualization

As discussed in the introduction, another area for which this work may be useful is that
of voxelization for computer graphics. This is in the context of computing exact convolution
integrals of polynomial filters over cubical cells. In one way or another, Catmull (1978), Duff
(1989), Auzinger et al. (2012), and Auzinger and Wimmer (2013) compute such convolution
integrals to achieve perfect anti-aliasing in the output images. Our method extends the
area-sampling approach of Catmull (1978) to “volume-sampling” in 3D.

Hasselgren et al. (2005), Zhang et al. (2007), and Pantaleoni (2011) describe GPU imple-
mentations of “conservative” voxelization. In their context, “conservative” means that each
voxel that intersects a polyhedron is correctly identified; however, there is no guarantee that
the total volume integral is conserved. Our method could therefore be efficiently combined
with these hardware-accelerated collision-finding algorithms to exactly enforce local conser-
vation of physical quantites. This is exciting for scientific visualization applications such as
that of Kaehler et al. (2012).

2.3. Hydrodynamics

Generally speaking, numerical hydrodynamics schemes are derived from conservations
laws (continuity equations) for mass, momentum, and energy in their integral forms (see
Jameson et al. 1981, for example). Hughes (1981) and Donea et al. (2004) describe Arbi-
trary Langrangian-Eulerian (ALE) schemes on a moving mesh. A major component in ALE
schemes is the remesh, which moves the mesh to some desired updated configuration and
reapportions conserved quantities from the old mesh to the new one. This is most often
done advectively (the remesh step is absorbed into the hydrodynamics solve), though in
some instances a direct (geometric) remap is performed.

Here we must also note that ALE schemes typically use grids whose topology is fixed.
In the case of non-simplicial (i.e. hexahedral) grids, this leads to cell faces whose points are

8

not coplanar. In some instances, cells are defined using curvilinear surfaces, giving a higher-
order scheme (e.g. Anderson et al. 2015). Others (e.g. Garimella et al. 2007) decompose
faces into triangles to give a consistent, polyhedral description of a mesh cell regardless
of topology. One exception is the work of Springel (2010), who solves the hydrodynamic
equations on a moving Voronoi mesh, which naturally gives polyhedral cells. Another is the
“re-ALE” scheme pioneered by Loubère et al. (2010), in which the mesh topology is not
fixed, but is “reconnected” at every timestep to ensure that the mesh remains polyhedral.
The applicability of our method is limited to such polyhedral cells.

As we show in Section 3.2, a core component of the method presented here is the clipping
operation, in which we construct a convex polyhedron by intersecting a cube with the four
face planes comprising a tetrahedron. Although we developed this method and optimized our
particular implementation for voxelizing tetrahedra to a grid of uniform cubes, the clipping
operation is general and can be applied to any convex polyhedron with an arbitrary number
of faces. Hence, it may form the basis for such a direct remap scheme in a hydrodynamics
context. We give a demonstration of such a direct first-order remesh in 2D in Section 4.4.

The problem of intersecting arbitrary polyhedra for direct remapping in hydrodynamics
has been previously addressed by Grandy (1999), Dukowicz and Kodis (1987), and Dukowicz
et al. (1991). The improvement that our method offers over previous work in this area
is geometrical robustness. The aforementioned publications require some auxiliary way of
handling geometric degeneracies (post-facto checks on accuracy in the case of Dukowicz et al.
1991, and ad-hoc handling of all possible degenerate situations in the case of Grandy 1999).
As discussed in Section 3.2, our clipping method is automatically robust and thus requires
no such checks.

3. Algorithm

We now describe our voxelization algorithm in detail. Note that for our application, we
have restricted the problem to voxelizing tetrahedra. However, the concepts can be easily
extended into a conservative remesh operation between any meshes, as long as they consist
of convex polyhedra.

The key idea in the voxelization process is to recognize that each intersection between
an input tetrahedron and a voxel is itself a convex polyhedron whose volume and moments
can be calculated using a simplicial decomposition.

This explanation can be made clearer by noting that there are really three types of voxels
we must consider:

1. Voxels which lie completely inside of the input tetrahedron.

2. Voxels which lie completely outside of the input tetrahedron.

3. Voxels which cross the boundary of the input tetrahedron.

Types 1 and 2 are trivial to deal with. Voxels lying completely outside the tetrahedron
can be ignored, and voxels lying completely inside can be integrated over analytically, since
they are axis-aligned cubes. Type 3 is the core of the algorithm because it requires us to
construct the polyhedral domain formed by the intersection of the voxel and the tetrahedron
in a geometrically robust way, a nontrivial operation.

Hence, we break the algorithm into three main parts:

9

Searching is the operation of differentiating between the three voxel types; it amounts
to efficiently finding voxels of type 3.

Clipping is the operation of taking a type 3 voxel and constructing the polyhedron
resulting from its intersection with the input tetrahedron.

Reduction is the operation of computing the integral of a polynomial density field
over voxels of types 1 and 3. Voxels of type 1 can be reduced trivially, as noted above.
Clipped voxels of type 3 must be decomposed into simplices for computation of the
integral. It is this last step that dominates the reduction operation, so for practical
purposes, we use “reduction” to mean the combined process of simplicial decomposition
and integration of clipped voxels.

3.1. Searching

We can differentiate between the types of voxels using the orientation of their vertices
with respect to the faces of the tetrahedron. By “orientation,” we mean the signed distance
from a vertex at position x to the face labeled f ; e.g.

df = (x− xf) · nf (3.1)

where nf is the unit normal of the face and xf is a point coplanar with the face. Points
for which df ≤ 0 are considered “behind” or “outside of” f , while points for which df > 0
are “inside” or “in front of” f .

Voxels with all eight vertices lying outside of the same face of the tetrahedron must be
entirely excluded (type 1), and can be ignored. Likewise, voxels with all 8 vertices lying inside
of all faces of the tetrahedron must be entirely included (type 2), and can be integrated over
easily. Voxels that fall into neither of the above categories are close to the boundary of the
tetrahedron (type 3), and must be clipped and reduced.

Testing vertices of the grid against the faces of the tetrahedron is a time-consuming
operation, especially if the grid is fine.

In the most näıve implementation, we test each grid vertex against all four faces of the
tetrahedron exactly once, storing the results in a buffer. The number of evaluations of (3.1)
in this brute-force approach scales as O(g3), where g is the linear dimension of the grid.

It is possible to do better using a binary space partitioning scheme. Instead of checking
the vertices of individual voxels against the faces of the tetrahedron, we begin by checking
the corner vertices of the entire target grid. We then split this box in two across the longest
dimension and check the vertices of those children. This recursive splitting process continues
until one of three things happens:

1. All eight vertices of the current box lie outside of the same face of the tetrahedron, so
all enclosed voxels are completely outside of the tetrahedron. We stop recursing and
ignore all voxels in the box.

2. All eight vertices of the current box lie inside of all faces of the tetrahedron, so all
voxels in the box must be fully contained in the tetrahedron. We stop recursing and
process all voxels in the box using a for-loop.

3. The current box contains a single voxel, which must lie on the boundary of the tetra-
hedron. We stop recursing, clip, and reduce the voxel.

10

Figure 4 gives an illustration of this binary partitioning process.

Figure 4: A binary space partitioning scheme for minimizing grid vertex orientation checks.
Top left: An input tetrahedron to be voxelized. Top center to bottom center: Recursive
refinement of grid regions. Corners of the grid are checked for inclusion in the tetrahedron.
Regions that lie entirely outside of the tetrahedron (gray) can be ignored, whereas regions
that are entirely included (dark blue) can be integrated over easily using a for-loop. Regions
whose inclusion is ambiguous (light blue) must lie near the boundary, and are recursively
split until they contain a single voxel. Bottom right: the voxelized tetrahedron.

The number of vertex checks in this binary partitioning approach scales as O(g2 log g).
This is better in principle than the brute-force approach; however, the added overhead
of keeping track of a stack of tree nodes means that practically speaking, the brute-force
approach does better when the target grid is coarse. We discuss this further in the results
section.

11

3.2. Clipping

Any voxels found to lie across the boundary of the tetrahedron must be clipped against
the faces of the tetrahedron, so that the polyhedron resulting from the intersection of the
voxel and the tetrahedron can be known explicitly. By “clipping” we mean “truncation”:
we are finding the intersection of a polyhedron with a half-space (the volume of the original
polyhedron that is “in front of the clip plane”), throwing away vertices lying outside of the
half space (“behind the clip plane”), and inserting new vertices along edges bisected by the
clip plane.

We accomplish this through a directed graph traversal. By Steinitz’s theorem (Steinitz
1922), any convex polyhedron can be represented as a three-vertex-connected planar graph
(sometimes called a polyhedral graph for this reason) whose vertices and edges are isomorphic
to those of the polyhedron. We use this theorem to our benefit by representing polyhedra
using their graphs, in a modification of the well-known “half-edge” or “doubly-connected
edge list” representation for polyhedra. This one-skeleton of the polyhedron provides us
with all the necessary information for the geometric operations described here. The basic
idea of using this representation for robust clipping is reported by Sugihara (1994), though
the algorithm is described rather abstractly. We give a concrete implementation which uses
a graph traversal over the polyhedron itself.

The problem of clipping a polyhedron against a plane then reduces to finding the con-
nected component of its graph whose vertices lie behind the clip plane.

We store polyhedra as triply-linked sets of vertices, where each vertex consists of a co-
ordinate for its spatial location, three pointers to its neighboring vertices, a byte used to
indicate whether the vertex has been clipped, and four floating-point numbers giving the
signed distance to each clip plane. Our representation of faces is implicit, as loops in the
planar graph naturally give us vertices in the proper order around each face.

The algorithm is as follows. First, the graph of the initial cubical voxel is initialized.
We then traverse the graph using a depth-first search. We begin by finding a vertex behind
the clip plane, simply looping over existing vertices until one is found (this is fast, as the
floating-point operations involved have been previously evaluated). If we cannot find a
starting vertex, we have determined that the entire polyhedron lies in front of the clip plane,
and so will be unaffected. Otherwise, we start at this vertex and begin traversing the graph.
Vertices visited in the traversal are marked as clipped and ignored hereafter.

Each time a vertex is visited which is in front of the clip plane, we calculate the intersec-
tion point between the clip plane and the edge formed by the current and previous vertices
(see Section 4.1 for further explanation). A new vertex is assigned the correct position, its
signed distance to each remaining clip plane is calculated, and it is inserted into the graph.
The previous vertex is marked as having been clipped.

When the traversal ends (all edges behind or crossing the clip plane have been visited), we
have in hand an explicit representation of the clipped voxel, with no need to reconstruct the
vertex ordering. We then repeat the process for each remaining face of the input tetrahedron.

An illustration of the edge traversal process for clipping is given in Figure 5.
Approaching the clipping operation in this way has two major benefits:

1. We recover new vertices in the correct order (e.g., clockwise around the clip face) due
to the directed nature of the depth-first graph traversal. This allows us to insert new

12

Figure 5: Traversal of edges in a voxel for clipping against a plane while automatically
building connectivity of the resulting polyhedron. Top left: The input voxel. Top, second
from left: The shaded region indicates the location of the clip plane. Remaining panels:
The planar graph formed by the vertices and edges of the voxel is traversed. Each time
the working edge (yellow) is bisected by the clip plane, a new edge (blue) is inserted. The
working edge makes its way around the clip plane in an ordered fashion, so that new edges
and vertices are automatically inserted with the appropriate connectivity. Bottom right:
The clipped voxel.

vertices on the fly by implicitly knowing the connectivity to neighboring vertices, which
saves us from having to reconstruct the polyhedron after each clip operation. As we
show in Section 5, this provides substantial performance gains over previous methods.

13

2. We ensure that the geometrical information in the output is complete and consistent.
In graph-theoretical terms, we always guarantee preservation of the planar, three-
vertex-connected nature of the graph while inserting and removing vertices during the
clipping process. This makes our algorithm robust to degenerate geometry (vertices
coplanar with a clip plane).

3.3. Reduction

Once we have finished clipping a voxel, we are ready to calculate the integral of the input
density over the clipped voxel. We do this using a simplicial decomposition, e.g. we represent
the clipped voxel as the union of a set of tetrahedra, so that the total integral can be found
by summing the integrals over each tetrahedron.

The decomposition is also based on a directed graph traversal over the edges. We con-
struct faces on the fly using the fact that loops in the graph are a natural representation
for the faces of the polyhedron. Because the clipping process is robust, we can assume that
vertices on a loop are coplanar. So, each time we process a new face, we save the first vertex
and then loop around the edges. Each edge, the starting vertex, and the origin form a fan
of tetrahedra. It is over each of these tetrahedra that we integrate before finally summing
the results over the entire decomposition. See Figure 6 for an illustration of the clipping and
reduction process.

One vertex of every tetrahedron in the decomposition is fixed at the origin, to eliminate
several floating-point operations. Due to the linearity of the integrals and the orientation
of the tetrahedra, the sum is always correct, even if the origin lies outside of the original
clipped voxel.

Figure 6: An illustrated summary of our method. Left: An initial cubical voxel. Middle: The
voxel, clipped against faces of a tetrahedron, giving a convex polyhedral domain over which
we must integrate. Right: The clipped voxel, decomposed into simplices for integration.

Now we discuss the integration itself. The volume of a tetrahedron is given in terms of
the vertex coordinates by the determinant

14

V =
1

6

∣∣∣∣∣∣∣∣∣
1 1 1 1

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

∣∣∣∣∣∣∣∣∣ (3.2)

The integral of a polynomial over a tetrahedral domain Ωt has been well-known in the
finite element community for some time. Eisenberg and Malvern (1973) give a proof for the
following formula: ∫

Ωt

ζa0 ζ
b
1 ζ

c
2 ζ

d
3 dΩt = 6V

a! b! c! d!

(a+ b+ c+ d+ 3)!
(3.3)

where ζi are the barycentric coordinates, a, b, c, and d are integer exponents, and V is
the volume of the tetrahedron (found using (3.2)).

Because the integral is given in terms of the barycentric coordinates, we must express it
in terms of Cartesian coordinates. We make use of the fact that

x = x0 ζ0 + x1 ζ1 + x2 ζ2 + x3 ζ3

where xi are the vertex coordinates of the tetrahedron. This allows us to explicitly
evaluate an integral expressed in Cartesian coordinates by substituting the above relation.
For example,

∫
Ωt

x2 dΩt =

∫
Ωt

(x0 ζ0 + x1 ζ1 + x2 ζ2 + x3 ζ3)2 dΩt

=
V

10
(x2

0 + x2
1 + x2

2 + x2
3 + x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3)

In the case where we allow x0 to lie at the origin, we can simplify further to∫
Ωt

x2 dΩt =
V

10
(x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3)

This recipe is the same for all coordinate moments (see Section 4.3).

4. Practical considerations

4.1. Calculation of new vertex locations

We use a weighted averaging procedure to calculate the positions of new vertices.
Consider two vertices x0 and x1 that form the endpoints of an edge that is bisected by a

clip plane. In other words, let x0 lie in front of the plane, so that its signed distance to the
plane d0 > 0. Let x1 lie behind the plane, so that its signed distance to the plane d1 ≤ 0.
We can calculate the point of intersection xp between the edge and the plane as

xp =
d0 x1 − d1 x0

d0 − d1

(4.1)

15

Due to strict use of inequalities in the clipping routine, we guarantee the denominator
d0 − d1 > 0 even in finite precision, so we are automatically protected from divide-by-zero
errors.

The main advantage to using this approach is that it is numerically far more stable than
calculating the intersection point using the plane and the edge in parametric form, especially
when x0, x1, or both, lie very near to the plane. Even if x0 and x1 are nearly coplanar, the
resulting vertex will lie between the two.

A similar weighted averaging approach is used to calculate the signed distance from
the new vertex xp to each of the remaining faces. So, once we find the signed distance to
each vertex of a voxel pre-clipping, there is no need to further keep track of any additional
information regarding the faces.

4.2. Cancellation error

We note that calculating volumes and moments using simplicial decomposition (see Sec-
tion 3.3) can give rise to cancellation errors when evaluated on a computer.

Consider a tetrahedron whose vertices lie in the box (x−∆x, x−∆x, x−∆x), (x, x, x),
where |∆x| < |x| (this is a worst-case example in which all coordinates are larger than
the size of the tetrahedron). The volume calculation V ∼ O(∆x3) using (3.2) involves the
subtraction of terms of order O(x3 −∆x3) from terms of order O(x3).

We can estimate the error due to cancellation as follows. b, the number of significant bits
lost during subtraction, is approximately

2−b ≈ 1− (x3 −∆x3)

x3

≈
(

∆x

x

)3

The fractional error E ≈ 2b−p is then dependent on the number of bits p in the significand
(p = 53 in double precision and p = 24 in single precision for the IEEE floating-point
standard):

E ≈ 2−p

(
∆x

x

)−3

(4.2)

This is a toy calculation, and errors will obviously be dependent on the exact geometry
in question, so (4.2) serves as a rough estimate of how errors should scale with ∆x/x, the
size of the integration domain relative to its absolute coordinate position.

Because of this error scaling, it is beneficial to shift the domain into a local coordinate
system near the origin prior to performing the calculation. In our implementation, we process
each voxel with its center lying at the origin.

In shifting the domain, cancellation errors are still unavoidable. However, doing so
changes the scaling of errors in a way that is more acceptable. Following the same logic
as before, subtracting a coordinate offset prior to calculating the volume and moments gives
the following error scaling:

E ≈ 2−p

(
∆x

x

)−1

(4.3)

16

Figure 7: Reducing cancellation errors by calculating the volume of each clipped voxel in
a relative coordinate frame centered on the origin, for double- (left) and single-precision
(right) calculations. This demonstration was done on a sample of 1.9 × 105 clipped voxels
extracted from 100 pseudo-randomly generated tetrahedra on a 5123 grid. Calculations were
validated against the quadruple-precision solution. Errors are much more well-behaved when
we calculate the volume in a relative coordinate frame near the origin.

Now, cancellation errors scale linearly with x/∆x rather than cubically. So, while some
cancellation errors are unavoidable due to the nature of the problem, we are able to reduce
their effect substantially. Figure 7 shows this scaling for both single- and double-precision
calculations. We indeed see that calculating the volume and moments in a relative coordinate
system near the origin is essential to the overall accuracy of our method.

For higher-order moments, such a coordinate translation gives rise to cross terms that
must be taken into account later, but involve only addition and thus do not contribute to
cancellation errors. For example, the calculation of the first moment in x over a voxel whose
center lies at x0 means first evaluating the moment as though the voxel were centered on the
origin, then adding back in a correction for this coordinate offset:∫

V

x dV =

∫
V

(x− x0) dV + x0 V

We note that while this use of a relative coordinate system greatly reduces cancellation
errors, any other numerical error in the calculation of the volume V in the above expression
will be scaled by a factor of x0 and propagated into the final result. The same applies to
cross-terms arising in the evaluation of higher-order moments. This is unavoidable.

We present full results concerning the accuracy of our method in Section 5.3.

4.3. Moments

Our implementation of this method consists of using the algorithm described above to
first find coordinate moments over each voxel, then taking linear combinations of these mo-
ments using polynomial coefficients. This allows the simultaneous integration of an arbitrary
number of scalar fields (or component-wise integration of vector fields) with no need to re-clip
voxels.

17

For example, consider the integral of the second-order polynomial field∫
V

(Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J) dV

Given the representation of this field in terms of the constant coefficients A · · · J , finding the
integral of the field amounts to finding the integral over each of the coordinate moments∫

V

x2 dV · · ·
∫
V

xy dV · · ·
∫
V

x dV · · · V

Once all moments for the desired polynomial order are evaluated, any further manipula-
tion (gradient estimation, field normalization, etc.) becomes a linear algebra problem in the
space of polynomial coefficients.

4.4. 2D

All of the concepts presented above extend trivially to two dimensions. The graph traver-
sals in the clipping and reduction operations simplify greatly, since the topology of a polygon
is a loop.

As a demonstration, we perform a conservative remesh in 2D. We begin with a uniform,
Cartesian grid of unit-density quadrilaterals. We then deform the grid by displacing the
gridpoints according to the transformation (in polar coordinates relative to the center of the
grid):

r → r S(r/r0)

θ → θ + T (r/r0)

where

S(x) =

{
1− S0 (x− 1)2 0 ≤ x < 1

0 x ≥ 1

and

T (x) =

{
T0 (x2 − 1)2 0 ≤ x < 1

0 x ≥ 1

We use the constants r0 = 0.45 (on a grid of side length 1.0), S0 = 0.2, and T0 = π/2.
The analytic density ρ(r/r0) resulting from this Lagrangian deformation is given by

ρ(x) =

{
1

(S0 (x−1)2−1) (S0 (3x2−4x+1)−1)
0 ≤ x < 1

1 x ≥ 1

We then remesh this deformed grid back onto the original Cartesian grid. Figure 8
illustrates this deformation and remesh process. Total mass is conserved to machine preci-
sion. Note that near the boundaries, the old and new meshes are exactly degenerate with
(lie exactly on top of) one another. This demonstrates the geometrical robustness of our
method.

18

Figure 8: A conservative remesh between quadrilateral grids in 2D. Top left: The initial grid,
with constant unit density. Top right: The grid, deformed by displacing vertices according
to the Lagrangian deformation described in Section 4.4. This deformation creates a varying
density field. Bottom left: The resulting density field, remeshed onto the original grid.
Bottom right: The analytic density for the Lagrangian transformation used.

5. Results and Discussion

In this section, we present the results of numerical tests of our C implementation of
this work (available at https://github.com/devonmpowell/r3d). We first compare results

19

for isolated clipping and reduction operations against previous work, to give a sense of
performance as a general remesh scheme. We then move on to overall accuracy, timing, and
robustness results for voxelizing tetrahedra.

For fairness in comparisons, we always bring the polyhedron into the appropriate repre-
sentation for a method (e.g., planar graph vs. explicit face-vertex connectivity) separately
from the operation being timed.

All tests in this section were compiled using gcc, g++, and gfortran using full optimiza-
tions (-O3), and run on a 2.2GHz Intel Xeon E5-2660 processor. Unless otherwise stated,
double-precision arithmetic was used in all computations.

5.1. Clipping

We compare our method to the clipping algorithm by Stephenson and Christiansen
(1975), as implented in Fortran by López and Hernández (2008) as a part of their VOFTools
software. This software also includes a function for calculating volumes of polyhedra using
the expression

V =
1

6

 J∑
j=1

(nj · xj,1) nj ·
Ij∑
i=1

(xj,i × xj,i+1)

where nj is the unit normal of the jth face and xj,i is the ith vertex around face j. We
compare the speed of this volume computation as well. A fuller comparison of speed and
accuracy for the reduction process, including computation of all coordinate moments up to
second order, is given in the next section.

For this comparison, we clipped a unit cube against a successively increasing number (1,
2, 3, and 4) of planes. For each test, we timed 106 iterations. The results are summarized in
Table 1. Our calculation of volumes using simplicial decomposition by traversing the planar
graph is slightly slower than the above expression used by López and Hernández (2008).
However, the speed of our clipping operation is faster by a factor of 3-4. This is due to
the fact that we are able to insert new vertices on the fly with the correct ordering, whereas
López and Hernández (2008) must post-process the clipped polyhedron to bring new vertices
into the correct order.

5.2. Reduction

We now show a comparison of our reduction process with three other methods. The first is
a control consisting of the same simplicial decomposition scheme used here, but implemented
using for-loops rather than the planar graph traversal (the decomposition scheme is the same,
though ordering of operations may vary). The second is the volume computation given by
López and Hernández (2008). The third is the volume and moments computation using
dimensionality reduction, by Mirtich (1996).

We computed volumes and moments for three polyhedra of varying complexity: a tetra-
hedron, a cube, and a dodecahedron, all scaled and translated to lie in the unit cube in
the first octant. For each test, we ran 106 iterations. Errors were calculated relative to the
solution of Mirtich (1996). We show results for both timing and accuracy in Table 2.

Our reduction using a graph traversal carries a slight overhead compared with the for-loop
implementation and López and Hernández (2008), though this overhead becomes much less

20

This work López and Hernández (2008)

Clip
planes

Clip (ms) Clip &
reduce (ms)

Clip (ms) Clip &
reduce (ms)

0 - 280 - 180

1 220 580 870 1080

2 370 790 1360 1620

3 560 1050 1920 2200

4 760 1320 2550 2880

Table 1: Comparison of timing with the clipping and volume implementations of López
and Hernández (2008). A cube was clipped against different numbers of planes. Times
are given in milliseconds per 106 trials. Although the volume computation is slower in our
implementation due to overhead in the graph traversal, our representation of the polyhedron
as a planar graph gives an overall speed-up, as it automatically inserts new vertices in the
proper order.

This work Decomposition, for-loop

Volume
(ms)

Moments
(ms)

Error Volume
(ms)

Moments
(ms)

Error

Tetra. 150 290 7.2× 10−16 60 220 7.2× 10−16

Cube 280 670 1.7× 10−16 170 610 1.7× 10−16

Dodec. 690 1850 9.2× 10−16 500 1820 7.3× 10−16

López and Hernández (2008) Mirtich (1996)

Volume
(ms)

Moments
(ms)

Error Volume
(ms)

Moments
(ms)

Error

Tetra. 100 - 3.3× 10−16 - 1050 0.0

Cube 180 - 0.0 - 1760 0.0

Dodec. 400 - 0.0 - 3980 0.0

Table 2: Comparison of timing and accuracy between reduction methods. Times are given
in milliseconds per 106 trials. The error quoted is the maximum absolute fractional error
from all 10 coordinate moments, except for López and Hernández (2008), where only volume
information is available. We see that reduction using our graph traversal is slightly slower,
though this becomes less significant when higher-order moments are calculated.

significant when higher-order moments are calculated, due to the dominance of floating-point
operations in the computation. All calculations agree to within machine precision.

5.3. Full voxelization results

To test the overall accuracy of our method in terms of conservation, we voxelized 105

tetrahedra of unit density whose vertices were randomly chosen to lie in the unit cube onto

21

a 1283 grid. This gave a volume of 1.3×10−2, 2.3×104 interior (type 1) voxels, and 1.5×104

boundary (type 3) voxels requiring clipping, per tetrahedron on average. We compare the
RMS and maximum fractional errors between the moment integrals of the input tetrahedron
and the sum over all voxels in the output. The results are summarized in Table 3.

Double Single

rms max rms max

Constant 1.7× 10−12 5.2× 10−10 5.6× 10−4 1.4× 10−1

Linear 1.6× 10−12 5.4× 10−10 5.4× 10−4 1.7× 10−1

Quadratic 1.6× 10−12 5.7× 10−10 5.3× 10−4 1.9× 10−1

Table 3: Accuracy (conservativeness) of our voxelization method in double- and single-
precision, for a sample of 105 randomly-generated tetrahedra on a 1283 grid. Here we quote
the maximum fractional error between the pre- and post- voxelization moments. Errors for
each polynomial order are taken from all moments in that order (e.g. “linear” includes x, y,
and z moments).

We see that, although quite accurate, we are still a few orders of magnitude in accuracy
away from machine precision, even though the reduction process itself is accurate to machine
precision (see Section 5.2). This is due to the unavoidable presence of cancellation errors
that arise in shifting each voxel to a local coordinate frame prior to integration. See Section
4.2 for a full discussion of these errors.

To demonstrate the geometrical robustness of our method, we repeated the same test
as before; however, this time we randomly generated the tetrahedron vertices at integer
mutiples of the grid spacing. This ensures that we have exactly degenerate geometry. The
results are shown in Table 4.

Double Single

rms max rms max

Constant 5.6× 10−14 7.2× 10−14 3.3× 10−5 6.0× 10−3

Linear 5.8× 10−14 7.5× 10−14 3.4× 10−5 6.7× 10−3

Quadratic 6.1× 10−14 8.1× 10−14 3.5× 10−5 7.7× 10−3

Table 4: The same accuracy test as Table 3, but for tetrahedra whose vertices were chosen to
be exactly degenerate with the grid. Our method is immune to such geometrical degeneracies,
as demonstrated by the high accuracy of the computations.

The results indicate that the degenerate case is actually more accurate than the general
case. This is due to the fact that we ran this test on a 1283 grid, a power of two, to
ensure exact geometric degeneracies in the binary representation. A side effect is that the
computations themselves are more accurate, since they take place in a representation that
favors binary fractions of the grid spacing. So, the numbers in Table 4 should not be taken
as a statement about the general accuracy of the code (for that, refer to Table 3), but as a
statement of the geometric robustness of our method.

22

As a final test, we check the performance scaling of the voxelization routine with grid
resolution. We repeat the same test as before (105 tetrahedra with randomly generated,
though nondegenerate, vertices), voxelizing them onto grids of increasing linear resolution g,
up to 10243. We do this for both search methods described in Section 3.1 (brute-force and
binary space partitioning). The results are summarized in Figure 9.

Figure 9: Timing of the operations involved in our voxelization method. In both cases, the
clip and reduce operations scale roughly quadratically in the grid dimension (e.g. linearly
with surface area), as expected. Left: Using a full grid buffer to search for voxels that need
further processing makes the search operation scale as the cube of the grid dimension. Right:
Spatial tree for voxel searching. All operations scale quadratically in the grid dimension (the
search operation contains a logarithmic component, but the quadratic term dominates). The
reduction operation also does slightly better, since large blocks of fully included voxels can
be processed together.

We see that, in general, the performance scales as g2, or equivalently, as the effective
surface area of the tetrahedra in units of squared grid spacing. This is consistent with our
expectations, since clipping and reduction are the most costly operations involved, and they
take place only on the boundaries of tetrahedra. An exception to this scaling arises in the
brute-force search method, which checks every grid point against each tetrahedron face, and
so scales as g3. This is in constrast to the binary space partitioning search, which scales
as g2 log g. However, in practical terms, the brute-force method actually performs better
for coarser grids due to the added overhead of the binary search. Binary partitioning only
overtakes brute-force at a grid resolution of 1283, corresponding to an average tetrahedron
volume of ∼ 3× 104 voxels.

6. Conclusion

We describe a general remeshing method, in that we present an approach to robustly
intersecting two convex polyhedra and computing a polynomial integral over the resulting
intersection domain.

Such an operation is useful for computational physics in several areas. These include ALE
and re-ALE hydrodynamics, in which fluid quantities must be transferred between meshes

23

in a geometrically precise way, sometimes with higher-order polynomial interpolation (e.g.
Donea et al. 2004, Loubère et al. 2010, Dukowicz and Kodis 1987, and Dukowicz et al. 1991).
Interface reconstruction and volume-of-fluid methods (Hirt and Nichols 1981, Renardy et al.
2001, López and Hernández 2008) also rely on such a geometric intersection followed by
an integral. Computing exact integrals over the intersection between two polyhedra is also
useful in computer graphics and visualization, where the exact computation of convolution
integrals is of interest (e.g. Catmull 1978, Duff 1989, Auzinger et al. 2012, and Auzinger
and Wimmer 2013). We focus on yet another application, the exact mass-conservative
voxelization of tetrahedra for the simulation and analysis of cosmological N -body systems
using the approach of Abel et al. (2012). This interpretation of the N-body problem has
proven quite useful in recent work (Kaehler et al. 2012, Hahn et al. 2013, Angulo et al. 2014,
Hahn et al. 2014).

This general problem of computing exact intersection volumes between polyhedra and
integrating over those volumes has been studied in detail by Dukowicz and Kodis (1987),
Dukowicz et al. (1991), and Grandy (1999). Additionally, López and Hernández (2008) give
an implementation of the basic clipping operation of Stephenson and Christiansen (1975).
A common issue that these implementations must deal with is how to handle geometric
degeneracies in the input. For example, Dukowicz et al. 1991 impose post-facto checks on
accuracy, while Grandy 1999 employs ad-hoc handling of all possible degenerate situations.

The main contribution of this paper is to put forth a unified framework for the problem
of intersecting convex polyhedra in a geometrically robust way, and subsequently computing
an integral over the resulting domain. The specific case on which we focus is the phys-
ically conservative voxelization of tetrahedra with polynomial densities. We present a C
implementation as well.

Our algorithm for intersecting two convex polyhedra by successively clipping one against
the faces of the other is based on the ideas of Sugihara (1994), who describes in abstract
terms how the planar graph representation of a polyhedron can be used in a geometrically
robust clipping algorithm by guaranteeing the topological validity of the output. Our imple-
mentation is based on a depth-first graph traversal, which ensures that it is automatically
geometrically robust, with no need for auxiliary checks or high precision arithmetic. We
couple the clipping algorithm to an integration routine on the same planar graph representa-
tion. As a result, we are able to store polyhedra using only vertex locations and neighbors,
with no need for face normals.

We address practical issues including numerical stability of geometric calculations, man-
agement of cancellations errors, and extension to two dimensions. In a comparison to the
implementation of López and Hernández (2008), we show that our clipping operation is faster
by a factor of 3-4, with an overall speed-up by a factor of 2. This is due to the algorithm’s
ability to insert new vertices in the correct order on the fly, with no need to reorder them
post-clipping. Our implementation conserves the integral between the input and output
meshes to high precision.

Our C code (available at https://github.com/devonmpowell/r3d) is intended to be a
simple tool for carrying out fast, accurate, and robust geometrical calculations on the convex
polyhedral mesh elements often used in computational physics.

24

Acknowledgements

We are grateful to T. Sousby and O. Hahn for useful discussions on this topic. T.A.
also is grateful Pat Hanrahan for suggesting some classic references and encouragement.
We are indebted to R. Kaehler from whom we have learned a great deal about algorithms,
rasterization, and GPUs.

D. Powell was supported in this work by the Fletcher Jones Foundation Stanford Grad-
uate Fellowship. This work was also supported in part by the U.S. Department of Energy
contract to SLAC no. DE-AC02-76SF00515.

25

References

Abel, T., O. Hahn, and R. Kaehler (2012, November). Tracing the dark matter sheet in
phase space. MNRAS 427, 61–76.

Almgren, A. S., J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel (2013, March). Nyx:
A Massively Parallel AMR Code for Computational Cosmology. ApJ 765, 39.

Anderson, R. W., V. A. Dobrev, T. V. Kolev, and R. N. Rieben (2015). Monotonicity in
high-order curvilinear finite element arbitrary lagrangian–eulerian remap. International
Journal for Numerical Methods in Fluids 77 (5), 249–273.

Angulo, R. E., R. Chen, S. Hilbert, and T. Abel (2014, November). Towards noiseless
gravitational lensing simulations. M.N.R.A.S. 444, 2925–2937.

Auzinger, T., M. Guthe, and S. Jeschke (2012, May). Analytic anti-aliasing of linear functions
on polytopes. Comp. Graph. Forum 31 (2pt1), 335–344.

Auzinger, T. and M. Wimmer (2013). Sampled and analytic rasterization. In M. M. Bron-
stein, J. Favre, and K. Hormann (Eds.), VMV, pp. 223–224. Eurographics Association.

Bockman, S. F. (1989, February). Generalizing the formula for areas of polygons to moments.
Am. Math. Monthly 96 (2), 131–132.

Bruderlin, B. (1991, Jan). Robust regularized set operations on polyhedra. In System
Sciences, 1991. Proceedings of the Twenty-Fourth Annual Hawaii International Conference
on, Volume i, pp. 691–700 vol.1.

Bryan, G. L., M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J. Turk, D. R. Reynolds,
D. C. Collins, P. Wang, S. W. Skillman, B. Smith, R. P. Harkness, J. Bordner, J.-h. Kim,
M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A. G. Kritsuk, E. Tasker, S. Skory, C. M.
Simpson, O. Hahn, J. S. Oishi, G. C. So, F. Zhao, R. Cen, Y. Li, and Enzo Collaboration
(2014, April). ENZO: An Adaptive Mesh Refinement Code for Astrophysics. ApJS 211,
19.

Catmull, E. (1978, August). A hidden-surface algorithm with anti-aliasing. SIGGRAPH
Comput. Graph. 12 (3), 6–11.

De Loera, J., B. Dutra, M. Koeppe, S. Moreinis, G. Pinto, and J. Wu (2011, July). Software
for Exact Integration of Polynomials over Polyhedra. ArXiv e-prints .

Donea, J., A. Huerta, J.-P. Ponthot, and A. Rodŕıguez-Ferran (2004). Arbitrary la-
grangian–eulerian methods. In Encyclopedia of Computational Mechanics. John Wiley
and Sons, Ltd.

Duff, T. (1989). Polygon scan conversion by exact convolution. In Proc. of Raster Imaging
and Digital Typography.

26

Dukowicz, J. and J. Kodis (1987). Accurate conservative remapping (rezoning) for arbitrary
lagrangian-eulerian computations. SIAM Journal on Scientific and Statistical Comput-
ing 8 (3), 305–321.

Dukowicz, J., N. Padial, and L. A. N. Laboratory (1991). REMAP3D, a Conservative Three-
dimensional Remapping Code. Los Alamos National Laboratory.

Eisenberg, M. A. and L. E. Malvern (1973). On finite element integration in natural co-
ordinates. International Journal for Numerical Methods in Engineering 7 (4), 574–575.

Garimella, R., M. Kucharik, and M. Shashkov (2007). An efficient linearity and bound
preserving conservative interpolation (remapping) on polyhedral meshes. Computers &
Fluids 36 (2), 224 – 237.

Grandy, J. (1999). Conservative remapping and region overlays by intersecting arbitrary
polyhedra. Journal of Computational Physics 148 (2), 433 – 466.

Habib, S., V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, T. Peterka, J. Insley,
D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic (2012, November). The Universe at Extreme
Scale: Multi-Petaflop Sky Simulation on the BG/Q. ArXiv e-prints .

Hahn, O., T. Abel, and R. Kaehler (2013, September). A new approach to simulating
collisionless dark matter fluids. M.N.R.A.S. 434, 1171–1191.

Hahn, O. and R. E. Angulo (2015, January). An adaptively refined phase-space element
method for cosmological simulations and collisionless dynamics. ArXiv e-prints .

Hahn, O., R. E. Angulo, and T. Abel (2014, April). The Properties of Cosmic Velocity
Fields. ArXiv e-prints .

Hasselgren, J., T. Akenine-Mö ller, and L. Ohlsson (2005). Conservative Rasterization, pp.
677–690. GPU Gems 2. Addison-Wesley Professional.

Hirt, C. and B. Nichols (1981). Volume of fluid (vof) method for the dynamics of free
boundaries. Journal of Computational Physics 39 (1), 201 – 225.

Hockney, R. W. and J. W. Eastwood (1988). Computer Simulation Using Particles. Bristol,
PA, USA: Taylor & Francis, Inc.

Hoffmann, C. M., J. E. Hopcroft, and M. S. Karasick (1988). Towards implementing robust
geometric computations. In Proceedings of the Fourth Annual Symposium on Computa-
tional Geometry, SCG ’88, New York, NY, USA, pp. 106–117. ACM.

Hughes, T. (1981, December). Lagrangian-Eulerian finite element formulation for incom-
pressible viscous flows. Computer Methods in Applied Mechanics and Engineering 29,
329–349.

Jameson, A., W. Schmidt, and E. Turkel (Eds.) (1981, June). Numerical solution of the
Euler equations by finite volume methods using Runge Kutta time stepping schemes.

27

Kaehler, R., O. Hahn, and T. Abel (2012). A novel approach to visualizing dark matter
simulations. IEEE Transactions on Visualization and Computer Graphics 18 (12), 2078–
2087.

Karasick, M. S. (1989). On the Representation and Manipulation of Rigid Solids. Ph. D.
thesis, Montreal, Que., Canada, Canada. UMI order no: not available.

Kravtsov, A. V., A. A. Klypin, and A. M. Khokhlov (1997, July). Adaptive Refinement Tree:
A New High-Resolution N-Body Code for Cosmological Simulations. ApJS 111, 73–94.

Liggett, J. A. (1988). Exact formulae for areas, volumes and moments of polygons and
polyhedra. Communications in Applied Numerical Methods 4 (6), 815–820.

Liu, Y. and M. Vinokur (1998). Exact integrations of polynomials and symmetric quadrature
formulas over arbitrary polyhedral grids. Journal of Computational Physics 140 (1), 122–
147.

López, J. and J. Hernández (2008, June). Short note: Analytical and geometrical tools for
3d volume of fluid methods in general grids. J. Comput. Phys. 227 (12), 5939–5948.

Loubère, R., P.-H. Maire, M. Shashkov, J. Breil, and S. Galera (2010). Reale: A reconnection-
based arbitrary-lagrangian–eulerian method. Journal of Computational Physics 229 (12),
4724–4761.

Margolin, L. and M. Shashkov (2003). Second-order sign-preserving conservative interpo-
lation (remapping) on general grids. Journal of Computational Physics 184 (1), 266 –
298.

Milenkovic, V. J. (1988). Verifiable Implementations of Geometric Algorithms Using Finite
Precision Arithmetic. Ph. D. thesis, Pittsburgh, PA, USA. AAI8826536.

Mirtich, B. (1996, February). Fast and accurate computation of polyhedral mass properties.
J. Graph. Tools 1 (2), 31–50.

Neyrinck, M. C. (2008, June). ZOBOV: a parameter-free void-finding algorithm.
M.N.R.A.S. 386, 2101–2109.

Pantaleoni, J. (2011). Voxelpipe: A programmable pipeline for 3d voxelization. In Proceed-
ings of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11, New
York, NY, USA, pp. 99–106. ACM.

Renardy, M., Y. Renardy, and J. Li (2001). Numerical simulation of moving contact line
problems using a volume-of-fluid method. Journal of Computational Physics 171 (1), 243
– 263.

Springel, V. (2005, December). The cosmological simulation code GADGET-2.
M.N.R.A.S. 364, 1105–1134.

Springel, V. (2010, January). E pur si muove: Galilean-invariant cosmological hydrodynam-
ical simulations on a moving mesh. MNRAS 401, 791–851.

28

Steinitz, E. (1922). Polyeder und Raumeinteilungen, Volume 3 of Encyclopädie der mathe-
matischen Wissenschaften, pp. 1–139. B.G. Teubner Verlag.

Stephenson, M. B. and H. N. Christiansen (1975, September). A polyhedron clipping and
capping algorithm and a display system for three dimensional finite element models. SIG-
GRAPH Comput. Graph. 9 (3), 1–16.

Stewart, A. J. (1994). Local robustness and its application to polyhedral intersection. In-
ternational Journal of Computational Geometry and Applications 4 (1), 87–118.

Stone, M. G. (1986). A mnemonic for areas of polygons. Am. Math. Monthly 93.

Sugihara, K. (1994). A robust and consistent algorithm for intersecting convex polyhedra.
Computer Graphics Forum 13 (3), 45–54.

Sugihara, K. and M. Iri (1989). Two design principles of geometric algorithms in finite-
precision arithmetic. Applied Mathematics Letters 2 (2), 203 – 206.

Sugihara, K. and M. Iri (1990, April). A solid modelling system free from topological incon-
sistency. J. Inf. Process. 12 (4), 380–393.

Sutherland, I. E. and G. W. Hodgman (1974, January). Reentrant polygon clipping. Com-
mun. ACM 17 (1), 32–42.

Teyssier, R. (2002, April). Cosmological hydrodynamics with adaptive mesh refinement. A
new high resolution code called RAMSES. A&A 385, 337–364.

Warren, M. S. (2013, October). 2HOT: An Improved Parallel Hashed Oct-Tree N-Body
Algorithm for Cosmological Simulation. ArXiv e-prints .

Zhang, L., W. Chen, D. S. Ebert, and Q. Peng (2007, August). Conservative voxelization.
Vis. Comput. 23 (9), 783–792.

29

	1 Introduction
	2 Motivation
	2.1 Cosmological N-body data
	2.2 Computer graphics and visualization
	2.3 Hydrodynamics

	3 Algorithm
	3.1 Searching
	3.2 Clipping
	3.3 Reduction

	4 Practical considerations
	4.1 Calculation of new vertex locations
	4.2 Cancellation error
	4.3 Moments
	4.4 2D

	5 Results and Discussion
	5.1 Clipping
	5.2 Reduction
	5.3 Full voxelization results

	6 Conclusion

