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1 Introduction and summary of results

Understanding the microscopic mechanism of holography is one of the outstanding problems
in quantum gravity. In the context of the AdS/CFT correspondence, there have been hints
that quantum entanglement in the boundary CFT plays a role in emergence of the bulk
AdS geometry [1, 2]. Chief among these hints is the Ryu-Takayanagi proposal [3, 4],1 which
states that the entanglement entropy of a spatial region A in a holographic CFT is given by

S(A) = min
A′

|A′|
4GN

, (1.1)

to leading order in the central charge, where the minimization is over all hypersurfaces A′

in the bulk time slice homologous to A.
1See [5] for the covariant generalization.
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There have been many profound implications of this formula. Notably, when the
formula is applied to the case of the two-sided black hole geometry, one finds that the
Einstein-Rosen bridge encodes entanglement of thermofield double degrees of freedom in the
boundary CFT [6, 7]. Moreover, the Ryu-Takayanagi formula has been used to derive the
linearized Einstein equations in AdS [2, 8], as well as to obtain integrated energy conditions
[9, 10]. These examples all demonstrate important connections between bulk geometry and
entanglement data on the boundary.

Not all CFT states have holographic duals with a smooth geometry. Since the bulk
geometry reflects boundary entanglement, we envisage that criteria for smooth bulk geometry
can be partially expressed in terms of entanglement properties of the boundary CFT. The
situation is similar to the hydrodynamic description of many body systems, where the
evolution of a system is approximately described in terms of emergent macroscopic degrees
of freedom; the validity of the approximation can be stated in terms of properties of
macroscopic observables such as density and velocity. In this sense, holography is akin to a
hydrodynamic description of the boundary entanglement with entropies as its macroscopic
phase space.

We wish to identify the criteria that bound this entropic phase space for holographic
states. It has been a long-standing open question to determine whether there are any
further universal entropy inequalities apart from the classical ones [11–13]. For probability
distributions, this question has been answered to the affirmative in the breakthrough works
[14, 15]: For n ≥ 4 random variables, there is an infinite number of independent entropy
inequalities satisfied by the Shannon entropy. In network coding theory, they give rise
to tighter capacity bounds [16]. The quantum case has so far remained elusive, though
there has been partial progress [17–20]. Understanding the phase space of entanglement
entropies for specific subclasses of quantum systems is also of general interest for information
theorists. Holographic states are an interesting set of quantum states, and are in many ways
similar to the set of all stabilizer states. In both cases, special restrictions on entanglement
entropy allow for the usage of more powerful methods in attempting to characterize the
inequalities that govern them. For example, it is known that the Ryu-Takayanagi formula
for holographic entanglement entropy satisfies the following monogamy inequality for the
mutual information, which is defined by I(A : B) = S(A) + S(B)− S(AB):

I(A : BC) ≥ I(A : B) + I(A : C), (1.2)

for any three disjoint regions A, B, C [21]. This inequality is not necessarily satisfied by
generic quantum systems and therefore distinguishes those with smooth holographic duals.
It also has profound implications for the structure of holographic quantum states and their
correlations. For example, it suggests that holographically any quantum Markov chain is
trivial and entropically excludes higher GHZ states [21, 22]. All these observations raise the
natural question of whether there are further entropic constraints required of holographic
theories. Indeed, any such entropic constraint can be understood as a necessary condition
for the existence of a smooth holographic dual.

In this paper, we initiate a systematic enumeration and classification of entropy in-
equalities satisfied by the Ryu-Takayanagi formula. We will begin our study by defining
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the notion of the holographic entropy cone. For a given number of boundary regions, the
holographic entropy cone parametrizes the phase space of allowed Ryu-Takayanagi entropies
in arbitrary holographic CFTs. Akin to the classical case, we show that the phase space
is closed under suitably-defined addition and scaling, giving it the structure of a convex
cone. Our entropy inequalities form the facets of this cone, but it can equally be described
by its extreme rays, the one-dimensional intersections of these inequalities. These rays are
extremal in the entropic phase space, and they have a privileged role in our considerations.

The framework of entropy cones allows us to study holographic entropies in a systematic
fashion by using convex geometry. We prove that, for 2, 3 and 4 regions, the monogamy of
mutual information (1.2) and strong subadditivity,

S(AB) + S(BC) ≥ S(B) + S(ABC),

give the complete set of inequalities. This is in contrast to the situation for generic quantum
systems, where a complete set of entropy inequalities is not known for 4 or more regions.
The pattern changes at 5 regions, where we find a new set of inequalities. As we increase
the number of regions, a new infinite family of independent entropy inequalities emerges, of
which the strong subadditivity and the monogamy of mutual information are two special
cases. This family of inequalities can be understood as a bound of the form proposed for
differential entropy [23], but of much more general application.

The systematic study of holographic entropy has required the development of new
tools, which are of considerable interest in their own right. While a continuous geometry
describes infinitely many minimal surfaces, any entropy inequality is only concerned with a
finite number of boundary regions. We show that the relevant information in the geometry
can thus be reduced to a finite, weighted graph. This graph model is a minimal model
for the geometry that faithfully reproduces all Ryu-Takayanagi entropies by a simple
graph-theoretic prescription. It also contains information on all possible ways the minimal
surfaces can be cut and reassembled to generate new surfaces that bound the entanglement
entropies of other bulk regions. Graph models allow us to study holographic entropies using
combinatorial methods. One insight that follows is that, for a fixed number regions, there
are only finitely many independent inequalities required by the Ryu-Takayanagi entropy
formula; in other words, that the holographic entropy cones are polyhedral.

We would also like to understand what characterizes the states that only marginally
satisfy these constraints. These states lie at the extremal boundary between the states
that are realizable holographically and those that are not. If entanglement is somehow
constitutive of spacetime, then we expect extremal states to be geometries that are in some
sense nearly torn apart. It has similarly been suggested that EPR pairs create an ER bridge
[24] and that, with sufficient amounts of properly organized entanglement, these wormholes
coalesce into smooth geometry. Therefore, it may be reasonable to expect that the extremal
geometries are themselves wormhole geometries.

From the perspective of entropy, the extremal geometries correspond to extreme rays of
the holographic entropy cone. The entropies for an arbitrary smooth geometry can in turn
be obtained by specific convex combinations of the extreme rays. This can be understood
as making visible the individual threads of the entropy fabric. We show that the entropies
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of any extreme ray can indeed be explained by certain extremal multiboundary wormhole
geometries as considered in [25, 26]. In fact, we prove more generally that any graph model
naturally gives rise to a multiboundary wormhole geometry that has the same entropies.
This shows that graph models provide a completely equivalent, combinatorial description of
holographic entropy.

At last, graph models are also the starting point for systematically generalizing the
inclusion/exclusion proofs in [21, 27], which had been used to establish the strong subaddi-
tivity and monogamy of the mutual information. To prove new inequalities, we furthermore
introduce the concept of proofs by contraction. A proof of a holographic entropy inequality
of the form LHS ≥ RHS is given by a cutting of the Ryu-Takayanagi surfaces of the LHS
and gluing of a subset of the resulting pieces into bounding surfaces for the Ryu-Takayanagi
surfaces of the RHS. We show that suitable maps on hypercubes describe this process in a
purely combinatorial fashion; the ability to glue segments to obtain the RHS is formalized
as a contraction property. Using this criterion, we prove a new set of inequalities, revealing
a hitherto unknown rich spectrum of entropic constraints in holographic theories.

Organization of the paper. In section 2, we define the holographic entropy cone,
motivated by ideas from quantum information theory. We discuss several examples and
derive a number of general properties. In section 3, we introduce the graph model for
bulk geometries. Together with a discrete variant of the Ryu-Takayanagi formula, we
obtain a purely combinatorial description of the holographic entropy cone. In section 4 we
introduce proofs by contraction, our method for proving holographic entropy inequalities
that generalize the inclusion/exclusion arguments of [21, 27]. We proceed to prove a rich
new set of inequalities. Finally, in section 5 we discuss the physical implications of our work.
We conclude in section 6 by sketching several interesting avenues for future investigation.

2 The holographic entropy cone

In this work, we are interested in the inequalities satisfied by entanglement entropies of
states with holographic description in terms of smooth bulk geometries. Just as with
Shannon and von Neumann entropy, it will be useful to define the notion of an entropy
cone [12, 13].

Let A1, . . . , An be n disjoint regions in the boundary field theory. For any non-empty
subset I ⊆ [n]2, we may compute the entropy S(I) := S(AI) of the corresponding composite
boundary region AI =

⋃
i∈I Ai by using the Ryu-Takayanagi prescription (1.1). When Ai

itself has a boundary, its entanglement entropy is UV divergent and we need to to choose
a cut-off; geometrically, this corresponds to cutting off the bulk time slice as to obtain a
compact manifold with boundary. By listing the entropies of all these subsystems one after
another, we obtain a holographic entropy vector (S(AI))∅6=I⊆[n] ∈ R2n−1. For example, the
entropy vector of a bipartite state is given by the triple (S(A), S(B), S(AB)), where A and
B denote the boundary regions (cf. figure 1).

2We employ the notation [n] := {1, . . . , n}.

– 4 –



cone2

S(A)

S(AB)

S(B)

Figure 1. The holographic entropy cone C2 for two regions. See section 2.2 for a discussion of its
facets and extreme rays.

Mathematically, the Ryu-Takayanagi formula makes sense for an arbitrary bulk manifold
X, regardless of the existence a dual CFT state on its boundary, and it will be convenient
to allow for this generalization. Thus we define the holographic entropy of a boundary
region A ⊆ ∂X of an arbitrary bulk manifold X by (1.1). It is easy to see the following:

Observation and Definition 1. The set Cn of all holographic entropy vectors, obtained
by varying the boundary regions A1, . . . , An ⊆ ∂X as well as the bulk manifold X, is a
convex cone, which we will call the holographic entropy cone of n regions.

Proof. To see that Cn is closed under multiplication by positive scalars, observe that rescaling
the Riemannian metric rescales all entropies accordingly.

To see that it is closed under addition, consider two manifolds X, X ′ and boundary
regions A1, . . . , An ⊆ ∂X, A′1, . . . , A′n ⊆ ∂X ′ and construct the disjoint union X t X ′

together with the boundary regions A′′i := Ai tA′i. Then the corresponding entropy vector
is given by the sums S(A′′I ) = S(AI) + S(A′I).

Remarkably, we will see later that this generalization to arbitrary bulk manifolds is in
fact immaterial. We will show in section 3 that any entropy vector obtained from an arbitrary
bulk manifold can always be explained by a hyperbolic surface (theorem 5), and we will
argue in section 5 that any hyperbolic surface – more generally, any Riemannian manifold
with constant scalar curvature and and asymptotically locally hyperbolic boundaries – is
holographically dual to a CFT state on its boundaries such that that the Ryu-Takayanagi
formula (1.1) gives the entanglement entropies.

Observation 1 implies that, up to taking its topological closure, Cn can be described
by linear inequalities. We will later see that Cn is not only already closed but in fact a
polyhedral convex cone (see proposition 7 below). Therefore, Cn is cut out by a finite number
of linear entropy inequalities ∑

I∈[n]
cIS(I) ≥ 0
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that hold for the holographic entropies defined by any n boundary regions of an arbitrary
bulk geometry X. On a conceptual level, the convexity of the entropy cone justifies the
search for linear entropy inequalities. Geometrically, the facets of the holographic entropy
cone can be identified with a minimal set of entropy inequalities defining the cone: Any
vector (sI) ∈ R2n−1 that satisfies these inequalities can be realized by the Ryu-Takayanagi
entropy formula for some choice of bulk geometry and boundary regions.

Like any polyhedral cone, the holographic entropy cone can alternatively be defined in
terms of finitely many extreme rays. Those are the rays in Cn that cannot be written as a
proper convex combination of other elements in Cn. This dual perspective will be useful in
section 2.2 for demonstrating that a set of entropy inequalities is complete. From a physical
point of view, the extreme rays can be seen as the entropic building blocks from which an
arbitrary entropy vector can be constructed by convex combination.

2.1 Transformations and symmetries

Recall that any quantum state can be purified to a pure state on a larger system. Similarly,
we may always add the region An+1 = ∂X \

⋃n
i=1Ai, so that

⋃n+1
i=1 Ai = ∂X.3 We will

call An+1 the purifying region and oftentimes also denote it by O. We note that, with the
purifying region added, the entropy of any boundary region then agrees with the entropy of
its complement. This is because any Ryu-Takayanagi surface A′ for a boundary region A
is simultaneously a Ryu-Takayanagi surface for Ac = ∂X \ A: If a is a bulk region such
that ∂a = A ∪A′ then ∂(X \ a) = Ac ∪A′. In particular, S(I) = S(Ic) for all I ⊆ [n+ 1].
Our construction therefore reproduces the entropies of any purification of a CFT state
corresponding to the bulk geometry X and boundary regions A1, . . . , An (independent
of whether this purification is geometric or not). In this way, we obtain an embedding
Cn → Cn+1 of holographic entropy cones. Conversely, forgetting the region labeled n+ 1
yields a projection Cn+1 → Cn.

It is clear that the holographic entropy cone is left invariant by relabeling the boundary
regions A1, . . . , An of the bulk manifold X. Using the above operations, we can extend
this to an action of the permutation group Sn+1 by relabeling the n+ 1 boundary regions
obtained by adjoining the purifying region An+1.4 This extended permutation symmetry is
highly useful in revealing the combinatorial structure of the holographic entropy cones. For
example, it is well-known that strong subadditivity, S(AB)+S(BC) ≥ S(B)+S(ABC), and
weak monotonicity, S(AB)+S(BC) ≥ S(A)+S(C), can be identified via this symmetry even
though they correspond to different faces of the entropy cone. The extended permutation
symmetry can also be used to obtain several variants of the embedding and projection
defined above: For example, we can embed Cn → Cn+1 by adding an empty boundary region
An+1 = ∅, and there exist coarse-graining projections Cn+1 → Cn given by combining any

3∂X is the topological boundary of the bulk manifold X, which need not be the same as the conformal
boundary; black hole horizons (if present) are also included in ∂X. In particular, we do not assume that
An+1 corresponds to a region in the conformal field theory.

4Explicitly, if π is a permutation of [n+ 1] then its action on an entropy vector s = (sI)∅6=I⊆[n] ∈ Cn is
given by replacing the entropy of subsystem I = {i1, . . . , ik} by the entropy of {π−1(i1), . . . , π−1(ik)} or its
complement in [n+ 1], depending on which subsystem is contained in [n].
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two regions (e.g., A′n = An ∪An+1). We refer to [28] for a lucid discussion of the morphisms
of the entropy cone for von Neumann entropy.

By duality, we may also apply entropy inequalities for n to n+ 1 regions and conversely.
For example, the entropy inequality I(A : B) ≥ 0 for two regions can be applied to
two regions of a three-party system, but also in the form I(A : BC) ≥ 0. And the
strong subadditivity S(AB) + S(BC) ≥ S(B) + S(ABC) reduces to both subadditivity
S(A) +S(C) ≥ S(AC) and the Araki-Lieb inequality S(AB) ≥ S(A)−S(B), depending on
whether we set the B system to be trivial or apply strong subadditivity to the purification.

2.2 Fewer than five regions

We will now compute the holographic entropy cones for n ≤ 4 regions. Recall that it had
previously been shown that the Ryu-Takayanagi formula satisfies strong subadditivity [27],

S(AB) + S(BC) ≥ S(B) + S(ABC), (2.1)

and that the holographic mutual information is monogamous [21], which can be written as

S(AB) + S(BC) + S(AC) ≥ S(A) + S(B) + S(C) + S(ABC). (2.2)

The proofs are purely geometrical in nature and in particular hold for arbitrary bulk
manifolds. While the above inequalities refer to three boundary regions A, B and C,
we may use the operations described in section 2.1 to obtain from (2.1) and (2.2) new
inequalities for different numbers of regions.

Our strategy for computing the holographic entropy cone then is the following: Given
a number of regions n, we first compute the extreme rays of the convex cone Ĉn cut out
by all inequalities obtained in the above way. Since all these inequalities are satisfied by
holographic entropies, the cone Ĉn contains the holographic entropy cone Cn. For each
extreme ray of Ĉn, we then try to find a bulk geometry and boundary regions such that the
associated entropy vector lies on this ray. If we succeed in doing so then convexity implies
that, in fact, Ĉn = Cn. We have successfully implemented this strategy for n ≤ 4 boundary
regions. That is, in each case, we find that the holographic entropy cone is cut out by strong
subadditivity (2.1) and monogamy of the mutual information (2.2) (up to symmetry). In
fact, the only instances of (2.1) that are required are the subadditivity inequality for single
regions, S(A) + S(C) ≥ S(AC), and its permutations. In particular, strong subadditivity
does not correspond to facets of Cn but rather follows as a consequence of (2.1) and (2.2).
We now describe the extreme rays and associated bulk geometries that we have found.

Two regions. Up to symmetry, there is a single extreme ray, corresponding to the
entropies of an EPR pair shared between two systems A and B,

(sA, sB; sAB) = (1, 1; 0). (2.3)

In holography, this extreme ray can naturally be realized by taking the thermofield double
state on two CFTs, which corresponds geometrically to the time-reflection symmetric slice
of a ‘wormhole’ or Einstein-Rosen bridge that connects two asymptotic AdS regions [24].
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Figure 2. Geometries realizing the extreme rays of the holographic entropy cones for n ≤ 4 regions.

We refer to the first cartoon in figure 2 for an illustration of the geometry thus constructed.
The two other extreme rays can be obtained by applying the S3-permutation symmetry to
the ray (2.3). See figure 1 for an illustration of the entropy cone thus obtained.

Three regions. There are two extreme rays up to symmetry. The first class of rays is
inherited from C2 and corresponds to Bell pairs shared between individual subsystems. The
second ray is new and given by

(sA, sB, sC ; sAB, sAC , sBC ; sABC) = (1, 1, 1; 2, 2, 2; 1). (2.4)

Geometrically, we can realize this ray by a hyperbolic surface with four geodesic boundaries
A, B, C and O of equal length L. Note that O is the purifying region. If we choose L
sufficiently small then any internal cycle is longer than twice this length. In this case, the
Ryu-Takayanagi formula gives S(A) = L for any single boundary, S(AB) = 2L for any pair
of boundaries, and S(ABC) = S(O) = L since O is the purifying region. We refer to the
second cartoon in figure 2 for an illustration of this geometry (the red cycles denote the
boundary geodesics and the gray cycle is one of the many irrelevant internal cycles). The
surface thus constructed can be seen as a time slice of a multiboundary wormhole geometry.
We will see in sections 3 and 5 that this is no accident but rather reflects a general feature
of holographic entropy.

Four regions. There are three extreme rays up to symmetry. The first two rays are
inherited from C3 and can therefore be explained by the geometries that we have described
before. A new ray is given by the following assignment of entropies:

(sA, sB, sC ; sAB, sAC , sAD, sBC , sBD, sCD; sABC , sABD, sACD, sBCD; sABCD)
= (1, 1, 1, 1; 2, 2, 2, 2, 2, 2; 3; 3; 3; 3; 2).

(2.5)

It can be realized geometrically by considering a five-boundary wormhole geometry, where
all boundaries have small length L except for the purifying boundary, which has twice that
length. We refer to the third cartoon in figure 2 for an illustration of this geometry.

Five and more regions. We will see in section 4.3 that the situation is markedly different
for five and more regions. Here, there are in general many other inequalities independent
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from subadditivity and monogamy, and the geometries corresponding to extreme rays are
no longer of the simple form that we found above.

Other entropy inequalities. It is a highly non-trivial result that strong subadditivity
(2.1) is valid for arbitrary density matrices [29]. While strong subadditivity and its permu-
tations characterize the quantum entropy cone for n ≤ 3 completely [13], there are several
other inequalities for n ≥ 4 that are conjectured to hold, partly due to substantial numerical
evidence [30, 31]. One example is the Zhang-Yeung inequality which is known to hold for
the Shannon entropy of four random variables [14]:

2I(C : D) ≤ I(A : B) + I(A : CD) + 3I(C : D|A) + I(C : D|B). (2.6)

It is interesting to note that (2.6) holds for holographic entropies, as it is a trivial consequence
of (2.1) and (2.2), which can be written as I(A : C|B) ≥ 0 and I(A : B) ≤ I(A : B|C),
respectively.

On the other hand, it is not hard to see that the monogamy inequality (2.2) is not valid
for general quantum states. Another such example is the Ingleton inequality [32], which
can similarly be seen to hold for holographic entropies but not for general quantum states:

I(A : B|C) + I(A : B|D) + I(C : D) ≥ I(A : B) (2.7)

It has previously been shown that the entropies of stabilizer states, which are an important
class of quantum error correcting codes, likewise satisfy the Ingleton inequality [19, 20, 31].
In particular this implies that all four-partite holographic entropies can be explained by
(mixtures of) stabilizer entropies, since it is known that, for four subsystems, (2.7) is the
only additional linear constraint for stabilizer states [19].

In fact, the extreme rays of the holographic entropy cone C4 form a proper subset of
the extreme rays of the entropy cone spanned by stabilizer states. It is easy to write down
stabilizer states corresponding to each extreme ray: The ray (2.3) can be realized by an
EPR pair, the ray (2.4) by the four-qutrit stabilizer state

∑2
i,j=0 |i, j, i+ j, i+ 2k〉, and the

ray (2.5) by the well-known five-qubit stabilizer code [19, 30]. This is rather interesting,
as it indicates that the quantum error-correcting codes constructed from black holes are
additionally constrained [33]. For example, the four-partite GHZ state |0000〉+ |1111〉 is a
stabilizer state that violates (2.2) and so cannot be realized holographically. The connection
between holographic entropies and stabilizer entropies is also conceptually pleasing since
stabilizer states – just like states of holographic conformal field theories – have a classical
dual description (in terms of Wigner functions on a classical phase space, see e.g. [20]).

Uniqueness. We remark that the choice of geometry realizing an extreme ray is in general
not unique. For example, the ray (2.3) can also be realized by taking A and B as two
complementary non-empty regions of the boundary of any bulk manifold.

On the other hand, spacetimes with multiple boundaries are the natural setting for
extreme ray geometries. In fact, there are extreme rays that cannot be realized as holographic
entropy vectors of geometries with a single connected boundary. Let us consider here a
specific example, namely that of the extreme ray (2.4), where SA = SB = SC = SAB/2 =
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SAC/2 = SBC/2 = SABC . While it is possible to get the finite pieces of the entanglement
entropies to match in this fashion, matching the divergent pieces as well becomes much
trickier. The requirement that the 1-body entropies are the same enforces that A, B and C
all require the same number of boundaries, and the requirement that the 2-body entropies
are twice the 1-body entropies requires that no two intervals that are part of A, B, or C
are adjacent to each other. However, this immediately forces the number of boundaries
of ABC to be three times that of A, meaning that there is no possible way to match the
3-body entropy with the 1-body entropy, unless we take the limit where the cutoff is of the
same scale as the interval size, allowing for unphysical competition between the finite and
divergent pieces.

Even in cases where extreme rays are realizable on a single boundary, the entropy vector
should be understood to be capturing the behavior of our choice of cut-off. Accounting
for the purification, these single-boundary vectors always contain adjacent regions. Their
spatial connectivity is precisely a consequence of divergences in their correlators and mutual
information.

3 The graph model of holographic entropies

In this section, we introduce an alternative combinatorial model for holographic entropies
and use it to reveal some properties of the holographic entropy cone.

3.1 From geometries to graphs

Let X be an arbitrary bulk manifold and A1, . . . , An disjoint boundary regions. In section 2,
we have defined the associated holographic entropy vector as the collection of Ryu-Takayanagi
entropies of all composite regions AI =

⋃
i∈I Ai, where ∅ 6= I ⊆ [n]. For each such region, let

us denote a corresponding Ryu-Takayanagi surface A′I , i.e., a minimizer of (1.1). Together,
these 2n − 1 surfaces cut the bulk geometry into a finite number of connected pieces, as
illustrated in figure 3.

tograph-1

A B C

abc
bc
ac
ab

Figure 3. The Ryu-Takayanagi surfaces of the 2n − 1 subsystems cut the bulk geometry into a
finite number of pieces.

Formally, if aI is a bulk region that implements the cobordism between AI and its Ryu-
Takayanagi surface, i.e., ∂IaI = AI ∪A′I , then each piece is given by a connected component
of an intersection of regions aI and their complements acI .

We now define a graph by adding one vertex for each bulk piece obtained in this way.
We color each vertex that is adjacent to a boundary region by the label of that region –
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including the purifying region O = An+1 = ∂X−
⋃n
i=1Ai. Finally, between any two vertices

we add an edge with weight the codimension-one surface area of the common boundary of
the corresponding pieces’ closures, divided by 4GN (unless this area is zero, in which case
we may omit the edge). See figure 4 for an illustration of this construction. Even though
we have illustrated it with two-dimensional cartoons, the prescription generalizes readily to
bulk geometries of higher dimension.

tograph-2

A B CO

O

Figure 4. The graph obtained from our construction applied to the bulk geometry and boundary
regions in figure 3.

Before we formally describe the data thus obtained, we recall a few basic notions of graph
theory: An undirected graph consists of a vertex set V and an edge set E ⊆

(V
2
)
. Given edge

weights w : E → R, we define the weight of a subset of edges F ⊆ E by |F | :=
∑
e∈F w(e).

A cut is a partition of the vertex set into two disjoint subsets, W ∪W c = V . We define
C(W ) = {{w,w′} ∈ E : w ∈W,w′ 6∈W} as the subset of edges that cross the cut, i.e., with
one endpoint in W and the other endpoint in its complement. Thus |C(W )| is the sum of
weights of all edges that cross the cut. Finally, a coloring of a subset W ⊆ V of vertices by
some set C is simply a function W → C. We are thus led to the following definition:

Definition 2. Let (V,E) be a undirected graph with non-negative edge weights w : E →
R≥0. Let ∂V ⊆ V be a subset of vertices, called the boundary vertices, with coloring
b : ∂V → [n+ 1]. All other vertices are called bulk vertices. This data together constitutes
a graph model.
For each subset I ⊆ [n], we define the discrete entropy by the formula

S∗(I) = min
W∪W c=V

|C(W )| (3.1)

where the optimization is over all cuts W ∪W c = V such that W contains precisely those
boundary vertices that are colored by I, i.e., W ∩ ∂V = b−1(I). We will refer to such a cut
as an I-cut.

Definition 2 can be readily extended to non-simple graphs which have loops and parallel
edges. We will see below that this does not lead to a richer spectrum of entropies. We
remark that, by the max-flow min-cut theorem from graph theory, the discrete entropy of a
region I can also be defined as the maximal flow from the boundary vertices colored by I to
those colored by [n+ 1] \ I that does not exceed the capacities given by the edge weights.

Our definition of entropy in the graph model is justified by the following key lemma. It
asserts that the discrete entropy formula (3.1) reproduces faithfully the Ryu-Takayanagi
entropies (1.1) in the original bulk geometry.
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Lemma 3. Given a bulk geometry X and boundary regions A1, . . . , An ⊆ ∂X, construct
the associated graph model as described above. Then S(I) = S∗(I).

Proof. Recall that the vertex set of the graph model corresponds to the finitely many pieces
into which the bulk geometry is cut by minimal Ryu–Takayanagi surfaces. We shall denote
these pieces by a(v) for v ∈ V . With any cut W ∪W c = V we may therefore associate
the bulk region a(W ) =

⋃
w∈W a(w). Its boundary can be decomposed into two parts, the

boundary and the bulk contribution,

∂a(W ) = (∂a(W ) ∩ ∂X) ∪ (∂a(W ) ∩ (X \ ∂X))

=
⋃

w∈W∩∂V
(∂a(w) ∩ ∂X) ∪

⋃
{w,w′}∈C(W )

(a(w) ∩ a(w′)),

where we have used that the bulk contribution arises from common boundaries between
any two bulk pieces a(w) and a(w′) such that w ∈W but w′ 6∈W . Now if W is an I-cut
then the first contribution can be further simplified to⋃

w∈W∩∂V
(∂a(w) ∩ ∂X) =

⋃
w∈b−1(I)

(∂a(w) ∩ ∂X) =
⋃
i∈I

Ai = AI .

We conclude that the bulk surface A′(W ) =
⋃
{w,w′}∈C(W )(a(w) ∩ a(w′)) is homologous to

the boundary region AI .
We have thus obtained a bijection that associates to any I-cut W ∪W c = V a certain

bulk surface A′(W ) that is homologous to AI . Since the weight of an edge e = {w,w′} was
precisely defined in terms of the surface area of the codimension-one piece of a(w) ∩ a(w′),
it is immediate that the weight of the cut W agrees with the surface area of the surface
A′(W ), divided by 4GN ,

|∂W | = |A
′(W )|

4GN
.

This shows that S∗(I) ≥ S(I). But note that we can always obtain the minimal Ryu-
Takayanagi surfaces A′I that were used in the construction of the bulk decomposition as
some A′(W ) (take W to be the set of all vertices w such that a(w) ⊆ aI , where aI is the
bulk region with ∂aI = AI ∪A′I). Thus S(I) = S∗(I), as was asserted in the lemma.

It is easy to write down graph models for the extreme rays (2.3) to (2.5) of the
holographic entropy cone for n ≤ 4 regions. The result, which can be obtained by following
the general construction outlined above, is displayed in figure 5.

In appendix A, we sketch an alternative way of constructing graph models based on
discretizing the given geometry. In contrast to the procedure described above, it is only
approximate but does work without a priori choice of boundary regions.

Graph transformations. It is easy to find graph transformations that preserve the
discrete entropies. We list several such transformations, which will prove useful in section 3.2
below to bring graph models into a canonical form:

• Removing edges of zero weight as well as loops.
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Figure 5. Graph models of the extreme rays of the holographic entropy cone for n ≤ 4 regions. All
black edges have the same weight; the blue edge has twice that weight.

• Removing isolated bulk and boundary vertices, i.e., vertices that are not connected to
any edge.

• Unifying boundary vertices (figure 6, (a)).

• Removing bulk vertices of degree one and two (figure 6, (b) and (c)).

• Unifying parallel edges (figure 6, (d)).

• Splitting up bulk vertices of degree larger than three (figure 6, (e)).

In each case, it is straightforward to verify that all discrete entropies are preserved. We note
that transformation (c) in figure 6 can introduce parallel edges or loops. However, loops
can always be removed and parallel edges can be consolidated by using transformation (d).
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Figure 6. Entropy-preserving graph transformations: (a) Unifying boundary vertices; (b) and (c)
removing bulk vertices of degree one and two; (d) unifying parallel edges; (e) splitting up bulk
vertices of degree d > 3.

– 13 –



3.2 From graphs to geometries

In this section we shall establish a converse to lemma 3: For any graph model we will describe
how to construct a bulk geometry and boundary regions such that the Ryu-Takayanagi
formula reproduces the discrete entropies. From this we will be able to conclude that
the graph model gives a completely equivalent combinatorial description of holographic
entropy (see theorem 5 below). The bulk geometry that we will construct will be a two-
dimensional manifold, i.e. a surface, and we will require the bulk geometry to have constant
negative curvature since this is a sufficient condition for the geometry to be holographically
dual to a CFT state for which the Ryu-Takayanagi formula is applicable (see section 5
below). However, the construction can be easily generalized to higher dimension and we
will comment on this in section 3.3 below.

The construction goes as follows. Given a graph model, we first subject it to a number
of entropy-preserving graph transformations of the kind described in the previous section
until we obtain a graph model with the following properties:

• Each edge has positive weight.

• Each bulk vertex is trivalent (i.e., connected to precisely three edges).

• Each boundary vertex is connected to a single edge and each boundary color appears
at most once.

For each bulk vertex, we now insert a hyperbolic ‘pair of pants’ of constant scalar curvature
K < 0 to be determined later; we take each geodesic boundary cycle to be of length 4GNw(e),
where w(e) is the weight of the corresponding edge e and GN the Newton constant (in 2+1
dimensions). For each boundary vertex, we insert a ‘half-collar’ (of arbitrary width) whose
geodesic boundary cycle likewise has length 4GN times the weight of the corresponding
edge. Finally, we glue together each pair of boundary cycles that corresponds to an edge in
the graph (with arbitrary twists).

We have thus constructed a hyperbolic surface X of constant negative curvature. The
connected components of its boundary ∂X are in one-to-one correspondence with the
set of boundary vertices in the graph model. We shall thus define the boundary regions
A1, . . . , An accordingly (and set Ai = ∅ if there is no corresponding boundary vertex).
Figure 7 illustrates the construction. Here we have drawn in red the geodesics along which
we have glued the pairs of pants and half-collars. The following lemma now provides the
desired converse to lemma 3:

Lemma 4. Given a graph model, construct an associated hyperbolic surface X and boundary
regions A1, . . . , An ⊆ ∂X as described above. If the scalar curvature K < 0 is chosen to be
sufficiently negative, S(I) = S∗(I).

Proof. Since each boundary region AI is a closed manifold, the corresponding minimization
in the Ryu-Takayanagi formula (1.1) is over closed cycles A′ homologous to the boundary.
Any minimizing cycle A′ is necessarily given by a disjoint union of simple closed geodesics.
The construction of X gives us an ample supply of simple closed geodesics, namely those
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Figure 7. Construction of a hyperbolic surface from a graph model.

along which we had glued the pairs of pants and half-collars. Let us call these the gluing
geodesics.

We will now show that for sufficiently negative scalar curvature, any minimizing cycle
A′ is only composed of gluing geodesics. To see this, let γ be a simple closed geodesic that is
not a gluing geodesic. Since neither a hyperbolic pair of pants nor a half-collar contain any
simple closed geodesics apart from their boundaries, γ will necessarily intersect one of the
gluing geodesics transversally. The lengths of the latter are by construction no larger than
`max := 4GN maxew(e). Thus the hyperbolic collar theorem (e.g., [34, Corollary 4.1.2])
asserts that the length `γ of γ satisfies

sinh `γ

2
√
−K

sinh `max

2
√
−K

> 1.

By choosing K sufficiently negative we can thus ensure that `γ is larger than 4GN
∑
ew(e),

the total length of all gluing geodesics. It follows at once that γ will never appear in a
minimizer of (1.1), since we can always do better, e.g., by choosing A′ as the union of the
gluing geodesics that bound the half-collars corresponding to AI .

The above discussion shows that we may restrict the minimization in the Ryu-
Takayanagi formula for S(I) to cycles A′ that are composed of gluing geodesics. It is
not hard to see that such a cycle A′ is homologous to AI if and only if the corresponding
set of edges in the graph model is induced by a cut W ∪W c = V . Since by construction
the length of a gluing cycle is equal to 4GN times the weight of the corresponding edge, we
conclude that the Ryu-Takayanagi entropy S(I) indeed agrees with the discrete entropy
S∗(I).

While our graphs do not specify the surface uniquely due to the arbitrary choice of
twists, lemma 4 guarantees that the holographic entropies do not depend on these choices.
Similar reasoning based on the collar theorem also enters in the construction of certain
limit points of Teichmüller space. However, there the focus is on the behavior of large
(transversal) cycles, while we are interested in the smallest cycles due to the minimization
in the Ryu-Takayanagi formula.
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As an immediate consequence of lemmas 3 and 4, the graph model gives a completely
equivalent, combinatorial characterization of the holographic entropy cone. Thus we obtain
the following theorem:

Theorem 5. The holographic entropy cone Cn can be equivalently defined in terms of (1)
compact Riemannian manifolds (our original definition 1) and (2) graph models. Moreover,
(1) can be restricted to two-dimensional manifolds of constant negative curvature.

We remark that any Riemannian manifold with constant scalar curvature and with
asymptotically hyperbolic boundaries can be understood as the time slice of a multiboundary
wormhole geometry (see section 5 below).

3.3 Higher dimensions

Though the two-dimensional construction in section 3.2 above is sufficient to prove the
existence of the bulk geometry for each graph model, we note that a similar construction
exists in higher dimensions. In fact, it is easier to construct examples in higher dimensions
since the requirement of constant scalar curvature is less restrictive; in two dimensions,
this requirement demands that the surface is locally hyperbolic and indeed completely
determines its local geometry; this is not the case in higher dimensions.

To give an explicit example, take the Riemann surface Σ constructed in lemma 4 and
tensor it with the (d− 2)-dimensional sphere Sd−2 of scalar curvature K ′. The total space
Σ×Sd−2 is a d-dimensional manifold with constant scalar curvature K +K ′. Let us choose
K ′ so that K +K ′ < 0. The space has boundaries with the topology of S1 × Sd−2. These
boundaries are not asymptotically hyperbolic, but we can repair them as follows. Near each
boundary of Σ× Sd−2, we can choose the metric as

ds2 = 1
|K|

(
dr2

1 + r2 + (1 + r2)dτ2
)

+ 1
K ′
dΩ2

d−2,

where τ is periodic as τ ∼ τ + 2π, representing the S1 direction on the boundary, and where
dΩ2

d−2 is the metric of the (d− 2)-dimensional unit sphere. On the other hand, the metric
on the d-dimensional hyperbolic space can be chosen as

ds2 = 1
|K +K ′|

(
dr2

1 + r2 + (1 + r2)dτ2 + r2dΩ2
d−2

)
,

where we assumed that the space has the same scalar curvature, K ′ + K. These two
geometries can be interpolated by

ds2 = f(r)
|K|

(
dr2

1 + r2 + (1 + r2)dτ2
)

+ g(r)
K ′

dΩ2
d−2, (3.2)

where f(r) = g(r) = 1 for r < r0 for some r0, and f(r) ∼ |K|/|K + K ′| and g(r) ∼
r2K ′/|K + K ′| for r → ∞. The constant scalar curvature condition for this metric is a
second-order nonlinear differential equation on f(r) and g(r). Since we can choose these
two functions arbitrarily as far as they are positive and obey the boundary conditions at
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r = r0 and r →∞, we can always find a solution for the single differential equation. In fact,
there are infinitely many solutions. The transitional region (3.2) does not add new minimal
surfaces homologous to the boundary and the holographic entropy vector associated with
the d-dimensional bulk geometry Σ×Sd−2 remains the same as the one for Σ (up to overall
rescaling) provided that we can choose

r0 >

(
|K +K ′|d−1

|K|K ′d−2

) 1
2(d−2)

, ∂r
[(

1 + r2
)
fgd−2

]
> 0. (3.3)

Ansatz (3.2) is by no means unique. The purpose of this example is to illustrate how it
is easy to find a higher-dimensional geometry corresponding to each graph model. It also
shows that the holographic entropy cones do not change when we restrict to fixed bulk
dimension d > 2, constant negative curvature, and asymptotically hyperbolic boundaries
(generalizing theorem 5).

3.4 Polyhedrality

We will now use the characterization of the holographic entropy cone in terms of graph
models to gain further structural insight non-obvious from its original definition. We start
with a basic lemma:

Lemma 6. Any entropy vector in Cn can be explained by a complete graph on 22n−1 vertices
and fixed boundary coloring.

Proof. Let In = {∅ 6= I ⊆ [n]} be the set of non-empty subsets of [n]. We define the vertex
set of our complete graph to be V := {0, 1}In , the set of bitstrings indexed by In. Clearly,
V is of cardinality 22n−1. For each i ∈ [n+ 1], we define a bitstring xi ∈ V by (xi)I = 1 if
and only if i ∈ I (note that xn+1 is always the bitstring that is all zeros). These bitstrings
are our boundary vertices: we color each xi by i.

We now describe the transformation of an arbitrary graph model into one that uses
the universal vertex set and boundary coloring. We will proceed by what is in essence
an algebraic version of the construction given in section 3.1. To start, we choose for each
boundary region I ∈ In an I-cut WI that realizes the discrete entropy S∗(I) in the original
graph. For each bitstring x ∈ V , we defineW (x) :=

⋂
I∈InW

xI
I , where we denoteW 1

I := WI

and W 0
I := W c

I . The regions W (x) partition the vertex set of the original graph into 22n−1

disjoint subsets (of which some may be empty). We note that each W (xi) contains all
boundary vertices of the original graph that are colored by i. Finally, let E(x, y) denote
the set of edges in the original graph with one endpoint in W (x) and one endpoint in W (y).
We define the weight of the edge between bitstrings x and y to be w(x, y) =

∑
e∈E(x,y)w(e),

the total weight of all edges between W (x) and W (y). Note that w(x, y) = 0 if E(x, y) = ∅.
Given these definitions, it is not hard to verify that all discrete entropies S∗(I) are preserved
in the graph thus obtained.

Theorem 5 and lemma 6 imply that we may characterize each holographic entropy
vector in Cn by a graph model on a fixed graph (V,E) with fixed boundary coloring. Thus
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the only varying data are the edge weights w : E → R≥0. It follows that the holographic
entropy cone is given by

Cn = {s∗(w) : w : E → R≥0}

where we write s∗(w) = (S∗w(I))∅6=I⊆[n] for the discrete entropy vector corresponding to the
choice of edge weights w in the otherwise fixed graph model.

Proposition 7. The holographic entropy cone Cn is a rational polyhedral cone.

Proof. According to the preceding discussion, we may work with a fixed graph and boundary
coloring. This also fixes the I-cuts for each boundary region I; let us denote them by
W

(1)
I , . . . ,W

(nI)
I . Then the discrete entropy (3.1) is given by the minimization

S∗w(I) = min{|C(W (1)
I )|, . . . , |C(W (nI)

I )|}. (3.4)

where each |C(W (k)
I )| =

∑
e∈C(W (k)

I )w(e) is a linear function of the edge weights w, which
we may think of as elements of the orthant RE≥0. Now consider the linear hyperplanes

H(k,l)
I = {w ∈ RE≥0 : |C(W (k)

I )| = |C(W (l)
I )|}

for all I and 1 ≤ k 6= l ≤ nI . They partition the orthant of edge weights into finitely
many rational polyhedral subcones, RE≥0 =

⊔
WW, each of which is defined by a maximal

number of inequalities of the form |C(W (k)
I )| ≥ |C(W (l)

I )|. On each such subcone W, the
discrete entropy (3.4) of any boundary region I – and therefore the entropy vector s(w)
itself – is given by a linear function of w with integer coefficients. As the image of a rational
polyhedral cone under such a linear map is again a rational polyhedral cone, we conclude
that the holographic entropy cone is a union of finitely many rational polyhedral cones,
Cn =

⋃
W s(W), and therefore itself a rational polyhedral cone (since we already know that

Cn is a convex cone).

Remarkably, proposition 7 implies that, for each fixed number of regions n, there is a
finite number of independent linear entropy inequalities, corresponding to the facets of the
holographic entropy cone Cn. Equivalently, each holographic entropy cone is spanned by a
finite number of extreme rays, which we have seen can be represented, e.g., by hyperbolic
surfaces. Such a hyperbolic surface can in turn be understood as the time slice of a
multiboundary wormhole geometry [25, 26]. This is in agreement with and generalizes our
findings for n ≤ 4 regions in section 2.2.

The holographic situation is also in stark contrast to the Shannon and von Neumann
entropy. For these, not only are there extreme rays for n ≥ 3 that can only be attained
approximately, so that the corresponding entropy cones are not closed, but there are in
fact linear inequalities that constrain some of the lower-dimensional faces when n ≥ 4
[12, 17, 18]. It is moreover known for the Shannon entropy (and likewise conjectured for
the von Neumann entropy) that the cones are not polyhedral for n ≥ 4 [15].
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Figure 8. Illustration of the holographic proof of strong subadditivity from [27].

4 New constraints on holographic entropies

In this section, we describe a new combinatorial method for establishing holographic entropy
inequalities. As we shall explain below, it is based on exhibiting a certain contraction map
of Hamming cubes as a certificate for the correctness of a given entropy inequality. We then
use this method of proof by contraction to establish an infinite family of hitherto unknown
holographic entropy inequalities, and we comment on the novel features of holographic
entropy for five or more regions. We also give a greedy algorithm for finding proofs by
contraction for a given entropy inequality.

Before we describe the method, we first recall the holographic proof of strong subaddi-
tivity from [27]: Let AB′ and BC ′ denote the minimal Ryu-Takayanagi hypersurfaces for
S(AB) and S(BC), respectively, and ab and bc the corresponding bulk regions. That is,
∂ab = AB∪AB′ and ∂bc = BC∪BC ′. Now define two new bulk regions by b := ab∩bc and
abc := ab∪bc. Clearly, their boundaries decompose as ∂b = B∪B′ and ∂abc = ABC∪ABC ′,
where ABC ′ and B′ denote the respective bulk parts. One now argues that B′ and ABC ′

can be assembled from AB′ and BC ′ by cutting and pasting (see figure 8 for an illustration).
This then shows the first inequality in

S(AB) + S(BC) = 1
4GN

(
|AB′|+ |BC ′|

)
≥ 1

4GN
(
|B′|+ |ABC ′|

)
≥ S(B) + S(ABC),

since, in general, AB′ and BC ′ may not be completely exhausted by B′ and ABC ′ (unlike
suggested in figure 8). The second inequality is due to the minimization in the Ryu-
Takayanagi formula, since the bulk surfaces constructed will in general not be minimal in
their homology class. This concludes the holographic proof of strong subadditivity (2.1).
The proof of the monogamy inequality (2.2) in [21] proceeds similarly by reassembling bulk
surfaces and regions.

4.1 Proofs by contraction

We now show that the proofs in [21, 27] are instances of a general combinatorial method.
For this, we consider a general entropy inequality on n parties given in the form

L∑
l=1

αlS(Il) ≥
R∑
r=1

βrS(Jr), (4.1)

where the α1, . . . , βR > 0 are positive coefficients and I1, . . . , JR ⊆ {1, . . . , n} the corre-
sponding subsystems. We can conveniently encode the latter in terms of the following
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occurrence vectors:
xi := (i ∈ Il)Ll=1 ∈ {0, 1}L,
yi := (i ∈ Jr)Rr=1 ∈ {0, 1}R.

(4.2)

For the purifying region, we accordingly define xn+1 ≡ 0 and yn+1 ≡ 0 to be zero bitstrings.
Finally, we define the weighted Hamming norms ‖v‖α :=

∑L
l=1 αl|vl|.

Theorem 8 (‘Proof by contraction’). Let f : {0, 1}L → {0, 1}R be a ‖·‖α-‖·‖β-contraction,
i.e.,

‖f(x)− f(x′)‖β ≤ ‖x− x′‖α (∀x, x′ ∈ {0, 1}L). (4.3)

If f(xi) = yi for all i = 1, . . . , n+ 1 then (4.1) is a valid entropy inequality.

Proof. By theorem 5, it suffices to show that the entropy inequality holds for the discrete
entropy of an arbitrary graph model. We first choose a minimal cutWl for each of the regions
Il appearing in the left-hand side of (4.1). That is,Wl is an Il-cut and S∗(Il) = |C(Wl)|. For
each bitstring x ∈ {0, 1}L, we now define a subsetW (x) :=

⋂L
l=1W

xl
l by inclusion/exclusion,

where we denote W 1
I := WI and W 0

I := W c
I . Then the W (x) form a partition of the vertex

set of the graph. Each W (xi) contains all boundary vertices colored by i, and we have that

Wl =
⋃
{W (x) : x ∈ {0, 1}L with xl = 1}. (4.4)

We now define a cut for each of the regions Jr that appear on the right-hand side of (4.1)
by reassembling the pieces W (x) according to the function f :

Ur :=
⋃
{W (x) : x ∈ {0, 1}L with f(x)r = 1} (4.5)

Since we assume that f(xi) = yi for all i = 1, . . . , n+ 1, each Ur is a Jr-cut. Indeed, this
follows from

W (xi) ⊆ Ur ⇔ f(xi)r = 1⇔ (yi)r = 1⇔ i ∈ Jr.

The crucial step now is to establish the following inequality, which in fact holds for arbitrary
cuts Wl:

L∑
l=1

αl|C(Wl)| ≥
R∑
r=1

βr|C(Ur)| (4.6)

To see that (4.6) is correct, it is useful to introduce for any pair of bitstrings x, x′ ∈ {0, 1}L

the set E(x, x′) of edges between W (x) and W (x′). The E(x, x′) form a partition of the
edge set of the graph model under consideration. By (4.4), the edges in E(x, x′) cross Wl if
and only if xl 6= x′l, so that C(Wl) =

⋃
xl 6=x′l

E(x, x′). Therefore,

L∑
l=1

αl|C(Wl)| =
L∑
l=1

αl
∑

{x,x′}:xl 6=x′l

|E(x, x′)| =
L∑
l=1

αl
∑
{x,x′}

|xl − x′l| |E(x, x′)|

=
∑
{x,x′}

|E(x, x′)|
L∑
l=1

αl|xl − x′l| =
∑
{x,x′}

|E(x, x′)| ‖x− x′‖α.

– 20 –



Likewise, (4.5) implies that

R∑
r=1

βr|C(Ur)| =
∑
{x,x′}

|E(x, x′)| ‖f(x)− f(x′)‖β.

Thus the inequality (4.6) is a consequence of the contraction property (4.3). It is now
straightforward to conclude the proof of the entropy inequality (4.1):

L∑
l=1

αlS
∗(Il) =

L∑
l=1

αl|C(Wl)| ≥
R∑
r=1

βr|C(Ur)| ≥
R∑
r=1

βrS
∗(Jr), (4.7)

where the first inequality is (4.6); the second inequality comes from the fact that each Ur is
a cut for the boundary region Jr but not necessarily a minimal cut.

In view of section 3.1 we may directly identify any cut W that appears in the proof
with some bulk region w, the set of edges C(W ) that cross a cut with the bulk part W ′ of
the boundary ∂w, and the total weight |C(w)| of the edges with the surface area |W ′|. It is
not hard use this dictionary to translate the above proof of theorem 8 into a proof that
does not explicitly rely on the graph model and theorem 5.

Bulk inequalities. As is apparent from the proof and in particular from (4.5), the
map f : {0, 1}L → {0, 1}R provides an efficient way of encoding the way the cuts (or bulk
regions) are reassembled. The contraction property (4.3) implies that the total weight of the
right-hand side cuts is no larger than that of the left-hand side cuts (weighted appropriately
with the coefficients α and β). Thus the resulting bulk inequality (4.6) holds for arbitrary
cuts W1, . . . ,WL and not only for minimal cuts that achieve the left-hand side discrete
entropies. We record this general fact:

Let f : {0, 1}L → {0, 1}R be a ‖·‖α-‖·‖β-contraction. Then the bulk inequality

L∑
l=1

αl|C(Wl)| ≥
R∑
r=1

βr|C(Ur)| (4.8)

holds for arbitrary cuts W1, . . . ,WL in any graph, where U1, . . . , UR are defined
according to (4.5). We remark that c(W ) := |C(W )| is known as the cut function
in graph theory.

Thus the role of the initial conditions f(xi) = yi in theorem 8 is only to ensure that the
reassembled cuts Ur are cuts for the appropriate boundary subsystems. This allows the
bulk inequality to be lifted to a holographic entropy inequality.

Contractions and the hypercube. The contracting condition in theorem 8 can also
be understood in graph-theoretical terms. For simplicity, let us assume that all coefficients
α1 = · · · = βR = 1 (otherwise, appropriate weights have to be inserted into the following
discussion). Then the set of bitstrings {0, 1}L can be interpreted as the set of vertices of the
hypercube graph or Hamming cube, which we shall denote by QL. The Hamming distance
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agrees with the graph distance and it is not hard to see that it suffices to check (4.3) for
the edges of the hypercube only, i.e., only for those bitstrings x and x′ for which xl 6= x′l for
a single component l ∈ [L]. Let us write x ∼ x′ if {x, x′} form an edge of the hypercube.
Then theorem 8 admits the following graph-theoretical reformulation:

Let ϕ : QL → QR be a weak graph homomorphism, i.e., a map between the
vertex sets of the hypercube graphs such that

x ∼ x′ ⇒ ϕ(x) ∼ ϕ(x′) or ϕ(x) = ϕ(x′).

If ϕ(xi) = yi for all i = 1, . . . , n+ 1 then (4.1) is a valid entropy inequality.

A weak graph homomorphism QL → QR is the same as an ordinary graph homomorphism
into the graph Q′R obtained by adding loops at each vertex of QR. Such a graph homo-
morphism is also known as a coloring of QL by Q′R. Thus to prove a holographic entropy
inequality using our method it suffices to argue that the partial coloring defined by the
occurrence vectors can be extended to a full coloring of QL by Q′R.

The contraction f : {0, 1}L → {0, 1}R can also be represented geometrically by the
subsets

Cr = {x ∈ {0, 1}L : f(x)r = 1} (4.9)

of the hypercube, each of which encodes a component of the function f . The conditions
f(xi) = yi then amount to requiring that each Cr is a cut that contains precisely those
occurrence vectors xi with i ∈ Jr, and the contraction property states that all edges of
the hypercube cross at most one of the cuts Cr. We summarize this last reformulation of
theorem 8:

Let C1, . . . , CR denote subsets of the hypercube graph QL = {0, 1}L such that
(1) each hypercube edge crosses at most one of the cuts C1, . . . , Cr, and (2) each
Cr contains precisely those occurrence vectors xi that correspond to regions that
appear in the r-th right-hand side term of the entropy inequality (i.e., i ∈ Jr).
Then (4.1) is a valid entropy inequality.

Basic Examples. We shall now illustrate our method by giving succinct ‘proofs by
contraction’ of all hitherto known holographic entropy inequalities. For strong subadditivity,
S(AB) + S(BC) ≥ S(B) + S(ABC), the occurrence vectors are given in table 1:

x y = f(x)

AB BC B ABC
O 0 0 0 0
C 0 1 0 1
A 1 0 0 1
B 1 1 1 1

Table 1. Proof by contraction of strong subadditivity.
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Here, we have denoted the purifying region by O; each row of the table lists a boundary
region i and the corresponding occurrence vectors xi and yi. In this case, the function
f : {0, 1}2 → {0, 1}2 is already fully defined by the condition that the occurrence vectors
are mapped onto each other, and it is not hard to verify that it is a contraction. Thus
theorem 8 implies at once that holographic entropies are strongly subadditive.

Let us discuss this ‘proof by contraction’ in some more detail. Given minimal cuts WAB

and WBC for the left-hand side of the strong subadditivity inequality, the proof proceeds
by constructing the following cuts in (4.5):

UB = W (11) = WAB ∩WBC

UABC = W (01) ∪W (10) ∪W (11) = WAB ∪WBC

Thus we recover precisely the same construction as in the holographic proof of strong
subadditivity [27] that we sketched at the beginning of this section (cf. figure 8). This is no
surprise, in fact the very same construction is well-known in graph theory, where it is used
to establish submodularity of the cut function.

For completeness, we also describe the corresponding hypercube picture (figure 9):
The vertices describe the two-dimensional hypercube corresponding to the left-hand side
of the inequality. Each vertex is labeled in red by a boundary region according to the
occurrence vectors xA, . . . , xO. The hypercube cuts (4.9) amount to CB = {11} and
CABC = {01, 10, 11} and they have been indicated in blue in the above figure. It is
immediately apparent that each hypercube edge crosses precisely one of the cuts.

ssa-hypercube

00

11

0110A

B

C

O

CB
CABC

Figure 9. Strong subadditivity of holographic entropy in the hypercube picture.

We now sketch the corresponding construction for the monogamy of the mutual
information, S(AB) + S(BC) + S(AC) ≥ S(A) + S(B) + S(C) + S(ABC). In this case,
there are four pairs of occurrence vectors. Table 2 lists the unique extension of this initial
data to a contraction f : {0, 1}3 → {0, 1}4. This constitutes a ‘proof by contraction’ of the
monogamy inequality (2.2). The corresponding cuts are

UA = W (101) = WAB ∩W c
BC ∩WAC

UB = W (110) = WAB ∩WBC ∩W c
AC

UC = W (011) = W c
AB ∩WBC ∩WAC
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x y = f(x)

AB BC AC A B C ABC
O 0 0 0 0 0 0 0

0 0 1 0 0 0 1
0 1 0 0 0 0 1

C 0 1 1 0 0 1 1
1 0 0 0 0 0 1

A 1 0 1 1 0 0 1
B 1 1 0 0 1 0 1

1 1 1 0 0 0 1

Table 2. Proof by contraction of monogamy of the holographic mutual information.

UABC =
⋃

x 6=000
W (x) = WAB ∪WBC ∪WAC

which is precisely the construction in [21]. The corresponding hypercube picture is displayed
below in figure 10. Again, we observe that all edges are cut precisely once.

mmi-hypercube
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000

100 001010
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111
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Figure 10. Monogamy of the holographic mutual information in the hypercube picture.

Equality conditions. The proof of theorem 8 also tells us about the conditions under
which a given entropy inequality holds with equality. Indeed, it is clear from (4.7) that (4.1)
can only hold with equality if both (1) the cuts (4.5) are crossed by all edges that cross the
original cuts (including weights and multiplicities) and (2) these cuts are in fact minimal.
This gives interesting geometrical information about the graph model and the underlying
bulk geometry. For example, in the case of strong subadditivity the first equality condition
asserts there are no edges between WAB \WBC and WBC \WAC , which is well-known from
graph theory. It would be interesting to investigate equality conditions for other holographic
entropy inequalities in more detail.

A greedy algorithm for finding proofs by contraction. Theorem 8 can be readily
turned into a greedy algorithm for establishing a given entropy inequality (4.1). Indeed, it
is not hard to see that, upon successful termination, algorithm 1 constructs a function f
that satisfies the assumptions of theorem 8.
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• Construct the occurrence vectors xi and yi according to (4.2) for all i ∈ [n+ 1].

• Start with the partially defined function f that sends f(xi) = yi for all i ∈ [n+ 1].

• Verify that f is a contraction on its domain. If this is not the case then the entropy
inequality (4.1) is violated for a Bell pair.

• Successively try to extend f : For each x ∈ {0, 1}L for which the function is not yet
defined, we know that any choice of f(x) has to satisfy the conditions

‖f(x)− f(x′)‖β ≤ ‖x− x′‖α

for all x′ for which f(x′) is already defined. If this system of constraints has no
solution f(x) for some x, fail. If there is a unique solution f(x) for some x, extend the
function accordingly. Otherwise, pick an arbitrary f(x) that satisfies the constraints.

• Repeat this process until the function is fully defined on the entire unit cube {0, 1}L.

Algorithm 1. Greedy algorithm for finding a ‘proof by contraction’.

In practice, we have found algorithm 1 to be quite computationally effective. For all
inequalities that we discuss in this paper, the algorithm always terminates successfully
by finding a contraction f (even when choices had to be made in the process). In fact,
the analytic proof of the cyclic family of inequalities described in section 4.2 below has
been guided by computer experiments up to n = 11 regions. We can provide a computer
implementation of algorithm 1 upon request.

We remark that there are in general many equivalent ways of expressing an entropy
inequality in the form (4.1). For example, rescaling a given entropy inequality and/or
replacing a right-hand side term βrS(Jr) by a sum S(Jr)+ · · ·+S(Jr) can often be useful, as
it gives more flexibility to the extension process. From the hypercube perspective discussed
above, this amounts to allowing for ‘finer’ cuts Cr.

4.2 A cyclic family of new entropy inequalities

We now describe a family of new holographic entropy inequalities. We have the following
infinite family of cyclic entropy inequalities for n ≥ 2k + l regions,

n∑
i=1

S(Ai . . . Ai+l−1|Ai+l . . . Ai+k+l−1) ≥ S(A1 . . . An), (4.10)

where S(X|Y ) := S(XY )− S(Y ) denotes the conditional entropy and where all indices are
taken modulo n. We note that the case (n, k, l) = (2, 0, 1) is subadditivity, S(A) + S(B) ≥
S(AB), while the monogamy of the mutual information (2.2) corresponds to choosing
(n, k, l) = (3, 1, 1). As strong subadditivity can be obtained as a consequence of subadditivity
and monogamy, this shows that our family generalizes all previously known holographic
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entropy inequalities. The case where n = 2k + 1 and l = 1 is of particular interest:
n∑
i=1

S(Ai|Ai+1 . . . Ai+k) ≥ S(A1 . . . An). (4.11)

These are the strongest inequalities in the family, since all other instances of our family can
be reduced to (4.11) and subadditivity. Just as the monogamy inequality (2.2) excludes
the four-party GHZ state, we can find entangled quantum states ρn for each odd n that
are excluded by the cyclic inequality (4.11) for n regions. Moreover, these states do not
violate any of the cyclic inequalities for fewer regions. This shows that each instance of
(4.11) is independent from the instances for fewer regions. Thus it comprises a truly infinite
family of cyclic inequalities. We remark that (4.11) is in general different from the n-partite
information, which for n > 3 is known to not have a definite sign [21].

In appendix B, we give a detailed proof of our new entropy inequalities and of the
properties advertised above. By exploiting the cyclic structure of the inequalities, we
construct an explicit ‘proof by contraction’ f : {0, 1}n → {0, 1}n+1 that extends the initial
data given by the occurrence vectors. While the function has a reasonably simple algebraic
description, the cuts (4.5) produced by it are highly nontrivial (see appendix B, where we
provide a fully worked-out example).

When all of the regions are adjacent regions on a single boundary, the left-hand side of
(4.11) can be seen as a discrete version of differential entropy [23]. In the n→∞ limit, the
inequality dictates that the length of the bulk curve tangent to all of the Ryu-Takayanagi
surfaces for half the boundary is greater than the entropy of the entire state. More generally,
(4.10) together with subadditivity bounds the length an arbitrary convex bulk curve to be
greater than the entropy of the state. In previous work [23], this was shown to follow from
strong subadditivity alone, but the proof does not generalize to arbitrary boundary regions.
In contrast, we have shown the general inequality to be true and independent from strong
subadditivity. Our result generalizes an idea such as differential entropy beyond the basic
geometric reasoning.

4.3 The holographic entropy cone for five regions

In section 2.2 we had seen that the holographic entropy cone for four regions is com-
pletely determined by strong subadditivity and the monogamy of the mutual informa-
tion alone. Moreover, we found that all extreme rays could be explained by geometries
with sufficiently small boundary cycles (figure 2) or by star graphs (figure 5), for which
S(I) = min{

∑
i∈I S(i),

∑
i∈[n+1]\I S(i)}, where we set S(An+1) := S(A1 . . . An) according

to purification. Such entropies are also realized by random pure states with dimension
log di ∝ S(i) [22].

For five or more regions, the situation is markedly different: There are in general
many further entropy inequalities that are independent from strong subadditivity and the
monogamy inequality. One of them is the cyclic inequality (4.11) for n = 5 that we have
discussed in the preceding section,

S(A|BC) + S(B|CD) + S(C|DE) + S(D|EA) + S(E|AB) ≥ S(ABCDE). (4.12)
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For example, the permutation-symmetric ray with S(I) = 1 for |I| ∈ {1, 5} and S(I) = 2
otherwise, which is an extreme ray for Ĉ5, is excluded by the cyclic inequality. Therefore this
ray does not correspond to a holographic entropy vector. The cyclic inequality together with
subadditivity and monogamy also implies all stabilizer inequalities for five-partite quantum
states derived in [35]. This is in line with our findings in section 2.2 for four regions and it
gives non-trivial additional evidence that all holographic entropies are stabilizer entropies.

Apart from (4.12), we have found several other holographic entropy inequalities to be
valid, including the following:

• 2S(ABC)+S(ABD)+S(ABE)+S(ACD)+S(ADE)+S(BCE)+S(BDE) ≥ S(AB)+
S(ABCD) +S(ABCE) +S(ABDE) +S(AC) +S(AD) +S(BC) +S(BE) +S(DE)

• S(ABE)+S(ABC)+S(ABD)+S(ACD)+S(ACE)+S(ADE)+S(BCE)+S(BDE)+
S(CDE) ≥ S(AB) + S(ABCE) + S(ABDE) + S(AC) + S(ACDE) + S(AD) +
S(BCD) + S(BE) + S(CE) + S(DE)

• S(ABC) +S(ABD) +S(ABE) +S(ACD) +S(ACE) +S(BC) +S(DE) ≥ S(AB) +
S(ABCD) + S(ABCE) + S(AC) + S(ADE) + S(B) + S(C) + S(D) + S(E)

• 3S(ABC) + 3S(ABD) + 3S(ACE) + S(ABE) + S(ACD) + S(ADE) + S(BCD) +
S(BCE) + S(BDE) + S(CDE) ≥ 2S(AB) + 2S(ABCD) + 2S(ABCE) + 2S(AC) +
2S(BD) + 2S(CE) + S(ABDE) + S(ACDE) + S(AD) + S(AE) + S(BC) + S(DE)

All the above inequalities, including (4.12), correspond to different facets of the entropy
cone and are therefore independent. A feature of these inequalities (and the cyclic family
of inequalities) is that they satisfy the following Bell condition: they are saturated for
Bell pairs shared between any two regions Ai and Aj (including the purifying region). In
particular, this implies that the inequalities are balanced, i.e., each region appears the same
number of times on both sides of the inequality.

Another interesting observation is that, in contrast to the situation for four and fewer
regions, there are numerous extreme rays of C5 which cannot be explained by star graphs
(see figure 7 for one such an example). Thus the bulk geometry becomes increasingly
important; the interior cycles can no longer be ignored for the purposes of minimization in
the Ryu-Takayanagi formula (1.1). We will give a detailed discussion of the holographic
entropy cone for five regions in forthcoming work.

5 The holographic entropy cone and CFT

In semi-classical gravity, there is a semi-classical quantum state for each solution of Einstein’s
equations, possibly coupled to matter fields. More precisely, there is one such state for each
phase space volume measured in units of the Planck constant, and the phase space of the
gravity theory is the space of solutions near the initial value surface.

The spacetime metric on the initial value surface cannot be chosen arbitrarily; the metric
should satisfy the constraint equations. Moreover, if we want the Lorentzian-signature
geometry to have a smooth analytic continuation to a Euclidean-signature geometry then
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the extrinsic curvature on the initial value surface should vanish [36]. This condition
ensures that the entanglement entropy for a region on the boundary of the initial value
surface is given by the Ryu-Takayanagi formula as opposed to the more general Hubeny-
Rangamani-Takayanagi formula [5]. The vanishing of the extrinsic curvature also simplifies
the constraint equations. In particular, if we ignore matter fields and use the vacuum
Einstein equations with cosmological constant, the constraint equations reduce to the
condition that the scalar curvature of the induced metric on the initial value surface is
constant. Therefore, any d-dimensional Riemannian manifold X with constant scalar
curvature gives a consistent initial value condition for the vacuum Einstein equations in
d+ 1 dimensions. The resulting solution is time-reversal symmetric in the neighborhood of
the initial value surface and thus can be analytically continued to a Euclidean-signature
metric, so that the Ryu-Takayanagi formula can be used to evaluate entanglement entropies.
This is why in section 3.2 we constructed geometries with constant scalar curvature to
realize the extreme rays of our holographic entropy cone. We remark that constant scalar
curvature (together with asymptotically AdS boundary conditions) is sufficient but not
necessary for a holographic state to exist; it can be relaxed if we allow matter fields to have
non-zero energy-momentum tensors.

Let us examine the properties of such semi-classical quantum states in more detail in
the case of d = 2. A Riemann surface with a constant negative curvature metric can be
lifted to a locally AdS3 Lorentzian manifold [26]. Specifically, let Σ be a Riemann surface
with constant curvature metric dΣ2 and curvature scale `. Then there exists a locally AdS3
spaceMΣ having a coordinate patch in a neighborhood of t = 0 that looks as follows:

ds2
MΣ = −`2dt2 + cos2 t dΣ2. (5.1)

Note that the manifoldMΣ includes the entirety of the Riemann surface on a time-reflection
symmetric slice at t = 0. Such locally AdS3 solutions to Einstein’s equations are realized –
after removing certain regions – by quotients of AdS3 by Fuchsian groups of the second
kind [25, 26]. The desired group action can be uniquely identified by its action on the t = 0
slice alone. It is precisely the group action on the hyperbolic disk H2 whose quotient is our
Riemann surface Σ. A thorough discussion of these solutions can be found in [25] and a
concise, but very readable treatment in [22], which mirrors our present interests.

If our Riemann surface Σ has b boundaries, the Lorentzian geometry will also have b
asymptotic locally AdS3 regions. Each exterior region has the exact geometry of a BTZ
black hole. These asymptotic BTZ regions are connected by a wormhole hidden behind the
collective BTZ horizons. Each asymptotic boundary corresponds to a separate CFT, not
directly coupled to the other CFTs. A wormhole with b boundaries is dual to a state |Σ〉 in
the tensor product H⊗bCFT of the Hilbert spaces of the individual CFTs. The interior regions
of the Riemann surface encode the t = 0 slice of the wormhole as well as the entanglement
structure of the state |Σ〉.

The Lorentzian geometry that we have obtained from our Riemann surface has a
time-reversal symmetry. Thus there is a well-defined Euclidean continuation of the metric
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⌧ = 0

⌧ = �1
Figure 11. Euclidean geometry connecting two CFT states. The shaded region is the time-
symmetric surface Σ at τ = 0. Note that the asymptotic boundary at τ = −∞ is also a copy of
Σ.

(5.1), which in our case is given by

ds2 = `2dτ2 + cosh2 τ dΣ2. (5.2)

Because the time-symmetric surface is precisely the Riemann surface Σ, the corresponding
entanglement entropies can be obtained by the Ryu-Takayanagi formula from the minimal
geodesics in Σ [5, 22]. Thus, our holographic entropy vectors are a true measure of the
boundary entanglement entropies.

Since the Euclidean geometry (5.2) matches onto the Lorentzian geometry at τ = 0,
where the extrinsic curvature vanishes, the Euclidean geometry can be regarded as a saddle
point of the Euclidean path integral of the bulk gravity and defines the state |Σ〉 at τ = 0
in the semi-classical gravity approximation. On the other hand, the metric (5.2) becomes
ds2 ∼ `2dτ2 + e2|τ | dΣ2 as τ → −∞, and therefore the asymptotic boundary is also a copy
of Σ with e|τ | as its RG scale, as shown in figure 11. Thus, the Riemann surface Σ is a
natural home for the dual CFT at τ = −∞ as well as the time symmetric slice at τ = 0 of
the bulk geometry. Based on this observation, it was argued in [22] that the state |Σ〉 is
given by a functional integral of the 2d CFT on Σ.

States of two-dimensional CFTs on a Riemann surface with boundaries were considered
in the 1980s in [37–39] to formulate the operator formalism for conformal field theory on
Riemann surfaces of higher genus. For example, for the c = 1 CFT with complex free
fermions ψ(z), ψ̄(z), we consider a (−1/2, 0) form ν(z) that is holomorphic everywhere on a
Riemann surface Σ with b boundaries γi (i = 1, ..., b) obeying the same spin structure as
ψ(z). For simplicity, let us assume NS spin structure around each boundary γi. We then
require that, for any such ν(z), the state |Σ〉 in the b tensor product of the NS fermion Fock
spaces satisfies

b∑
i=1

∮
γi

dz ν(z)ψ(i)(z)|Σ〉 = 0,
b∑
i=1

∮
γi

dz ν(z)ψ̄(i)(z)|Σ〉 = 0, (5.3)

where ψ(i)(z) is the free fermion operator acting on the i-th Hilbert space of the CFT.
It turns out that, for each spin structure, there is a unique solution to these equations.
Moreover, the resulting state |Σ〉 can be used to compute correlation functions of these
fermions as

〈ψ(z1) · · ·ψ(zN )ψ̄(w1) · · · ψ̄(wN )〉Σ0
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= 1〈0| ⊗ · · · ⊗ b〈0|
N∏
α=1

ψ(iα)(zα)
N∏
β=1

ψ̄(iβ)(wβ) |Σ〉 ,

where the left-hand side is the correlation function computed on a closed Riemann surface
Σ0 obtained by capping off the b boundaries of Σ by attaching a disk to each of them. The
conditions (5.3) ensure that fermions are well-defined and holomorphic on Σ. The state
|Σ〉 associated to the Riemann surface Σ plays important roles in soliton theory [40] and in
topological string theory [41].

It is an interesting question to ask if a given entangled state in H⊗bCFT is interpolated
through a smooth wormhole geometry. In the case at hand, it is possible to diagnose whether
a given state |Ψ(b)〉 is associated to a smooth Riemann surface with b boundaries. For b = 1
the procedure is as follows. Consider the fermion current J(z) =: ψ(z)ψ̄(z) :=

∑
n Jnz

−n−1

and define the following wave-function of infinitely many variables t1, t2, . . . ,

Ψ(t) = 〈0| exp
( ∞∑
n=1

tnJn

)
|Ψ〉 .

If |Ψ〉 = |Σ〉 for some Riemann surface Σ of genus g with one boundary, we can compute
Ψ(t1, t2, · · · ) explicitly as

Ψ(t) = exp
(∑
m,n

Qmntmtn

)
ϑ

(∑
n

~Antn + ~c

)
,

where ϑ is the Riemann theta function for Σ. The matrix Qmn is related to the current-
current correlation function, and the g-dimensional vectors ~An and ~c are related to the
holomorphic one-forms and spin structure on Σ, respectively. Note that modulo the
quadratic form

∑
m,nQmntmtn in the exponent, Ψ depends on the tn only through the g

linear combinations
∑
n
~Antn (equivalently, we can say that ∂3 log Ψ/∂tk∂tm∂tn depends

only on these combinations of tn). Conversely, it was proven in [42] that if Ψ depends on
the tn only through g linear combinations, modulo a quadratic form in the exponent, there
is a Riemann surface Σ with one boundary such that |Ψ〉 = |Σ〉. To generalize this for b ≥ 1
we can consider

Ψ(t) =
b∏
i=1

i〈0| exp
( ∞∑
n=1

t(i)n J
(i)
n

)
|Ψ〉 ,

where the J (i)
n are the current operators acting on the i-th Hilbert space. The state |Ψ〉 is

associated to a Riemann surface of genus g with b boundaries if and only if the wave-function
Ψ(t) depends on the t(i)n only through g linear combinations modulo a quadratic form in
the exponent. A natural generalization of (5.3) for a general CFT would be

b∑
i=1

∮
γi

dz ξ(z)T (i)(z)|Σ〉 = 0 (5.4)

and its complex conjugation, where ξ(z) is any (−1, 0) form holomorphic on Σ and T (i)(z) is
the energy-momentum tensor acting on the i-th Hilbert space of the CFT. These conditions
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wormhole1

Figure 12. Thermal AdS3, which is another saddle-point geometry we can use to define a state in
HCF T ⊗HCF T solving (5.4).

ensure that the energy-momentum tensor is well-defined and holomorphic on Σ. Unlike in
the case of free fermions, a solution to these equations is not unique in general. In fact,
there is a solution for each conformal block of the CFT on Σ. Additional conditions are
required to specify the state |Σ〉 uniquely.

To illustrate these points, let us consider as Σ a sphere with two circular holes. By
Weyl rescaling and diffeomorphisms, we can turn Σ into a cylinder of length β/2. The
two boundary circles can be twisted relative to each other by θ/2. Since |Σ〉 is a state in
HCFT ⊗ HCFT , one can also think of it as a map from HCFT to HCFT . The functional
integral of the two-dimensional CFT on Σ gives the Euclidean time translation and rotation,
exp(−β

2 Ĥ − i
θ
2 Ĵ), where Ĥ is the Hamiltonian and Ĵ is the angular momentum around the

cylinder. The corresponding state |Σ〉 is then given by

|Σ〉 =
∑
Ψ
e−

β
2EΨ−i θ2JΨ |Ψ〉 ⊗ |Ψ〉 , (5.5)

where the |Ψ〉 denote the joint energy and angular momentum eigenstates in HCFT , with
EΨ and JΨ the corresponding eigenvalues. This is the thermofield double state. However,
this is not the only solution to (5.4). In fact, any projection of exp(−β

2 Ĥ − i
θ
2 Ĵ) to a

Virasoro primary state φ and its descendants satisfies the condition. The corresponding
state is given by

|Σ〉φ =
∑
iL,iR

e−
β
2 (hφ+niL+h̄φ+niR−

c
12 )−i θ2 (hφ+niL−h̄φ−niR ) |φ; iL, iR〉 ⊗ |φ; iL, iR〉 , (5.6)

where the |φ; iL, iR〉 are normalized states for the left and right Virasoro descendants of
φ; their conformal weights are (hφ + niL , h̄φ + niR). We included the Casimir energy − c

12
of the CFT on the circle. These states form a complete basis of solutions for (5.4). For
example, the thermofield double state (5.5) can be expressed as the sum over all primary
states with uniform weight,

|Σ〉 =
∑

φ:primary
|Σ〉φ . (5.7)

Returning to (2+1)-dimensional gravity, there are infinitely many Euclidean saddle-
point geometries that can connect HCFT to HCFT . The geometry (5.2), with Σ being the
cylinder as shown in figure 11, is one possibility. But, we may also consider a solid cylinder
in which the circle direction is contractible and fill in with a portion of the Euclidean AdS3,
as shown in figure 12. There are infinitely many other possibilities as well. Each saddle-point
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geometryM such that ∂M = Σ gives a semi-classical state |M〉〉 in HCFT ⊗HCFT which
satisfies (5.4) and therefore is a linear combination of |Σ〉φ given by (5.6),

|M〉〉 =
∑

φ:primary
Cφ(M) |Σ〉φ , (5.8)

where the weights Cφ(M) depend on the choice of the Euclidean geometry M. We can
determine the weights by computing the norm of |M〉,

〈M|M〉 =
∑

φ:primary
|Cφ(M)|2 φ 〈Σ|Σ〉φ

= q−
c
24 q̄−

c
24

∞∏
n=1
|1− qn|−2 ×

|1− q|2|Cvac(M)|2 +
∑
φ 6=vac

qhφ q̄h̄φ |Cφ(M)|2
 ,

where q = e−β+iθ and vac denotes the ground state. We used the fact that descendants
of the ground state contribute to the partition function as q−

c
24 q̄−

c
24
∏∞
n=2|1− qn|−2 while

those for a generic primary state φ contribute as qhφ−
c
24 q̄h̄φ−

c
24
∏∞
n=1|1− qn|−2. From the

point of view of (2+1)-dimensional semi-classical gravity, the norm 〈M|M〉 is the partition
function computed at the Euclidean saddle geometry obtained by gluingM with itself. The
asymptotic boundary of the resulting geometry is a torus, which is the Schottky double
of the cylinder. We can then find the weights Cφ by comparing the semi-classical gravity
partition function with the CFT norm in the above.

For example, ifM is the solid cylinder, the Euclidean saddle for 〈M|M〉 is thermal
AdS3. In this case, the primary states contributing to the partition function are the ground
state, a few primary states corresponding to low energy particles in AdS3, and their Virasoro
descendants. Thus, we have Cvac = 1 for the vacuum, and Cφ = 1 when φ corresponds to a
light particle in AdS3. Otherwise, Cφ = 0.

For the wormhole geometry (5.2) we are interested in, the Euclidean saddle 〈M|M〉
is given by the metric (5.2) with −∞ < τ < ∞. It is the Euclidean black hole with
temperature 1/β and chemical potential θ for the angular momentum, which is the modular
transform of thermal AdS3. Thus, the weights Cφ(M) for this geometry should satisfy

q−
c
24 q̄−

c
24

∞∏
n=1
|1− qn|−2 ×

|1− q|2|Cvac(M)|2 +
∑
φ 6=vac

qhφ q̄h̄φ |Cφ(M)|2


= q̃−
c
24 ¯̃q−

c
24

∞∏
n=1
|1− q̃n|−2 ×

|1− q̃|2 +
∑

φ:particles
q̃hφ ¯̃qh̄φ

 ,
where q̃ = e

(2π)2
−β+iθ . Since we are in the regime of semi-classical gravity, the central charge c is

large. In this case, an approximate solution to this equation is given by the Cardy formula:

|Cφ(M)|2 ' exp
[
2π
√
c

6

(
hφ −

c

24

)
+ 2π

√
c

6

(
h̄φ −

c

24

)]

The CFT state dual to the wormhole with two boundaries is then given by (5.8) with these
weights.
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It would be interesting to similarly identify the CFT states for multiboundary wormholes,
and we leave this for future investigation.

CFT states and the entropy cone. To prove that the holographic entropy vectors live
in a convex cone we argued that the space of geometries was closed under scaling by a
positive constant and under disjoint union of the geometries. We briefly elaborate on those
operations in terms of the dual CFT. The entanglement entropy is related to the area of
the Ryu-Takayanagi surface by S = A/4GN . It is thus, more precisely, the ratio of the area
over the gravitational coupling, A/GN , that we wish to scale. For the CFT state, rescaling
the bulk metric by a positive constant will rescale the asymptotic value of the AdS radius
`/GN , which corresponds to rescaling the CFT central charge c = 3`/2GN . Such a rescaling
is a natural operation and is generically allowed for large c CFTs with bulk dual. The
disjoint union operation is even simpler. Taking a disjoint union of geometries Σ′ = Σ1 ∪Σ2
corresponds to identifying HiCFT ′ = HiCFT1

⊗HiCFT2
and considering the tensor-product

state |Σ′〉 = |Σ1〉 ⊗ |Σ2〉.

6 Outlook

We conclude by sketching a number of interesting avenues for future investigation motivated
by our results.

ER=EPR. While there is ample evidence that there are important connections between
entanglement and geometry, many of these connections are currently only vaguely understood.
Recent work by Susskind and Maldacena [24] has suggested that there is an equivalence
between Einstein-Rosen wormholes (ER) and entangled Einstein-Rosen-Podolsky pairs
(EPR). While this seems to be a sufficient language to discuss two-sided black holes,
there is some evidence that a more general framework is needed to discuss multi-partite
entanglement. Previous work by Balasubramanian et al. [22] has argued that there exist
n-boundary black holes dual to CFT states with ‘intrinsically n-partite’ entanglement. That
is, the states cannot be prepared by taking a tensor product of states that are strictly less
than n-partite, suggesting that geometric wormholes are not best understood in terms of
bipartite EPR pairs alone. Entropy cones provide a systematic framework for characterizing
the entropies of multipartite entangled states. We may stratify the holographic entropy
cones according to the minimal entanglement required to explain a given entropy vector.
Thus the k-th stratum contains those holographic entropy vectors that can only be explained
by k-partite (or higher) entanglement. By embedding quantum entropy cones for fewer
regions as described in section 2.1, we may then obtain entropy inequalities for each k, whose
violation demonstrates that the entanglement is at least (k + 1)-partite. The inequalities
proved in [22] are one such class of inequalities, though they are not the strongest possible.
Similar ideas have been proposed previously on the level of entanglement spectra [43].

There are also intrinsically n-partite entangled states that cannot be detected entropi-
cally. This invites a more refined study of multipartite holographic correlations and their
decomposition into fundamental building blocks.
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Quantum gravity. It would be interesting to verify which of the holographic entropy
inequalities continue to hold beyond the classical level when subleading corrections are taken
into account. Indeed, while the Ryu-Takayanagi formula describes the entropy to leading
order in the central charge, there are situations where it is known that the entanglement
entropy is non-zero only to subleading order. More generally, there exist geometries for
which all leading order terms cancel in an entropy inequality; these correspond to points on
the facets of our holographic entropy cones. A natural question would thus be to determine
how subleading entropy corrections modify the facets of the cones (see, e.g., [44, 45]).

Covariant holographic entropy. It would also be interesting to extend the methodolo-
gies developed in this work to covariant descriptions of boundary entanglement entropies,
such as the Hubeny-Rangamani-Takayanagi proposal [5]. The work [46] implies that at
least under certain conditions on the structure of an inequality, it is possible to reduce to
individual time slices, so that our proofs by contraction become applicable. More generally,
it would be of physical interest to determine whether the constraints imposed on covari-
ant entropies by the Hubeny-Rangami-Takayanagi formula are strictly weaker than those
imposed by the Ryu-Takayanagi formula.

Tensor networks. The entropy inequalities that we consider in this paper hold for any
physical system that satisfies a version of the Ryu-Takayanagi formula or the discrete
entropy formula – such as MERA states built from generic tensors [47] and the tensor
networks constructed recently in [48]. They also serve as additional checks for tensor
network proposals for the gauge/gravity correspondence. In sections 2.2 and 4.3 we have
found that any holographic entropy vector is compatible with the known constraints on
the entropies of stabilizer states for n ≤ 5 subsystems. This is rather suggestive in view of
the recently proposed connections between holography and quantum error correcting codes
[33, 49], and it is likely that this observation can be proved for arbitrary n by generalizing
the construction of [48].

Likewise, bulk inequalities (4.8) naturally hold for all physical systems that saturate
an area law, S(A) ∼ |∂A|. It would be interesting to explore the implications of our new
inequalities for such systems, in particular since in this context the tripartite information
(i.e., difference of the left- and right-hand side of the monogamy inequality) specializes to
the topological entanglement entropy [50].

Geometry, combinatorics, and complexity. In differential geometry, it has been of
long-standing interest to characterize the properties of geodesic length functions. This has
been fully worked out in [51], where it was shown that the constraints amount to a set of
polynomial inequalities. Our results show that the properties of geodesic length functions
are much simpler when they are optimized over homology classes; in this case there is a
finite number of linear constraints. It would be desirable to extend this to a complete
characterization along the lines of [51].

In graph theory, the cut function, which assigns to a cut the total weight of all edges that
go across the cut, has long been known to be submodular, i.e., to satisfy strong subadditivity.
As discussed in section 4.1, this is in a precise technical sense the discrete version of strong
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subadditivity of the Ryu-Takayanagi formula. Submodular functions can be regarded
as discrete analogues of convex functions and they play a natural role in combinatorial
optimization. Our bulk inequalities (4.8) show that the cut function satisfies many further
linear inequalities than were previously known. In contrast, not even monogamy appears to
be known in this context, and it should be interesting to study the consequences.

Finally, we recall from section 4.1 that the problem of finding proofs by contraction
is equivalent to finding extensions of certain partially defined graph homomorphisms of
hypercube graphs. To decide whether a given partially defined function can be extended to
a graph homomorphism is a natural problem in graph theory and it would be desirable to
determine the computational complexity of this decision problem.
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A Universal graph models for holographic entropies

In this section, we discuss an alternative approach to constructing graph models of holo-
graphic entropies. Previously, in section 3.1, we had described a method for constructing a
graph for any geometry and assignment of boundary regions. Our approach in this section
is somewhat different. Here, we discretize the given geometry to obtain a fine-grained
graph model such that, for arbitrary boundary regions in the geometry and corresponding
boundary regions in the graph model, the discrete entropy in the graph model (defined
as in definition 2 to be the weight of a minimum cut separating boundary region and its
complement) approximates the Ryu-Takayanagi entropy in the geometry.

The fact that the whole geometry can be converted to large graph with the same
entropic structure is conceptually interesting, since it can be thought as a step towards
constructing more advanced models of the bulk/boundary correspondence that capture
the whole system at once (without requiring an a priori choice of boundary regions). For
example, one can think of our graph model as a skeleton that a tensor network model
can be put on top of. Furthermore, we will see that this approach naturally leads to a
description of the geometry as a finely-weaved network of multiboundary wormholes and
thereby supports the picture laid out by the ER=EPR proposal [24] (cf. section 6).
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In the following we sketch the method for two-dimensional surfaces (however, we
believe that the method can be extended to higher dimensions and made mathematically
rigorous). To start, consider a Riemannian manifold with boundary (see figure 13, (a)).
Any triangulation of the bulk manifold gives rise to a weighted graph, which we call a
discretization of the geometry, where the weight of an edge in the triangulation is defined to
be the geodesic distance of its endpoints in the geometry. Let us choose a very fine-grained
triangulation of the bulk manifold. This triangulation should be such that any tangent
vector of the manifold can be well-approximated by an edge of the graph. Then we can
approximate the geodesic distance between any two points on the geometry by the weight
of a shortest path connecting the corresponding two points on the graph. For example, the
length of the minimal geodesic for region A in figure 13, (a) is well-approximated by the
length of the path highlighted in the graph in figure 13, (b).5 The final step is to construct
the dual graph of the discretization. This is the graph obtained by adding vertices for all
triangles of the original graph and edges between any two neighboring triangles. The weight
of an edge in the dual graph is defined as the weight of the edge separating the triangles in
the original graph, divided by 4GN (see figure 14 and figure 13, (c)). Indeed, while in the
discretization the edge weights carry units of length, the edge weights in the dual graph
represent entropy. We remark that the obtained graph is automatically trivalent at its bulk
vertices. Now observe that any path on the original discretization of the geometry cuts
a number of edges of the dual graph along its way. The total weight of these edges is by
definition proportional to the length of the path. As an example, in figure 13, (c) we have
highlighted the edges of the dual graph that are cut by the path in figure 13, (b). The
total length of the former, divided by 4GN , equals the weight of the latter, which in turn
approximates the entropy of region A. Thus it is easy to see that in general the weight of a
minimal cut separating an arbitrary boundary region A from its complement is equal to
the length of a shortest path on the original graph that is homologous to A, and therefore
approximately equal to the entropy of A. We conclude that the dual graph constructed in
this way approximates the holographic entropies of the given bulk geometry for any choice
of boundary region.

We remark that a similarly fine-grained discretization can also be obtained by the
procedure of lemma 3 when applied to a very fine decomposition of the boundary manifold,
∂X = A1 ∪ · · · ∪An (which also works for dimensions higher than two).

It is interesting to go further and convert this graph model back into a hyperbolic
surface as described in section 3.2. In this way we obtain a finely-weaved network of
multiboundary wormhole geometries that has the same entropic structure of the original
bulk surface. See figure 13, (d) for an illustration, where we have also highlighted the
minimal geodesic for region A. Its length approximates the length of the minimal geodesic
in the original geometry, figure 13, (a), and so the holographic entropies are approximately
equal.

5Although A is a full boundary in figure 13, (a), in general there is no need to assume so.
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(a)

A

(b)

(c)(d)

A

Figure 13. (a)–(c) Construction of a universal graph model obtained by discretizing the given
geometry; (d) corresponding multiboundary wormhole geometry.

Figure 14. Construction of the dual graph. The weight w̃ of any dual edge is defined as the weight
w of the edge it cuts in the original graph divided by 4GN .

B Proof of the cyclic entropy inequalities

In this section we give a detailed proof of the cyclic family of holographic entropy inequalities
(4.10) that we discussed in section 4.2. For this, it will be convenient to introduce the
notation Cn(k) :=

∑n
i=1 S(Ai+1 . . . Ai+k) for a cyclic sum of k-body entropies of an n-partite

system. Then (4.10) can be written in the following way:

Cn(a, b) := Cn(a)− Cn(b)− S(A1 . . . An) ≥ 0 (B.1)
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where a = k + l and b = k in terms of the parametrization of (4.10). By evaluating (B.1)
on Bell pairs, we obtain the following necessary conditions on the parameters a, b and n for
(B.1) to be valid holographic entropy inequality:

Lemma 9. The cyclic inequality (B.1) can only be valid if a > b and a+ b ≤ n.

Proof. For the first assertion, consider a geometry where all regions except A1 are trivial.
Entropically, this amounts to a Bell pair shared between A1 and the purifying region An+1.
Thus Cn(a, b) ≥ 0 reduces to

aS(A1)− bS(A1)− S(A1) ≥ 0,

which implies that a− b− 1 ≥ 0, or a > b.
For the second assertion, consider the entropies of a Bell pair shared between A1 and

Ak (cf. section 2.2, where we had seen that these entropies are geometric). If we choose
k = bn2 c+ 1 then it is not hard to verify that Cn(k) = 2 min{k, n− k}. Thus Cn(a, b) ≥ 0
amounts to

2 min{a, n− a} − 2 min{b, n− b} ≥ 0.

If a ≤ n
2 then a+ b < 2a ≤ n by the first part, which is what we wanted to show. Otherwise,

if a > n
2 , then together with the first part we obtain the condition

n− b > n− a ≥ min{b, n− b}.

This implies that n− a ≥ b, or a+ b ≤ n, as we set out to show.

In the remainder of this section, we will show that the necessary conditions established
in lemma 9 are also sufficient.

Reduction. As a first step, we will apply a series of reductions. For this, we need the
following lemma:

Lemma 10. The following inequalities are a direct consequence of strong subadditivity and
weak monotonicity of the holographic entropy:

• For all a ≥ b ≥ 1, we have that Cn(a− 1, b− 1) ≥ Cn(a, b).

• For all a+ b ≤ n, we have that Cn(a+ 1, b− 1) ≥ Cn(a, b).

• For all a < n
2 , we have that Cn(a+ 1) ≥ Cn(a).

Proof. For the first claim, we use strong subadditivity, which asserts that

S(A1 . . . Ab) + S(A2 . . . Aa) ≥ S(A2 . . . Ab) + S(A1 . . . Aa),

or
S(A2 . . . Aa)− S(A2 . . . Ab) ≥ S(A1 . . . Aa)− S(A1 . . . Ab).

By summing over all the cyclic shifts and subtracting S(A1 . . . An) from both sides of the
resulting inequality we obtain that Cn(a− 1, b− 1) ≥ Cn(a, b).
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The second claim is likewise a direct consequence of weak monotonicity, which shows
that

S(A1 . . . Aa+1) + S(Aa+1 . . . Sa+b) ≥ S(A1 . . . Aa) + S(Aa+2 . . . Sa+b),

or
S(A1 . . . Aa+1)− S(Aa+2 . . . Aa+b) ≥ S(A1 . . . Aa)− S(Aa+1 . . . Sa+b).

The third claim is a reformulation of the second for the case b = a+ 1.

Now consider a general instance of (B.1) that satisfies the necessary conditions of
lemma 9. Then we may apply the first part of lemma 10 to reduce to the case where
a+ b ∈ {n− 1, n}. The second part can be used further to reduce to a− b ∈ {1, 2}. Thus it
suffices to prove the following four instances of (B.1) for arbitrary k:

C2k+1(k + 1, k), C2k+1(k + 1, k − 1), C2k(k + 1, k − 1), C2k(k, k − 1). (B.2)

In fact, the following lemma allows us to focus on a single case.

Lemma 11. It suffices to prove the cyclic inequalities C2k+1(k + 1, k) for all k.

Proof. We show that all other instances in (B.2) can be reduced to instances of the first one.
For the second instance, this follows simply by applying the third reduction in lemma 10:

C2k+1(k + 1, k − 1) = C2k+1(k + 1)− C2k+1(k − 1)− S(A1 . . . An)
≥ C2k+1(k + 1)− C2k+1(k)− S(A1 . . . An) = C2k+1(k + 1, k)

For the remaining two cases, where the number n = 2k of regions is even, this is
somewhat more involved and we will use the following trick: For each i ∈ [2k], consider the
entropy inequality that is obtained by applying C2k−1(k, k−1) to the n−1 regions obtained
by combining region Ai and Ai+1. Let us denote this inequality by C(i)

2k . By summing over
all i, we find that

2k∑
i=1

C
(i)
2k =

(
k C2k(k + 1) + (k − 1)C2k(k)

)
−
(
(k − 1)C2k(k)− k C2k(k − 2)

)
− 2k S(A1 . . . A2k) ≥ 0,

or
C2k(k + 1)− C2k(k − 1)

2 ≥ S(A1 . . . A2k). (B.3)

This immediately implies the third inequality C2k(k + 1, k − 1) ≥ 0. The fourth inequality,
C2k(k, k − 1) ≥ 0, can likewise be obtained from (B.3) by using

C2k(k)− C2k(k − 1) ≥ C2k(k + 1)− C2k(k − 1)
2 ,

which is a reformulation of the first reduction in lemma 10.
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Proof by contraction. We now construct contractions fk : {0, 1}2k+1 → {0, 1}2k+2 for
each of the strongest cyclic inequalities C2k+1(k+ 1, k) that we had reduced to in lemma 11.

We first define a map gk : {0, 1}2k+1 \ {0} → {0, 1}2k+1 on all non-zero bitstrings in the
following way: The map gk preserves all ones and acts on each block of consecutive zeros in
the following way:

• If the length of the block of zeros is even, it is mapped to all ones:

· · · 00 · · · 0 · · · 7→ · · · 11 · · · 1 · · ·

• If the length of the block of zeros is odd, all digits except for the first are mapped to
ones:

· · · 00 · · · 0 · · · 7→ · · · 01 · · · 1 · · ·

We allow for blocks of zeros to cyclically wrap around. As we only consider non-zero
bitstrings, the first digit in a block of zeros is always well-defined. The following lemma is
key to our argument:

Lemma 12. The map gk is a contraction.

Proof. We need to show that ‖gk(x) − gk(x′)‖1 ≤ ‖x − x′‖1 for all non-zero bitstrings
0 6= x, x′ ∈ {0, 1}2k+1. We first consider the case where ‖x − x′‖1 = 1. Without loss of
generality, assume that ‖x′‖1 = ‖x‖+ 1. That is, x′ can be obtained from x by flipping a
single zero to one. Let L denote the number of zeros on its left and R the number of zeros
on its right, so that N = L+R+ 1 is the total number of zeros in the block:

x = · · · 0L00R · · · and x′ = · · · 0L10R · · · . (B.4)

Thus the block of zeros in x is split into (generically) two blocks of zeros in x′; all other
blocks of zeros are untouched. As the map gk acts independently on each block of zeros, it
therefore suffices to consider its action on the blocks of zeros displayed in (B.4). We now
show that ‖gk(x)− gk(x′)‖1 ≤ 1 by distinguishing four cases:

• The flipped zero is contained in a block of even length N :

– L is even and R is odd:

‖gk(· · · 0L00R · · · )−gk(· · · 0L10R · · · )‖1 = ‖· · · 1L11R · · ·−· · · 1L101R−1 · · ·‖1 = 1

– L is odd and R is even:

‖gk(· · · 0L00R · · · )−gk(· · · 0L10R · · · )‖1 = ‖· · · 1L11R · · ·−· · · 01L−111R · · ·‖1 = 1

• The flipped zero is contained in a block of odd length N :

– L and R are both odd:

‖gk(· · · 0L00R · · · )−gk(· · · 0L10R · · · )‖1 = ‖· · · 01L−111R · · ·−· · · 01L−1101R−1 · · ·‖1 = 1
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– L and R are both even:

‖gk(· · · 0L00R · · · )− gk(· · · 0L10R · · · )‖1 = ‖· · · 01L1R · · · − · · · 1L11R · · ·‖1 = 1

To conclude the proof, observe that the general case where ‖x − x′‖1 = d can always be
reduced to the above. For this, choose a sequence of d+ 1 non-zero bitstrings x0, . . . , xd
such that x0 = x, xd = x′ and each ‖xi − xi+1‖1 = 1. Then the triangle inequality and the
above show that, indeed,

‖gk(x)− gk(x′)‖1 ≤
d−1∑
i=0
‖gk(xi)− gk(xi+1)‖1 ≤

d−1∑
i=0
‖xi − xi+1‖1 = ‖x− x′‖1.

We now define the contraction that will prove the extremal cyclic inequality:

fk :


{0, 1}2k+1 → {0, 1}2k+1 × {0, 1} = {0, 1}2k+2

0 7→ (0, 0)
x 7→ (πk(gk(π−1

k (x))), 1)
. (B.5)

Here, · · · denotes the bitwise inversion and πk denotes the permutation operator that acts
on bitstrings of length 2k + 1 in the following way:

πk(v0, v1, . . . , v2k) = (v0, v2, . . . , v2k, v1, v3, . . . , v2k−1).

The following theorem and corollary conclude our proof of the cyclic entropy inequalities:

Theorem 13. The map fk is a ‘proof by contraction’ of the cyclic entropy inequality
C2k+1(k + 1, k) ≥ 0.

Proof. We first argue that fk is a contraction. As in the proof of lemma 12, it suffices to
show that ‖fk(x)− fk(x′)‖1 ≤ 1 for ‖x′‖ = ‖x‖+ 1. But since the permutation πk and the
bitwise inversion are isometries, this is already proved in all cases except when x = 0 and
x′ contains a single one. In the latter case, π−1

k (x′) likewise contains only a single one. In
other words, there is a single block of 2k zeros, so that gk(π−1

k (x′)) is the bitstring of all
ones. It follows that fk(x′) = (0, 1), which has Hamming distance one from fk(x) = (0, 0).
Therefore fk is indeed a contraction.

It remains to show that fk maps the occurrence vectors (4.2) onto each other. To fix
our conventions, we shall write C2k+1(k + 1, k) ≥ 0 in the form

2k+1∑
i=1

S(Ai+k+1 . . . Ai+2k+1) ≥
2k+1∑
i=1

S(Ai+1 . . . Ai+k) + S(A1 . . . A2k+1). (B.6)

Then the occurrence vectors of the 2k+ 1 regions are given by x1 = 1k+10k, y1 = (0k+11k, 1)
and their respective cyclic permutations. One readily verifies that indeed fk(xi) = yi for all
i ∈ [2k+1]. Indeed, each π−1

k (xi) is a fixed point of gk and so fk acts as fk(xi) = (xi, 1) = yi.
On the other hand, for the purifying region fk(0) = (0, 0) holds by definition.

In view of lemma 11, we obtain the following corollary as an immediate consequence.
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Corollary 14. The cyclic entropy inequality Cn(a, b) ≥ 0 is a valid holographic entropy
inequality if and only if a > b and a+ b ≤ n.

We illustrate the construction in the case of five regions (k = 2). Here, the cyclic
inequality (B.6) reads

S(DEA) + S(EAB) + S(ABC) + S(BCD) + S(CDE)
≥ S(BC) + S(CD) + S(DE) + S(EA) + S(AB) + S(ABCDE).

(B.7)

The contraction f2 as defined in (B.5) is displayed in table 3.
The corresponding cuts for the right-hand side of the inequality formed according to f2

from the minimal cuts Wl for the left-hand side are given as follows:

UBC =W (00111) ∪W (00101) ∪W (01110) ∪W (00110) ∪W (01111)
=WDEA ∩WEAB ∩W c

ABC ∩W c
BCD ∩W c

CDE

∪WDEA ∩WEAB ∩W c
ABC ∩WBCD ∩W c

CDE

∪WDEA ∩W c
EAB ∩W c

ABC ∩W c
BCD ∩WCDE

∪WDEA ∩WEAB ∩W c
ABC ∩W c

BCD ∩WCDE

∪WDEA ∩W c
EAB ∩W c

ABC ∩W c
BCD ∩W c

CDE ,

UCD =W (00111) ∪W (10010) ∪W (10111) ∪W (00011) ∪W (10011)
=WDEA ∩WEAB ∩W c

ABC ∩W c
BCD ∩W c

CDE

∪W c
DEA ∩WEAB ∩WABC ∩W c

BCD ∩WCDE

∪W c
DEA ∩WEAB ∩W c

ABC ∩W c
BCD ∩W c

CDE

∪WDEA ∩WEAB ∩WABC ∩W c
BCD ∩W c

CDE

∪W c
DEA ∩WEAB ∩WABC ∩W c

BCD ∩W c
CDE ,

UDE =W (11011) ∪W (10001) ∪W (10011) ∪W (01001) ∪W (11001)
=W c

DEA ∩W c
EAB ∩WABC ∩W c

BCD ∩W c
CDE

∪W c
DEA ∩WEAB ∩WABC ∩WBCD ∩W c

CDE

∪W c
DEA ∩WEAB ∩WABC ∩W c

BCD ∩W c
CDE

∪WDEA ∩W c
EAB ∩WABC ∩WBCD ∩W c

CDE

∪W c
DEA ∩W c

EAB ∩WABC ∩WBCD ∩W c
CDE ,

UEA =W (11100) ∪W (10100) ∪W (11101) ∪W (11000) ∪W (11001)
=W c

DEA ∩W c
EAB ∩W c

ABC ∩WBCD ∩WCDE

∪W c
DEA ∩WEAB ∩W c

ABC ∩WBCD ∩WCDE

∪W c
DEA ∩W c

EAB ∩W c
ABC ∩WBCD ∩W c

CDE

∪W c
DEA ∩W c

EAB ∩WABC ∩WBCD ∩WCDE

∪W c
DEA ∩W c

EAB ∩WABC ∩WBCD ∩W c
CDE ,

UAB =W (11100) ∪W (11110) ∪W (01110) ∪W (01100) ∪W (01010)
=W c

DEA ∩W c
EAB ∩W c

ABC ∩WBCD ∩WCDE
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x y = f2(x)

DEA EAB ABC BCD CDE BC CD DE EA AB ABCDE
O 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1

C 0 0 1 1 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 1 1
0 1 1 0 1 0 0 0 0 0 1

B 0 1 1 1 0 1 0 0 0 1 1
0 1 1 1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0 0 1

D 1 0 0 1 1 0 1 1 0 0 1
1 0 1 0 0 0 0 0 1 0 1
1 0 1 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 1
1 0 1 1 1 0 1 0 0 0 1
1 1 0 0 0 0 0 0 1 0 1

E 1 1 0 0 1 0 0 1 1 0 1
1 1 0 1 0 0 0 0 0 0 1
1 1 0 1 1 0 0 1 0 0 1

A 1 1 1 0 0 0 0 0 1 1 1
1 1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 0 1

Table 3. Proof by contraction of the five-party cyclic entropy inequality (B.7).

∪W c
DEA ∩W c

EAB ∩W c
ABC ∩W c

BCD ∩WCDE

∪WDEA ∩W c
EAB ∩W c

ABC ∩W c
BCD ∩WCDE

∪WDEA ∩W c
EAB ∩W c

ABC ∩WBCD ∩WCDE

∪WDEA ∩W c
EAB ∩WABC ∩W c

BCD ∩WCDE ,
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UABCDE =W (00000)c = WDEA ∪WEAB ∪WABC ∪WBCD ∪WCDE .

We remark that this proof by contraction is essentially unique (up to trivial choices).

Independence. We finally show that each cyclic inequality C2k+1(k+1, k) is independent
from all instances with smaller k.

Proposition 15. For each odd n = 2k + 1, there exists a quantum state ρn whose von
Neumann entropies violate C2k+1(k + 1, k) but none of the cyclic entropy inequalities
C2l+1(l + 1, l) with l < k (nor their permutations).

Therefore, each of the cyclic entropy inequalities C2k+1(k + 1, k) is independent from
those with smaller k (and their permutations).

Proof. Let A be a matrix of size (n+ 1)× k with entries in a finite field Fp such that all
subsets of rows have maximal rank. It is easy to see that such a matrix exists if p is large
enough. Now consider the pure state |ψn+1〉 = 1

Z

∑
x∈Fkp |Ax〉 ∈ (Cp)⊗n+1, where we write

|y〉 = |y1〉 ⊗ · · · ⊗ |yn+1〉 for any y ∈ Fn+1
p and where Z is a suitable normalization constant.

We remark that this family of states generalizes the four-party GHZ state. It is not hard to
see that the von Neumann entropies associated with |ψn+1〉 are proportional to

S(I) = min{|I|, n+ 1− |I|, k} (B.8)

by an overall factor of log p. The same is true for its n-body reduced state ρn, which by
construction is fully Sn+1-permutation symmetric.

We now evaluate the cyclic entropy inequalities. On the one hand, it is easy to see
from (B.8) that

C2k+1(k + 1, k) = (2k + 1)(k − k)− 1 = −1 < 0.

Therefore ρn violates the cyclic inequality C2k+1(k + 1, k). On the other hand, none of the
cyclic inequalities C2l+1(l + 1, l) with l < k are violated by ρn. Indeed, we find that

C2l+1(l + 1, l) = (2l + 1)(l + 1− l)− S(A1 . . . A2l+1) ≥ (2l + 1)− (2l + 1) = 0

when applied to the first 2l+1 parties. While there are in general many more ways of applying
an inequality for a fewer number of regions to a state of n = 2k + 1 regions (see section 2.1)
they are in this case all equivalent as the entropies (B.8) are fully Sn+1-symmetric.
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