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Quantum Chromodynamics (QCD) provides a fundamental description of the physics bind-

ing quarks into protons, neutrons, and other hadrons. QCD is well understood at short dis-

tances where perturbative calculations are feasible. Establishing an explicit relation between

this regime and the large-distance physics of quark confinement has been a long-sought goal.

A major challenge is to relate the parameter Λs, which controls the predictions of perturbative

QCD (pQCD) at short distances, to the masses of hadrons. Here we show how new theoretical

insights into QCD’s behavior at large and small distances lead to an analytical relation between

hadronic masses and Λs. The resulting prediction, Λs = 0.341 ± 0.024 GeV agrees well with

the experimental value 0.339 ± 0.016 GeV. Conversely, the experimental value of Λs can be

used to predict the masses of hadrons, a task which has so far only been accomplished through

intensive numerical lattice calculations, requiring several phenomenological input parameters.

The masses of hadrons, the bound states of quarks, originate from the energy of the con-

fining interactions of QCD. It is unclear why the typical hadron mass scale is of order 1 GeV.
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Naively, one would expect this mass scale to be explicitly present in the QCD Lagrangian, the

“master equation” of the theory. However, the only scale appearing in the QCD Lagrangian

corresponds to quark masses, and they are too small to be relevant: mq ∼ 10−3 GeV. An impor-

tant mass scale, Λs, however, does exist. This parameter controls the strength of the coupling

of quarks when they interact at short distances. Its precise definition emerges during QCD’s

renormalization, the standard procedure in quantum field theory which eliminates infinities that

would otherwise render the theory senseless. Our results can be implemented for any choice of

renormalization procedure, but we will use here the value of Λs defined by the MS (modified

minimal subtraction) renormalization scheme. The parameter Λs = ΛMS can be determined to

high precision from experimental measurements of high-energy, short-distance processes where

the strength of QCD is small because of asymptotic freedom [1, 2], and pQCD is thus applica-

ble.

This paper presents the first analytic relation linking Λs to hadron masses. It allows us to

precisely predict the value of Λs taking a hadronic mass as input, or, conversely, to calculate

the hadron masses using Λs. To establish this relation between mass scales we use an approxi-

mation to QCD in its large-distance regime called “ light-front holographic QCD” (for brevity

AdS/QCD) [3, 4, 5]. AdS/QCD originates from a connection of QCD calculated on Dirac’s

light-front dynamics in physical space-time to Einstein’s gravity calculated in a 5-dimensional

Anti-de Sitter (AdS) space (AdS space is, loosely speaking, a space with a constant negative

curvature). The connection between gravity projected on the 4-dimensional AdS space bound-

ary with QCD in physical space-time explains the terminology “holographic”. On the other

hand, the small-distance physics, such as the violent collisions of quarks occurring at the Large

Hadron Collider at CERN, is well-described by pQCD. The two regimes overlap at intermediate

distances, a phenomenon called “quark-hadron duality” [6]. This permits us to match the two

descriptions and obtain an analytical relation between Λs and hadron masses. This relation is a
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pure calculation, not relying on fit or free parameters.

In AdS/QCD the forces that bind quarks are related to a large-distance modification of the

AdS space curvature which encodes confinement dynamics [5]. This specific modification of

the AdS geometry traces to a basic mechanism due to de Alfaro, Fubini and Furlan (dAFF) [7],

which allows for the emergence of a mass scale κ in the theory. The mechanism also specifies

the form of the quark-confining light-front potential. The result is an excellent description of

hadrons of arbitrary spin [8], incorporating many of their observed spectroscopic and dynamical

features [9]. The strict correspondence between QCD on the light front and AdS/QCD implies

that the latter has its foundations well rooted in QCD. AdS/QCD also prescribes the form of the

QCD coupling αs, which dictates the strength of the force between quarks in the confinement

regime [10].

In AdS/QCD, the scale κ controlling quark confinement also predicts hadron masses. For

example, κ can be determined from the ρ hadron mass: κ = Mρ/
√

2 = 0.548 GeV [9]. We

shall relate κ to ΛMS by matching AdS/QCD results, which explicitly contain κ, to pQCD

results, which explicitly depend on ΛMS . The matched quantity is αs. In pQCD, the space-

time dependence of αs originates from short-distance quantum effects which are folded into its

definition. The scale Λs controls this space-time dependence [1, 2]. Equivalently, the space-time

dependence of the AdS/QCD coupling stems from the effects of the AdS space curvature [10].

The coupling αs can be defined from the Bjorken sum rule for spin-dependent electron-

nucleon inelastic scattering [11, 12]. The resulting coupling, αg1(Q), is approximately the

QCD-analog of the Gell-Mann-Low coupling α(Q) of Quantum Electrodynamics [10]. Here Q

is the absolute value of the 4-momentum transferred by the scattered electron to the nucleon. It

sets the scale at which a process is observed. By the uncertainty principle, the 4-momentum Q

is small (large) at large (short) space-time distances.
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AdS/QCD predicts the behavior of αg1(Q) at large distance i.e., small values of Q [10]:

αAdSg1
(Q) = π exp

(
−Q2/4κ2

)
, (1)

thereby explicitly connecting the small-Q dependence of αg1(Q) to κ, and thus to hadronic

masses. Eq. 1 is valid only at small Q where QCD is a strongly coupled theory and thus where

the AdS/QCD methods are applicable.

The large Q-dependence of αs is computed from the pQCD β series:

Q2dαs/dQ
2 = β(Q) = −(β0α

2
s + β1α

3
s + β2α

4
s + · · · ), (2)

where the βi coefficients are known up to β3 in the MS scheme [13]. Furthermore, αpQCDg1
(Q)

can be itself expressed as a perturbative expansion in αMS(Q) [11, 12]. Hence, pQCD predicts

the form of αg1(Q) at large Q:

αpQCDg1
(Q) = π

[
αMS/π + a1 (αMS/π)2 + a2 (αMS/π)3 + a3 (αMS/π)4 + · · ·

]
. (3)

The coefficients ai are known up to order a3 [14].

The complete dependence of αg1 in Q must be analytic. The existence at moderate val-

ues of Q of a dual description of QCD in terms of either quarks and gluons or hadrons (the

“quark-hadron duality” [6]) allows us to match the AdS/QCD and pQCD forms, Eqs. 1 and 3

respectively. This is done by imposing continuity of both αg1(Q) and its derivative, as shown

in Fig. 1. The resulting two equalities then provide a unique value of Λs from the scheme-

independent scale κ, and fix the scale Q0 characterizing the transition between the large and

short-distance regimes of QCD.

We have solved this two-equation system analytically at leading order of Eqs. 2 and 3, and

numerically otherwise. The leading-order analytical relation between Mρ =
√

2κ and ΛMS is:

ΛMS = Mρe
−(a+1)/

√
a, (4)
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Figure 1: Unified strong coupling from the analytic matching of perturbative and nonperturbative QCD
regimes. The analytic matching determines the relation between ΛMS and hadron masses as well as the
transition scale between the large and short-distance regimes of QCD.

with a = 4
(√

ln(2)2 + 1 + β0/4− ln(2)
)
/β0. For nf = 3 quark flavors, a ' 0.55.

In Fig. 2 the AdS/QCD prediction of αAdSg1
(Q) (1) is plotted together with data [15, 16].

Even though it has no adjustable parameters, the predicted Gaussian shape of αAdSg1
(Q) agrees

well with data [10]. We also show in this figure how αpQCDg1
(Q) depends on the βn and αMS

orders used in Eqs. 2 and 3, respectively. The curves converge quickly to a universal shape

independent of the perturbation orders; at orders βn or αn
MS

, n > 1, the αpQCDg1
(Q) are nearly

identical. Our result at β3, the same order to which the experimental value of ΛMS is extracted,

is ΛMS = 0.341± 0.024 GeV for nf = 3. The uncertainty stems from the extraction of κ from

the ρ or proton mass and a small contribution from ignoring the quark masses. Our uncertainty

is similar or better than that of the individual experimental determinations, which combine to

ΛMS = 0.339± 0.016 GeV [13].

Numerical lattice techniques have thus far provided the most accurate determination of ΛMS .
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Figure 2: The dependence of αg1 on the orders of the β and αMS series. The continuous black line
is the AdS coupling. The continuous colored lines are the matched pQCD couplings for all available
orders in the αMS series (the order of the β series was kept at β3). The dash-dotted colored lines are
the matched couplings at different orders in the β series (the order of the series was kept at α5

MS
). The

curves beyond the leading order are observed to be remarkably close. The comparison between the AdS
coupling and the data is shown in the embedded figure. This comparison is shown within the range of
validity of AdS/QCD.

The combined world average yields 0.340 ± 0.008 GeV [13]. The accuracy of the individual

Lattice calculations is similar to ours [17]. Although Lattice QCD numerically relates confine-

ment dynamics to the value of ΛMS , our approach has several advantages: Lattice results are

“black-box”, numerically-intensive computations offering limited insights into the underlying

processes. Analytical calculations, e.g. Chiral Perturbation Theory [18] or the Schwinger-

Dyson formalism [19], provide a complementary understanding. Furthermore, lattice QCD

requires typically five input parameters obtained from experiments [20], while in our approach,

knowing only one parameter (the mass of the ρ meson, for example) is sufficient. Finally, the

approximations used in Lattice QCD (discretized finite space-time, large quark masses, quench-
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ing, etc.,) make its systematics quite different from ours.

Our AdS/QCD approach also determines the transition scale Q0. At order β0,

Q0 = Mρ/
√
a. (5)

At order β3, Q2
0 ' 1.25± 0.19 GeV2. This value is similar to the traditional lower limit Q2 > 1

GeV2 used for pQCD. An approximate value similar to ours was found in Ref. [21], which

terminates the evolution of αs(Q) near Q ' 1 GeV in order to enforce quark-hadron duality for

the proton structure function F2(x,Q
2) measured in deep-inelastic experiments.

Conversely, we can use the ratio between ΛMS and κ to predict the hadron spectrum. For

example, starting with the experimental value of ΛMS , one obtains Mρ = 0.777 ± 0.091 GeV,

in near perfect agreement with the measurement Mρ = 0.77525 ± 0.00025 GeV [13]. Our

computed proton or neutron mass, MN = 1.099 ± 0.129 GeV, agrees within 1.2 σ with the

averaged experimental values, 0.939±0.000 GeV. Other hadron masses are calculated as orbital

and radial excitations [8], [9], similarly to the computation of the energy levels of the hydrogen

atom. Thus, using ΛMS , the hadron mass spectrum is calculated self-consistently within the

framework described here. Note that QCD has no knowledge of conventional units of mass

such as GeV; only ratios are predicted.

In summary, starting from first principles, and without additional parameters, we have ob-

tained an explicit relation between the quark-confining nonperturbative dynamics of QCD at

large-distances and the short-distance dynamics of pQCD; we thus link the pQCD scale Λs to

the observed hadron masses. The analytic form of the QCD running coupling at all energy

scales is also determined. The predicted value ΛMS = 0.341 ± 0.024 GeV agrees well with

the experimental average 0.339 ± 0.016 GeV and the lattice prediction 0.340 ± 0.008 GeV,

and is of similar accuracy to the best individual experimental or lattice results. Moreover, we

can identify a scale Q0 which defines the transition point between pQCD and nonperturbative
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QCD. Its value, Q0 ' 1 GeV, agrees with observations. Conversely, starting with ΛMS we can

self-consistently compute the hadron mass spectrum within about 1-σ accuracy. The energy of

quark confinement provides most of the ordinary hadron masses, and it can now be precisely

related to the pQCD scale Λs. Since ordinary hadrons constitute about 99.95% of the mass of

the visible matter of the universe, this helps to better understand most of the matter around us.
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