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Search for a light Higgs resonance in radiative decays of the Υ(1S) with a charm tag
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A search is presented for the decay Υ (1S) → γA0, A0
→ cc̄, where A0 is a candidate for the CP -odd

Higgs boson of the next-to-minimal supersymmetric standard model. The search is based on data
collected with the BABAR detector at the Υ (2S) resonance. A sample of Υ (1S) mesons is selected
via the decay Υ (2S) → π+π−Υ (1S). The A0

→ cc̄ decay is identified through the reconstruction of
hadronic D0, D+, and D∗(2010)+ meson decays. No significant signal is observed. The measured
90% confidence-level upper limits on the product branching fraction B(Υ (1S) → γA0)×B(A0

→ cc̄)
range from 7.4 × 10−5 to 2.4 × 10−3 for A0 masses from 4.00 to 8.95 GeV/c2 and 9.10 to 9.25
GeV/c2, where the region between 8.95 and 9.10 GeV/c2 is excluded because of background from
Υ (2S) → γχbJ (1P ), χbJ (1P ) → γΥ (1S) decays.

PACS numbers: 12.15.Ji, 12.60.Fr, 13.20.Gd, 14.80.Da

The next-to-minimal supersymmetric standard model
(NMSSM) is an appealing extension of the standard
model (SM). It solves the µ-problem of the minimal su-
persymmetric standard model and the hierarchy problem
of the SM [1, 2]. The NMSSM has a rich Higgs sector
of two charged, three neutral CP -even, and two neutral
CP -odd bosons. Although the Higgs boson discovered at
the CERN LHC [3, 4] is consistent with the SM Higgs
boson, it can also be interpreted as one of the heavier
Higgs bosons of the NMSSM [5]. The least heavy of the
NMSSM Higgs bosons, denoted A0, could be light enough
to be produced in the decay of an Υ meson [1, 6].

In the context of type I or type II two-Higgs-doublet
models, the branching fractions of the A0 depend on the
A0 mass and the NMSSM parameter tanβ [7]. Below
the charm mass threshold, the A0 preferentially decays
into two gluons if tanβ is of order 1, and to ss or to
µ+µ− if tanβ is of order 10. Above the charm mass
threshold, the A0 decays mainly to cc for tanβ of order
1 and to τ+τ− for tanβ of order 10. BABAR has already
ruled out much of the NMSSM parameter space for A0

masses below the charm mass threshold through searches
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††Also at: Università di Sassari, I-07100 Sassari, Italy

for A0 → µ+µ− [8, 9] and for A0 → gg or ss [10]. Above
the charm mass threshold, BABAR has ruled out some
of the parameter space for high tanβ with the A0 →
τ+τ− searches [11, 12]. None of the searches from BABAR

have observed a significant signal, nor have the searches
in leptonic channels from the CMS and CLEO [13–15]
Collaborations. The A0 → cc channel is one of the last
channels that has not yet been explored.

We report a search for the decay Υ (1S) → γA0,
A0 → cc with A0 masses ranging between 4.00 and
9.25 GeV/c2. An Υ (1S) decay is tagged by the presence
of a pion pair from Υ (2S) → π+π−Υ (1S). An A0 → cc
decay is tagged by the presence of at least one charmed
meson such as a D0, a D+, or a D∗(2010)+. There-
fore candidates are constructed from the combination of
a photon, a D meson, and a dipion candidate. An exclu-
sive reconstruction of the A0 is not attempted. Instead, a
search is performed in the spectrum of the invariant mass
of the system that recoils against the dipion-photon sys-
tem. The analysis is therefore sensitive to the production
of any charm resonance produced in the radiative decays
of the Υ (1S) meson.

The data were recorded with the BABAR detector at the
PEP-II asymmetric-energy e+e− collider at the SLAC
National Accelerator Laboratory. The BABAR detector is
described in detail elsewhere [16, 17]. We use 13.6 fb−1

of “on-resonance” data collected at the Υ (2S) resonance,
corresponding to (98.3 ± 0.9) × 106 Υ (2S) mesons [18],
which includes an estimated (17.5± 0.3)× 106 Υ (2S) →
π+π−Υ (1S) decays [19]. The non-Υ (2S) backgrounds are
studied using 1.4 fb−1 of “off-resonance” data collected
30 MeV below the Υ (2S) resonance.

The EvtGen event generator [20] is used to simu-
late the signal event decay chain, e+e− → Υ (2S) →
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π+π−Υ (1S), Υ (1S) → γA0, A0 → cc, for A0 masses be-
tween 4.0 and 9.0 GeV/c2 in 0.5 GeV/c2 steps and for A0

masses of 9.2, 9.3, and 9.4 GeV/c2. The A0 decay width
is assumed to be 1 MeV. The hadronization of the cc
system is simulated using the Jetset [21] program. The
detector response is simulated with the GEANT4 [22]
suite of programs.
Photon candidates are required to have an energy

greater than 30 MeV and a Zernike moment A42 [23]
less than 0.1. The A42 selection reduces contributions
from hadronic showers identified as photons. Events are
required to contain at least one photon candidate. Each
photon candidate is taken in turn to represent the ra-
diative photon in the Υ (1S) → γA0 decays. We do not
select a best signal candidate, neither for the radiative
photon nor for the D meson and dipion candidates dis-
cussed below, but rather allow multiple candidates in an
event.
Events must contain at least one D meson candidate,

which is reconstructed in five channels: D0 → K−π+,
D+ → K−π+π+, D0 → K−π+π+π−, D0 → K0

S
π+π−,

and D∗(2010)+ → π+D0 with D0 → K−π+π0.
The D0 → K−π+π0 decays are reconstructed in the
D∗(2010)+ production channel to reduce a large back-
ground that would otherwise be present. The inclusion
of charge conjugate processes is implied. The π0 candi-
dates are reconstructed from two photon candidates by
requiring the invariant mass of the reconstructed π0 to
lie between 100 and 160 MeV/c2. The π0 candidates do
not make use of the radiative photon candidate. The K0

S

candidates are reconstructed from two oppositely charged
pion candidates. Each K0

S
candidate must have a re-

constructed mass within 25MeV/c2 of the nominal K0
S

mass [19] and satisfy d/σd > 3, where d is the distance
between the reconstructed e+e− collision point and the
K0

S
vertex, with σd the uncertainty of d.

TheD0 andD+ candidates are required to have masses
within 20 MeV/c2 of their nominal masses [19], corre-
sponding to 3 to 4 standard deviations (σ) in their mass
resolution. When reconstructing D∗(2010)+ candidates,
we constrain the D0 → K−π+π0 candidate mass to its
nominal value [19]. The D∗(2010)+ candidate mass dis-
tribution has longer tails. The D∗(2010)+ candidates are
required to lie within 5 MeV/c2 of its nominal mass [19],
corresponding to 10 σ in the mass resolution.
Events are required to have at least one dipion can-

didate, constructed from two oppositely charged tracks.
The invariant mass, mR, of the system recoiling against
the dipion in the Υ (2S) → π+π−Υ (1S) transition is cal-
culated by

m2
R = M2

Υ (2S) +m2
ππ − 2MΥ (2S)Eππ, (1)

where mππ is the measured dipion mass, MΥ (2S) is the
nominal Υ (2S) mass [19], and Eππ is the dipion energy in
the e+e− center-of-mass (CM) frame. The two pions in
the dipion system are required to arise from a common
vertex. Signal candidates must satisfy 9.45 < mR <
9.47 GeV/c2. Figure 1 presents the distribution of mR

after application of these criteria. A clear peak is seen at
the Υ (1S) mass.

)2 (GeV/cRm
9.45 9.455 9.46 9.465 9.47

2
C

an
di

da
te

s 
/ M

eV
/c

0

500

1000

1500
310×

on-resonance data

on-resonance luminosity
off-resonance data normalized to

FIG. 1: The mR distribution of events with a dipion, charm,
and photon tag before application of selection criteria based
on the BDT output (see text). The solid circles indicate
the on-resonance data. The open squares indicate the off-
resonance data normalized to the on-resonance luminosity.

All charged tracks and calorimeter clusters other than
those used to define the radiative photon, the D meson
candidate, and the dipion candidate are referred to as
the “rest of the event”.
The mass of the A0 candidate, mX , is determined from

the mass of the system recoiling against the dipion and
photon through

m2
X = (Pe+e− − Pπ+π− − Pγ)

2, (2)

where P denotes four-momentum measured in the CM
frame. The four-momentum of the e+e− system is given
by Pe+e− = (MΥ (2S), 0, 0, 0).
Backgrounds are evaluated using simulated Υ (2S) and

e+e− → qq events, where q is a u, d, s, or c quark. Events
with low-energy photons contribute a large background
formX greater than 7.50 GeV/c2. Therefore, the analysis
is divided into a low A0 mass region (4.00 to 8.00 GeV/c2)
and a high A0 mass region (7.50 to 9.25 GeV/c2). The
definitions of the regions, which overlap, are motivated
by the need to have sufficient statistical precision for the
background determination in each region.
We train ten boosted decision tree (BDT) classi-

fiers [24] to separate background from signal candidates
(two mass regions × five D channels). The BDTs are
trained using samples of simulated signal events, simu-
lated generic Υ (2S) events, and the off-resonance data.
The BDT inputs consist of 24 variables:

1-2. Event variables:

• number of charged tracks in the event,

• number of calorimeter clusters in the event.

3-12. Kinematic variables:

• mR,
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• dipion likelihood (defined later),

• D candidate mass,

• D candidate momentum,

• photon π0 score (defined later),

• energy of the most energetic charged track in
the rest of the event, calculated using a charged
pion mass hypothesis,

• energy of the most energetic calorimeter cluster
in the rest of the event,

• invariant mass of the rest of the event,

• CM frame momentum of the rest of the event,

• CM frame energy of the rest of the event.

13-15. Vertex variables:

• transverse coordinate of a vertex formed using
all charged tracks,

• longitudinal coordinate of a vertex formed using
all charged tracks,

• the χ2 probability of a vertex fit using all
charged tracks.

16-18. Event shape variables:

• the ratio of the second to zeroth Fox-Wolfram
moment [25], calculated using all charged tracks
and calorimeter clusters,

• sphericity [26] of the event,

• magnitude of the thrust [27].

19-24. Opening angles in the CM frame between the

• dipion and photon candidate,

• dipion and D candidate,

• dipion and thrust axis,

• photon and D candidate,

• photon and thrust axis,

• D candidate and thrust axis.

The kinematic variables provide the most separation
power for all ten BDTs. The separation power of the
other variables depends on the mass region and channel.
The vertex variables suppress background without a D
meson in the event. The event shape variables suppress
e+e− → qq backgrounds.
The dipion likelihood [24] is defined using the opening

angle between the two charged pions in the CM frame,
the transverse momentum of the pair, the invariant mass
of the pair, the larger of the two momenta of the pair,
and the χ2 probability of the pair’s vertex fit.
To reject photon candidates from π0 → γγ decays,

a likelihood [24] is defined using the invariant mass of
the radiative photon candidate and a second photon (if
present), and the second photon’s CM energy. The lower
the likelihood, the more π0-like the photon pair. The

photon π0 score is the minimum likelihood formed from
the radiative photon and any other photon in the event
excluding photon candidates used to reconstruct the π0

candidate in the D0 → K−π+π0 decay.

For each channel and mass range, each BDT output
variable is required to exceed a value determined by max-
imizing the quantity S/(1.5 +

√
B) [28], where S and

B are the expected numbers of signal and background
events, respectively, based on simulation.

In the case of events with multiple signal candidates
that satisfy the selection criteria, there may be multiple
values of mX . Signal candidates that have the same dip-
ion and radiative photon candidate have the same value
of mX , irrespective of which D candidate is used. We
reject a signal candidate if its value of mX has already
been used.

In total, 9.8× 103 and 7.4× 106 candidates satisfy the
selection criteria in the low- and high-mass regions, re-
spectively. The corresponding distributions of mX are
shown in Fig. 2. The backgrounds in the low-mass re-
gion consist of Υ (1S) → γgg (35%); other Υ (1S) de-
cays, denoted Υ (1S) → X (34%); Υ (2S) decays with-
out a dipion transition, denoted Υ (2S) → X (15%); and
e+e− → qq events (16%). The corresponding background
contributions in the high-mass region are 1%, 66%, 18%,
and 15%. Background contributions from Υ (1S) → γgg
decays reach a maximum near 5.5GeV/c2 and decrease
above 7GeV/c2.

We search for the A0 resonance as a peak in the mX

distribution. The reconstructed width of the A0 is ex-
pected to strongly depend on its mass due to better pho-
ton energy resolution at lower photon energies. There-
fore, an extended maximum likelihood fit in a local mass
range is performed as a function of test-mass values, de-
noted mA0 . For these fits, the parameters of the proba-
bility density function (PDF) used to model the shape of
the signal distribution are fixed. The parameters of the
background PDF, the number of signal events Nsig, and
the number of background events are determined in the
fit.

The signal mX PDF is modeled with a Crystal Ball
function [29], which consists of a Gaussian and a power-
law component. The values of the signal PDF at a given
value of mA0 are determined through interpolation from
fits of simulated signal events at neighboring masses. The
background mX PDF is modeled with a second-order
polynomial.

The fits are performed to the mX spectrum, for vari-
ous choices of mA0 , in steps of 10 and 2 MeV/c2 for the
low- and high-mass regions, respectively. The step sizes
are at least 3 times smaller than the width of the sig-
nal mX PDF. We use a local fitting range of ±10 σCB

around mA0 , where σCB denotes the width of the Gaus-
sian component of the Crystal Ball function. The σCB

parameter varies between 120 and 8 MeV/c2 for values of
mA0 between 4.00 and 9.25GeV/c2, as shown in Fig. 3.
We do not perform a fit for 8.95 < mA0 < 9.10 GeV/c2

because of a large background from Υ (2S) → γχbJ(1P ),
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FIG. 2: The mX distributions of signal candidates in the
low- (a) and high- (b) mass regions after applying all selec-
tion criteria. The points indicate the data. The solid curve
shows the result of a fit to the data under a background-
only hypothesis. The colored histograms show the cumulative
background contributions from e+e− → qq (magenta dense-
dot filled), Υ (2S) → X (green sparse-dot filled), Υ (1S) → X
(blue dotted), and Υ (1S) → γgg (red dashed) events.

χbJ (1P ) → γΥ (1S) decays.
The fitting procedure is validated using background-

only pseudo-experiments. The mX PDF used to generate
pseudo-experiments for the low-mass region is obtained
from a fit of a fifth-order polynomial to the low-mass
region data. The mX PDF used for the high-mass re-
gion is obtained from a fit of the sum of four exponential
functions plus six Crystal Ball functions to the high-mass
region data, with shape parameters fixed according to ex-
pectations from simulation and with the relative normal-
izations determined in the fit. The Crystal Ball functions
describe the Υ (2S) → γχbJ(1P ) and χbJ (1P ) → γΥ (1S)
transitions while the exponential terms describe the non-
resonant background. Four exponential terms are used
because the non-resonant background increases rapidly
for highermX . The background fits are overlaid in Fig. 2.
The fitting procedure returns a null signal for most mA0

values but is found to require a correction to Nsig for
values of mA0 near 4.00 or 9.25 GeV/c2. The correc-
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FIG. 3: The σCB parameter for A0 decays of various simu-
lated masses.

tions are determined from the average number of signal
events found in the fits to the background-only pseudo-
experiments. The corrections are applied as a function
of mA0 and reach a maximum of 15 and 50 candidates in
the low- and high-mass regions, respectively. The uncer-
tainty of the correction is assumed to be half its value.

The reconstruction efficiency takes into account the
hadronization of the cc system into D mesons, the
branching fraction of D mesons to the five decay chan-
nels, detector acceptance, and the BDT selection. The
efficiencies range from 4.0% to 2.6% for simulated A0

masses between 4.00 and 9.25 GeV/c2.

Potential bias introduced by the fitting procedure is
evaluated using pseudo-experiments with different values
of the product branching fraction B(Υ (1S) → γA0) ×
B(A0 → cc). For various choices of mA0 , the extracted
product branching fraction is found to be (4±3)% higher
than the value used to generate the events. This result
is used to define a correction and its uncertainty.

Table I summarizes all correction factors and associ-
ated systematic uncertainties. The fit correction system-
atic uncertainty is added in quadrature with the statisti-
cal uncertainty of Nsig. All other correction factors are
added in quadrature and applied to the reconstruction ef-
ficiency. A correction of 1.00 means we do not apply any
correction but propagate the multiplicative uncertainty.

The systematic uncertainties associated with the re-
construction efficiencies are dominated by the differences
between data and simulation, including the BDT out-
put modeling, cc hadronization, D-candidate mass reso-
lution, dipion recoil mass and likelihood modeling, and
photon reconstruction. Other systematic uncertainties
are associated with the fit bias (discussed above), the
dipion branching fraction [19], the finite size of the sim-
ulated signal sample, and the Υ (2S) counting [18].

The BDT output distributions in off-resonance data
and e+e− → qq simulation, shown in Fig. 4, have con-
sistent shapes but are slightly shifted from one another.
The associated systematic uncertainty is estimated by
shifting the simulated distributions so that the mean val-
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TABLE I: Summary of corrections and their associated sys-
tematic uncertainties. All corrections are multiplicative ex-
cept for the fit correction.

Source Low region High region

Fit correction (candidates) up to 15± 8 up to 50± 25
BDT output modeling 0.93± 0.04 0.98 ± 0.01

Source Both regions

cc hadronization 1.00± 0.09
Fit bias 1.04± 0.03

Dipion branching fraction 1.00± 0.02
Photon reconstruction 0.967 ± 0.017
D mass resolution 0.98± 0.01

Finite simulation statistics 1.00± 0.01
Υ (2S) counting 1.00± 0.01
Dipion likelihood 1.02± 0.01
Dipion recoil mass 0.991 ± 0.005

ues agree with the data, and then recalculating the effi-
ciencies. The reconstruction efficiencies decrease by 7%
and 2% in the low- and high-mass regions, respectively.
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FIG. 4: The BDT distributions in off-resonance data (points)
and simulated e+e− → qq events (histograms) for the five D
meson decay modes. The results on the left (a, c, e, g, i)
and right (b, d, f, h, j) correspond to the low- and high-mass
regions, respectively.

The uncertainty associated with cc hadronization is
evaluated by comparing D meson production in off-
resonance data and e+e− → cc simulation normalized
to the same luminosity. The difference in the yield varies
from 1% to 9% for the five D decay channels. We conser-
vatively assign a global multiplicative uncertainty of 9%
that includes effects due to the hadronization modeling,
particle identification, tracking, π0 reconstruction, and
luminosity determination of the off-resonance data.
The uncertainty due to the discrepancy between the

reconstructed D mass resolution in data and simulation

is estimated by Gaussian smearing of the D mass input
in simulation to match the data and measuring the dif-
ference in the reconstruction efficiency.

Further corrections to account for data and simulation
differences in reconstruction efficiencies are estimated
with similar methods. Corrections are applied to account
for the dipion recoil mass reconstruction, the dipion like-
lihood modeling, and the photon reconstruction [30].

The highest observed local significance in the low-mass
region is 2.3 standard deviations, including statistical un-
certainties only, at 4.145 GeV/c2. The corresponding re-
sult for the high-mass region is 2.0 standard deviations
at 8.411 GeV/c2. The fits are shown in Fig. 5. Such fluc-
tuations occur in 54% and 80% of pseudo-experiments,
respectively. Hence our data are consistent with the
background-only hypothesis.
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FIG. 5: The fits with the highest local significance in the
low- (a) and high- (b) mass regions. The solid line is the
fit that includes a signal. The dotted line is the background
component of the solid line.

Upper limits on the product branching fraction
B(Υ (1S) → γA0) × B(A0 → cc) at 90% confidence level
(C.L.) are determined assuming a uniform prior, with the
constraint that the product branching fraction be greater
than zero. The distribution of the likelihood function for
Nsig is assumed to be Gaussian with a width equal to
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the total uncertainty in Nsig. The upper limits obtained
from the low-mass region are combined with those from
the high-mass region to define a continuous spectrum for
the upper limits. The results are shown in Fig. 6.
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FIG. 6: (color online) The 90% C.L. upper limits on the
product branching fraction B(Υ (1S) → γA0) × B(A0

→ cc)
using all uncertainties (thick line) and using statistical uncer-
tainties only (thin dashed line). The inner and outer bands
contain 68% and 95% of our expected upper limits. The bands
are calculated using all uncertainties. The thin solid line in
the center of the inner band is the expected upper limit.

In summary, we search for a resonance in radiative de-
cays of the Υ (1S) with a charm tag. We do not observe
a significant signal and set upper limits on the product
branching fraction B(Υ (1S) → γA0)×B(A0 → cc) rang-

ing from 7.4 × 10−5 to 2.4 × 10−3 for A0 masses from
4.00 to 9.25 GeV/c2, excluding masses from 8.95 to 9.10
GeV/c2 because of background from Υ (2S) → γχbJ(1P ),
χbJ(1P ) → γΥ (1S) decays. These results will further
constrain the NMSSM parameter space.
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