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  Abstract 
 
 ACE3P is a 3D massively parallel simulation suite that developed at SLAC National 
Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. 
Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for 
particle accelerator R&D. A new frequency domain solver to perform mechanical harmonic 
response analysis of accelerator components is developed within the existing parallel framework. 
This solver is designed to determine the frequency response of the mechanical system to external 
harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled 
with the ACE3P electromagnetic modules, this capability complements a set of multi-physics 
tools for a comprehensive study of microphonics in superconducting accelerating cavities in 
order to understand the RF response and feedback requirements for the operational reliability of 
a particle accelerator.  
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1. Introduction 
 

Many mechanical systems are subject to external loading that varies harmonically with 
time [1]. As a consequence, the loading causes a sustained cyclic response in a structure often 
referred to as a harmonic response. A corresponding analysis must be performed to study this 
behavior of mechanical structures and verify whether or not the designs will successfully 
overcome resonance, fatigue, and other harmful effects of forced vibrations.  

In superconducting accelerator modules the external loading and subsequent mechanical 
vibrations are often translated into undesired electrical signals, so-called microphonics, affecting 
operational reliability of the particle accelerator. In particular, a superconducting cavity [2-3] 
with a high quality factor and a narrow frequency bandwidth has a high sensitivity to 
microphonics coming from the oscillations of the environment or the radiation pressure [4].  

Accurate design of the accelerating structure can help reduce the microphonics effect to a 
tolerable level and, hence, gain in efficiency saving the driving power and machine operation 
costs. A necessary step to perform this study is an accurate calculation of the accelerating 
structure’s behavior as a response to the external harmonic loading. 

The finite-element method [5] is used by most harmonic response solvers in structural 
mechanics and is applicable to study arbitrary complex geometries providing required accuracy. 
The development of the related commercial software has been mainly targeted on desktop 
computers although some parallel implementations are available as well. However, for large-
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scale problems it is advantageous and required to use parallel computing on supercomputer 
resources for large memory usage and computational time speedup.  

For the past decades, the ACE3P simulation suite [6] has been developed at SLAC 
National Accelerator Laboratory for large-scale accelerator applications using high performance 
computing. It has been used extensively in the design and optimization studies for many 
accelerator projects [7-9] becoming a key simulation tool for particle accelerator R&D. The 
developed harmonic response solver presented in this paper uses the existing software 
infrastructure of ACE3P including mesh domain decomposition, matrix assembly scheme and 
implementations of linear solvers and preconditioners. 
 

2. Mathematical Model 
 
2.1 Problem Statement  

 
The governing equations of the linear elasticity are the equation of motion (second 

Newton’s law), the strain-displacement equation and the Hook’s law [10]: 
 
∇•σ +F = ρu  (1) 

ε =
1
2
∇u+∇uT( )  (2) 

σ =Cε  (3) 
 

where σ  and ε are the stress and strain tensors, u is the displacement vector, F is the vector of the 
external forces, C  — the stiffness tensor and ρ is the material density, respectively. These 
equations hold true in a 3D domain Ω under the linearization assumptions: infinitesimal strains 
and linear relationships between the components of the stress and strain. 

A well-posed problem must also include additional constrains on the domain boundary 
∂Ω [10]. In this paper we consider Dirichlet, i.e. prescribed displacement (4), and Neumann, i.e. 
prescribed normal loading (5), boundary conditions: 

 
𝑢 = 𝑢!      (4) 
𝜎 ∙ 𝑛 = 𝑡!     (5) 

 
where u0 is the vector of prescribed displacements, n — the outer normal and t0 is the traction 
vector, respectively. Defining a boundary ∂Ω as Γ, we assume that Γ = ΓD∪ΓN , where (4) holds 
true on ΓD and (5) on ΓN, see Fig. 1. 
 

 
Figure 1. Domain Ω for the problem (1-3) and a boundary Γ where either Dirichlet or Neumann 

boundary conditions hold true.
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We assume that Ω consists of an isotropic material, so that the Hook’s law (3) can be 

explicitly written as: 
 

𝜎!!
𝜎!!
𝜎!!
𝜎!"
𝜎!"
𝜎!"

=

2𝜇 + 𝜆 𝜆 𝜆 0 0 0
𝜆 2𝜇 + 𝜆 𝜆 0 0 0
𝜆 𝜆 2𝜇 + 𝜆 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

𝜀!!
𝜀!!
𝜀!!
𝜀!"
𝜀!"
𝜀!"

 (6) 

 
where λ and µ are Lamé coefficients [10].  

To formulate a harmonic response problem, we also assume that there are no external 3D 
forces involved (F = 0) and the external excitation, as well as the resulting field of the 
displacements, stresses and strains depend harmonically on time, i.e. as 𝑒!"#, where ω = 2πf  is 
the angular frequency,  f  the frequency,  and t the time, respectively. Later we will omit the 𝑒!"# 
factor, redefining for simplicity 𝑢 , 𝑢!,𝜎 , 𝜖  and 𝑡!  as the corresponding amplitudes of 
displacements, stresses, strains and traction. 

Based on these assumptions we rewrite (1) in Ω as 
 

∇ ⋅ 𝜎 = −𝜔!𝜌𝑢 (7) 
 

Equations (2,3,7) considered along with boundary conditions (4-5) constitute a harmonic 
response problem for the linear elasticity equations under the given assumptions for the unknown 
displacement u and stress σ.   
 

2.2 Weak Formulation and Finite-Element Method 
 

To derive the equivalent integral equation we follow the standard finite-element scheme 
[5], also used for the mechanical eigenmodes model in ACE3P [11]. Multiplying (7) by a test 
vector function 𝑣:ℝ! → ℝ! and integrating it over the domain Ω we obtain 

 

 
(8) 

 
Employing divergence theorem [12] the left-hand side of (8) can be represented as 

 

 
 

Plugging this representation into (8) we obtain: 
 

 
 

∇•σ( )
Ω

∫ •vdΩ = −ω 2 ρ
Ω

∫ (u•v)dΩ

∇•σ( )
Ω

∫ •vdΩ = v
Γ

∫ (σ •n)dΓ− σ
Ω

∫ •∇vdΩ

v
Γ

∫ (σ •n)dΓ− σ
Ω

∫ •∇vdΩ = −ω 2 ρ
Ω

∫ (u•v)dΩ
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Taking into account the boundary condition (4), the first integral can be simplified as 

σ = 2µ 1
2
(∇u+∇uT )+λ(∇•u)I ΓD

= 0 . Finally, using similar technique as in [11], we derive a 

weak form of the problem for the unknown displacement u: 
 

 
(9) 

 
The weak form (9) is also applicable to inhomogeneous materials, i.e. when the Lamé 

coefficients λ and µ as well as the material density ρ are space-dependent.  
To numerically solve (9) we employ the nodal basis functions 𝜑!:ℝ → ℝ [13] and 

express the 3D displacement field as  
 

   
where N is the number of nodes in the mesh discretization of Ω, 𝑢! , 𝑣!  and 𝑤!  are the 
displacement components at the i-th node of the mesh.  

Plugging the basis expansion into (9) and taking 𝑣 = (𝜑! , 0, 0) , 𝑣 = (0,𝜑! , 0)  and 
𝑣 = (0, 0,𝜑!)  we reduce the integral equation to a linear algebraic system for the unknown 
displacements and fixed angular frequency: 
 

 (10) 
 

where K and M are the stiffness and mass matrices respectively, B – is the right-hand side 
vector. The explicit forms of the matrices and vector can be written as 
 

𝐾!" =
𝑘!! 𝑘!" 𝑘!"
𝑘!" 𝑘!! 𝑘!"
𝑘!" 𝑘!" 𝑘!! !"

              𝑀!" =
𝑚!! 0 0
0 𝑚!! 0
0 0 𝑚!! !"

          𝐵!" =
𝑏!
𝑏!
𝑏! !"

 (11) 

 
where 𝑖, 𝑗 = 1,𝑁 and 
 

𝑘!! = 2𝜇 + 𝜆
𝜕𝜑!
𝜕𝑥

𝜕𝜑!
𝜕𝑥 + 𝜇

𝜕𝜑!
𝜕𝑦

𝜕𝜑!
𝜕𝑦 + 𝜇

𝜕𝜑!
𝜕𝑧

𝜕𝜑!
𝜕𝑧 𝑑𝛺

  

!

 

𝑘!" = 𝜇
𝜕𝜑!
𝜕𝑦

𝜕𝜑!
𝜕𝑥 + 𝜆

𝜕𝜑!
𝜕𝑥

𝜕𝜑!
𝜕𝑦 𝑑𝛺

  

!

 

𝑘!" = 𝜇
𝜕𝜑!
𝜕𝑧

𝜕𝜑!
𝜕𝑥 + 𝜆

𝜕𝜑!
𝜕𝑥

𝜕𝜑!
𝜕𝑧 𝑑𝛺

  

!

 

µ(∇u+∇uT )+λ(∇•u)I( )
Ω

∫ •∇vdΩ =ω 2 ρ
Ω

∫ (u•v)dΩ+ (v• t0
ΓN

∫ )dΓN

u = (ux,uy,uz ) = uj
xφ j, uj

yφ j, uj
zφ j

j=1

N

∑
j=1

N

∑
j=1

N

∑
"

#
$$

%

&
''

(K −ω 2M ) u = B
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𝑘!! = 𝜇
𝜕𝜑!
𝜕𝑥

𝜕𝜑!
𝜕𝑥 + 2𝜇 + 𝜆

𝜕𝜑!
𝜕𝑦

𝜕𝜑!
𝜕𝑦 + 𝜇

𝜕𝜑!
𝜕𝑧

𝜕𝜑!
𝜕𝑧 𝑑𝛺

  

!

 

𝑘!" = 𝜇
𝜕𝜑!
𝜕𝑧

𝜕𝜑!
𝜕𝑦 + 𝜆

𝜕𝜑!
𝜕𝑦

𝜕𝜑!
𝜕𝑧 𝑑𝛺

  

!

 

𝑘!! = 𝜇
𝜕𝜑!
𝜕𝑥

𝜕𝜑!
𝜕𝑥 + 𝜇

𝜕𝜑!
𝜕𝑦

𝜕𝜑!
𝜕𝑦 + 2𝜇 + 𝜆

𝜕𝜑!
𝜕𝑧

𝜕𝜑!
𝜕𝑧 𝑑𝛺

  

!

 

𝑚!! = 𝜌𝜑!𝜑!𝑑𝛺
  

!

 

𝑏! = 𝑡!!𝜑!𝑑Γ!

  

!!

        𝑏! = 𝑡!
!𝜑!𝑑Γ!

  

!!

        𝑏! = 𝑡!!𝜑!𝑑Γ!

  

!!

 

 
 
 

 The boundary conditions (4-5) are imposed in the following way: 
 
– Dirichlet, the magnitude of the harmonic oscillation of the node is fixed in all three 

directions 
– Neumann, the magnitude of the harmonic normal loading is fixed in all three 

directions 
– Mixed, the magnitude of the harmonic oscillations is fixed in some directions and the 

magnitude of the harmonic normal loading is fixed in other directions, i.e. a 
component-wise Dirichlet or Neumann boundary condition 
 

It should be mentioned that imposing the boundary conditions, the stiffness and mass 
matrices become real and symmetric. In addition, M is positive definite, and therefore 
appropriate numerical methods have to be applied to solve the discretized linear system. 

 
 3. Software Design and Parallelization 
 

Based on the finite-element mathematical formulation presented in the previous section, a 
harmonic response solver is implemented involving the existing C++/MPI ACE3P infrastructure 
[6]. This solver adds a new modelling capability in ACE3P’s multi-physics module TEM3P [14], 
which is designed for integrated electromagnetic, thermal and mechanical analysis of accelerator 
structures. The simulation workflow of ACE3P is described in details in [11].  

The stiffness and mass matrices as well as the right-hand side vector are assembled in 
parallel according to the patterns (11) and appropriate boundary conditions are imposed. 3D 
Gaussian quadratures are utilized to calculate the matrix elements. The resulting matrices are 
sparse and real with the patterns similar to the ones involved in the TEM3P finite-element based 
static structural solver. Therefore, the direct and iterative solvers already implemented in the 
module can be readily adapted to solving (10).  

 
4. Convergence and Validation 

 



	   6	  

To validate the proposed method, we consider a problem (1-3) in the hexahedral domain 
Ω = [0, Lx] x [0, Ly] x [0, Lz] with the following boundary conditions: 
 

𝑢! = 𝑢! =   𝑢! = 0, 𝑥 ∈ {0, 𝐿!}   (12) 
𝑢! = 𝑢! =   𝑢! = 0, 𝑦 ∈ {0, 𝐿!}   (13) 
𝑢! = 𝑢! =   𝑢! = 0, 𝑧 = 0  (14) 
𝜎 = 𝑡!,      𝑧 = 𝐿! (15) 
 

These conditions physically correspond to the fixed cuboid with one surface, z = Lz, 
under the harmonic external loading, see Fig. 2 for details.  

 

 
 

Figure 2. Cuboid domain made of structural steel used for the validation study 
 

Property Value 
Density, ρ [kg/m3]  7850 
Poisson Ratio, υ 0.3 
Young’s Modulus, E [GPa] 200 

 
Table 1. Structural steel properties used in the validation study. 

 
In the convergence and validation study, we consider Lx = 1 m, Ly = 2 m, Lz = 3 m and the 

cuboid Ω is made of structural steel. See Table 1 for the exact material properties. The loading 
frequency is considered to be 50 Hz and the amplitude is fixed at 1011 Pa.  
 First, we perform a mesh convergence study of the proposed method. We start from a 2K 
tetrahedral mesh and increase the size regularly to 84K, roughly doubling the mesh size at each 
step. We use second order basis functions and calculate the harmonic response of the cuboid. 
The maximum and minimum displacement amplitudes are shown in the Table 2. 
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Mesh Size ux
min ux

max uy
min uy

max uz
min uz

max 
2000 0 0.37469856 -0.06383108 0.06251243 -0.05923610 0.06016678 
7000 0 0.37446038 -0.06543277 0.06522968 -0.06104570 0.06183667 
17000 0 0.37463003 -0.06312217 0.06298492 -0.06013235 0.05990996 
33000 0 0.37418054 -0.06457493 0.06444406 -0.06090186 0.06077397 
59367 0 0.37434851 -0.06420296 0.06405685 -0.06155456 0.06089649 
84000 0 0.37434851 -0.06420296 0.06405685 -0.06155456 0.06089649 

 
Table 2. The maximum and minimum displacement amplitudes [m]  

for the problem (1-3) with the boundary conditions (12-15). 
 

The relative errors defined as 
 

𝜀! =
𝑢!! − 𝑢!!!!

𝑢!!!!         𝜀! =
𝑢!
! − 𝑢!!!

!

𝑢!!!
!         𝜀! =

𝑢!! − 𝑢!!!!

𝑢!!!!  

 
are calculated for the maximum displacement amplitudes in all three direction and are shown in 
Fig. 3 as a function of the mesh size. It should be noted that the solution is accurate up to eight 
decimal places when the mesh size is larger than 59K. 
 

 
 

Figure 3. Relative error as a function of the mesh size for the problem (1-3), (12-15). 
 
 In Fig. 4 the magnitude of the displacement is benchmarked between ACE3P and 
ANSYS harmonic response module [15]. 
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Figure 4. Displacement magnitudes plotted on top of the deformed tetrahedral mesh (shown in 
black) as calculated using ACE3P (left) and in ANSYS (right). 

 
In this validation example, the harmonic response solver developed in ACE3P has been 

shown to achieve fast convergence. Moreover, the corresponding displacement fields from 
ACE3P and ANSYS calculations agree well and have the identical maximum values, as shown 
in Fig. 4. 

We also benchmark the harmonic calculations versus the ACE3P mechanical eigenmode 
solver [11]. For the harmonic response problem (1-3) with the boundary conditions (12-15), we 
consider the eigenmodes problem (1-3) and the boundary conditions (12-14, 16): 

 
𝜎 = 0,      𝑧 = 𝐿!     (16) 
  

and calculate the frequencies of the first five mechanical modes (see Table 3). 
 

Mode Eigen Frequency 
1 1405.04 
2 1573.95 
3 1609.63 
4 1687.82 
5 1712.62 

 
Table 3. Eigen frequencies [Hz] of the first five modes for the problem (1-3) and the boundary 

conditions (12-14, 16). 
 

Utilizing the harmonic response solver, we performed a frequency sweep from 1400 to 
1750 Hz and identified the resonances by plotting the maximum amplitude of the displacements 
in all three directions (see Fig. 5). 
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Figure 5. Maximum displacements for the frequency sweep using the harmonic response solver 
for the problem (1-3) and the boundary conditions (12-15). 

As expected, the spikes (resonant frequencies) identified in Fig. 5 correspond to the eigen 
frequencies from Table 3.  
 
 5. Example of a Large-Scale Simulation 
 

To illustrate the capability to handle realistic large-scale problems, we consider the 
TESLA superconducting accelerating cavity situated in a helium tank [16]. See Fig. 6 for details 
and Table 4 for the corresponding material properties. The contacts between different parts of the 
model are assumed to have no separation and no slip, i.e. bonded contacts, and, in building a 
corresponding mesh, tetrahedral elements do not cross the interface between the materials. To 
properly describe the cavity shape, curvilinear tetrahedral elements are employed. 

  

 
 

Figure 6. Superconducting TESLA cavity in a tank; the total structure length is 1.28 m 
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Property Nb Nb-Ti Ti SS 
Density, ρ [kg/m3]  8700 5700 4540 8000 
Poisson Ratio, υ 0.38 0.33 0.37 0.29 
Young’s Modulus, E [GPa] 118 68 117 193 

 
Table 4. Mechanical properties of the materials used in the simulation of the TESLA cavity. 

 
The liquid helium is not included in the simulation and instead of a microwave tuner 

attached to the cavity wall, a simplified model with comparable stiffness is considered. We 
model a half of the radially symmetric structure and prevent any deformations perpendicular to 
the symmetry plane.  

 
Simulation Parameter Value 
Number of Cores 240 
Mesh Size 1.2 M 
Number of Degrees of Freedom 5.7 M 
Mesh Type Curved Tetrahedrons 
Number of Frequency Steps 201 
Solver Time 1542 s 

 
Table 5. The simulation profile for the harmonic response calculation in ACE3P. 

 
The ACE3P simulation was performed on Edison, NERSC Cray XC30 supercomputer 

[17], see the simulation details in Table 5. A comprehensive eigenmode analysis was also 
performed for this model in [11] and the first five eigen frequencies (74 Hz, 74 Hz, 160 Hz, 160 
Hz and 220 Hz) as well as the corresponding displacements, stresses and strains have been 
determined. 

Here we consider two types of the harmonic excitations highlighted in red in Fig. 6: a) 
prescribed pressure on the He surface, i.e. inhomogeneous Neumann boundary condition (5) and 
b) prescribed displacement on the tank ring, i.e. inhomogeneous Dirichlet boundary condition 
(4).  

We perform two independent simulations for these two types of the external excitations: 
a) a frequency sweep from 50 to 250 Hz with a step of 1 Hz and the external surface 

pressure of 2.38e5 Pa [18], see Fig. 7. The spike observed at the frequency 220 Hz corresponds 
to the fifth eigenmode of the cavity determined in [11]. 
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Figure 7. a) the maximum displacements for the frequency sweep using the ACE3P harmonic 
mechanical solver for the Tesla cavity in a cryostat, the external surface pressure is 2.38e5 Pa.  

 
The corresponding displacement magnitudes are plotted at 74 Hz (the first eigenmode) 

and 220 Hz (the fifth eigenmode) in Fig. 8. One can see that the first eigen mode is off resonance 
and the excitation mostly absorbed by the bellows connecting the cavity to the tank, while the 
harmonic response of the system at 220 Hz is coupled to the fifth eigenmode identified in [11]. 

 

 
Figure 8. Displacement magnitudes at 74 Hz (top) and 220 Hz (bottom) plotted on top of the 

undeformed geometry for the He surface excitation, case a). 
 

b) The same frequency sweep has been performed fixing the magnitude of the oscillation 
for the tank ring at the level of 1e-6 m, see Fig. 9. 
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Figure 9. b) The maximum displacements of the Tesla cavity in a cryostat for the frequency 
sweep using the ACE3P harmonic mechanical solver, the magnitude of the oscillation for the 

tank ring is 1e-6 m. 

 
Figure 10. Displacement magnitudes at 74 Hz (top) and 220 Hz (bottom) plotted on top of the 

undeformed geometry for the ring excitation. 
 

In Fig. 10 the displacement magnitudes are plotted at 74 Hz and 220 Hz. On the top 
picture one can see that the first eigen mode is not coupled to the external vibration and the 
response is mostly concentrated within the tank, while the harmonic response of the system at 
220 Hz corresponds to the fifth eigenmode of the cavity [11].  

In  both cases the external harmonic loading couples to the longitudinal eigenmode of the 
cavity and a comprehensive analysis must be performed in order to understand the effect of the 
corresponding deformations on the operating RF frequency of the accelerating structure. It 
should be mentioned that the fluctuations in the He pressure [18] can be modeled using the 
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scheme discussed in case a) while the ground motion or other types of the environment 
vibrations can be studied in a way similar to b). 

The main advantage of the developed ACE3P harmonic response solver, i.e. the 
capability to perform a time-efficient accurate harmonic analysis of the complicated mechanical 
structures utilizing supercomputer resources, has been demonstrated. The solution for a problem 
with millions degrees of freedom can be processed in seconds. 

As discussed in Section 3, the harmonic response solver uses the linear solvers 
implemented in ACE3P, requiring the solution of a linear system at each frequency step using a 
direct or an iterative solver. In Fig. 11 the strong scalability of the harmonic response solver 
using a direct linear solver on Edison, the Cray XC30 supercomputer at NERSC, is compared 
against the perfect linear scalability. It can be seen that for the simulation profile described in 
Table 5 it scales fairly well up to 400 processors. 

 

 
 

Figure 11. The strong scalability of the ACE3P mechanical eigensolver using direct linear solver 
(red) on Edison, the Cray XC30 supercomputer at NERSC, and the perfect linear scalability 

(black). 
 
6. Conclusions 

 
A mathematical model for harmonic response analysis in structural mechanics is derived 

based on the finite-elements method. A new massively parallel harmonic response solver is 
developed as a part of the ACE3P simulation suite. The proposed method has a quick 
convergence and the obtained results are in good agreement with those calculated in ACE3P 
eigenmodes solver and ANSYS.  

One of the major advantages of ACE3P is that it can handle large-scale problems 
utilizing supercomputer resources and, as shown, can be used for a time-efficient harmonic 
response analysis of complicated mechanical structures. This new code capability is used in the 
multiphysics analysis of superconducting cavities for the LCLS-II project [19] involving the 
other ACE3P modules and helps understand the RF response and feedback requirements of 
accelerating structures to microphonics. 
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