Recent Results on T and CP Violation at BABAR

Alejandro Pérez Pérez*

INFN - sezione di Pisa
E-mail: luis.alejandro.perez@pi.infn.it
On behalf of the BABAR Collaboration

CP-violation (*CPV*) and Time-reversal violation (*TRV*) are intimately related through the *CPT* theorem: if one of these discrete symmetries is violated the other one has to be violated in such a way to conserve *CPT*. Although *CPV* in the $B^0\bar{B}^0$ system has been established by the B-factories, implying indirectly TRV, there is still no direct evidence of *TRV*. We report on the observation of *TRV* in the B-meson system performed with a dataset of $468 \times 10^6 B\bar{B}$ pairs produced in $\Upsilon(4S)$ decays collected by the *BABAR* detector at the PEP-II asymmetric-energy e^+e^- collider at the SLAC National Accelerator Laboratory. We also report on other *CPV* measurements recently performed on the B-meson system.

XXI International Workshop on Deep-Inelastic Scattering and Related Subject -DIS2013, 22-26 April 2013 Marseilles,France

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

SLAC-PUB-16224

1. First direct observation of *T*-reversal violation in B-mesons

The Cabibbo-Kobayashi-Maskawa (*CKM*) matrix mechanism [1] for the quark mixing describes all transitions between quarks in terms of only four parameters: three rotation angles and one irreducible phase. This irreducible phase being the only source of *CPV* in the standard model (SM). *CPV* has been well established both in the K-meson [2] and B-meson [3] systems, being consistent with the *CKM* mechanism. Local Lorentz invariant quantum field theories imply *CPT* invariance [4], in agreement with all experimental evidence up to date [5]. It is therefore expected that the *CP*-violating weak interaction also violates *T*-reversal.

In stable systems, a signature of *TRV* would be a non-zero expectation value for a *T*-odd observable, e.g. neutron or electron electric dipole moments, but no such observation has been made up to date. The only evidence of *TRV* has been found in the neutral K-meson system, with the measurement of the difference between the probabilities of $K^0 \to \bar{K}^0$ and $\bar{K}^0 \to K^0$ transitions for a given elapsed time [6]. However, since this flavour mixing asymmetry violates both *CP* and *T*, it is impossible to disentangle *TRV* from *CPV*. In unstable systems, *TRV* can be explored by studying a process under the $t \to -t$ transition combined with the exchange of $|in\rangle$ and $|out\rangle$ states, which can be experimentally challenging to achieve. As an example, comparing the rates of $B^0 \to K^+\pi^-$ and $K^+\pi \to B^0$ is not feasible due to the need to prepare the initial state and to disentangle weak from strong effects. However, the coherent production of B-mesons pairs at the B-factories, offers a unique opportunity to compare couple of processes where the initial and final states are exchanged by Time-reversal.

The experimental method described in Ref. [7] proposes to use the entangled quantum state $|i\rangle$ of the two neutral B-mesons produced through the $\Upsilon(4S)$ decay. This two-body state usually written in terms of the flavour eigenstates, B^0 and \overline{B}^0 , can be as well expressed in terms of mutually orthogonal B_+ and B_- CP-eigenstates, which decay to CP = +1 and CP = -1, respectively: $|i\rangle = \frac{1}{\sqrt{2}} [B^0(t_1)\bar{B}^0(t_2) - \bar{B}^0(t_1)B^0(t_2)] = \frac{1}{\sqrt{2}} [B_+(t_1)B_-(t_2) - B_-(t_1)B_+(t_2)]$. Experimentally, the B_+ and $B_-^{\sqrt{2}}$ states are defined as the neutral B states filtered by the decay to CP eigenstates $J/\psi K_L^0$ (CP = +1) and $J/\psi K_S^0$ ($\rightarrow \pi\pi$) (CP = -1). We define reference transitions and their Ttransformed counterparts (see table 1) and compare their transition rates as a test for T-reversal. The notation (X,Y) denotes the final states of the time ordered B-meson decays from the entangled state, with $B \to X$ ($B \to Y$) the earlier (later) decay. The time difference between the decays, $\Delta t = t_Y - t_X$, is then positive by definition. As an illustration, the pair of final states $(\ell^+, J/\psi K_S^0)$ denotes a $B^0 \to \ell^+ X$ decay, meaning that at that time the other B in the event is a \overline{B}^0 , followed in time by a $B \to J/\psi K_S^0$ decay, projecting to a B_- . The full process is the transition $\bar{B}^0 \to B_-$. A difference between this rate $\bar{B}^0 \to B_-$ and its *T*-transformed one is an indication of *TRV*. As shown in table 1, a total of four T-reversed transitions can be studied. The experimental analysis exploits identical reconstruction algorithms and selection criteria of the BABAR time-dependent CP asymmetry measurement in $B \rightarrow c\bar{c}K^{(*)0}$ decays [3]. The *flavor tagging* is combined for the first time with the CP tagging, as required for the construction of T-transformed processes.

The decay rate is proportional to $g_{i,j}^{\pm}(\Delta t) \propto e^{-\Gamma_d \Delta t} \{1 + S_{i,j}^{\pm} \sin(\Delta m_d \Delta t) + C_{i,j}^{\pm} \cos(\Delta m_d \Delta t)\},\$ where *i* denotes B^0 or \bar{B}^0 , *j* denotes $J/\psi K_S^0$ or $J/\psi K_L^0$, and \pm indicates whether the flavour final state occurs before (+) or after (-) the *CP* decay. Γ_d is the average decay width, Δm_d is the $B^0 \bar{B}^0$ mass difference. There are eight distinct sets of $C_{i,j}^{\pm}$ and $S_{i,j}^{\pm}$ parameters. An unbinned maximum

Reference transition (X, Y)	T-transformed transition (X, Y)
$B^0 \rightarrow B_+(\ell^-, J/\psi K_L^0)$	$B_+ ightarrow B^0(J/\psi K^0_S,\ell^+)$
$B^0 ightarrow B(\ell^-, J/\psi K^{\overline{0}}_S)$	$B ightarrow B^0(J/\psi K^0_L,\ell^+)$
$ar{B^0} o B_+(\ell^+,J/\psi K_L^0)$	$B_+ ightarrow ar{B}^0(J/\psi K^{\overline{0}}_{ m S},\ell^-)$
$ar{B^0} o B(\ell^+,J/\psi K^{ar{0}}_S)$	$B ightarrow ar{B}^0(J/\psi K^0_L,\ell^-)$

 Table 1: Reference transitions and their T-transformed.

likelihood fit is performed to the B^0 , \bar{B}^0 , $c\bar{c}K_S^0$ and $J/\psi K_L^0$ samples, to extract the $C_{i,j}^{\pm}$ and $S_{i,j}^{\pm}$ parameters. Out of this set of fitted parameters, a different set of *T*, *CP* and *CPT* violation parameters can be built, ΔC_i^{\pm} , ΔS_i^{\pm} (with i = T, CP, CPT) which are constructed as differences of the $C_{i,j}^{\pm}$ and $S_{i,j}^{\pm}$ for symmetry-transformed transitions (see table 2). Any deviation of the $(\Delta C_i^{\pm}, \Delta S_i^{\pm})$ from (0,0) signals the violation of the corresponding symmetry.

Figure 1: Confidence level contours at intervals of 1σ for T- (left), CP- (middle) and CPT- (right) differences results. ΔS_i^+ and C_i^+ (ΔS_i^- and C_i^-) are shown as a blue dashed (solid red) curves. The no-violation point of the corresponding symmetry is indicated with a cross (+).

Parameter	Measurement	Parameter	Measurement
$\Delta S_T^+ = S_{\ell^-, K_L^0}^ S_{\ell^+, K_S^0}^+$	$-1.37 \pm 0.14 \pm 0.06$	$\Delta C_T^+ = C_{\ell^-, K_L^0}^ C_{\ell^+, K_S^0}^+$	$0.10 \pm 0.14 \pm 0.08$
$\Delta S_T^- = S_{\ell^-, K_I^0}^+ - S_{\ell^+, K_S^0}^-$	$1.17 \pm 0.18 \pm 0.11$	$\Delta C_T^- = C_{\ell^-, K_L^0}^+ - C_{\ell^+, K_S^0}^-$	$0.04 \pm 0.14 \pm 0.08$
$\Delta S^{+}_{CP} = S^{+}_{\ell^{-},K^{0}_{S}} - S^{+}_{\ell^{-},K^{0}_{S}}$	$-1.30\pm0.11\pm0.07$	$\Delta C_{CP}^{+} = C_{\ell^{-},K_{\rm S}^{0}}^{+} - C_{\ell^{-},K_{\rm S}^{0}}^{+}$	$0.07 \pm 0.09 \pm 0.03$
$\Delta S_{CP}^{-} = S_{\ell^{-},K_{S}^{0}}^{-} - S_{\ell^{+},K_{S}^{0}}^{-}$	$1.33 \pm 0.12 \pm 0.06$	$\Delta C_{CP}^{-} = C_{\ell^{-},K_{c}^{0}}^{-} - C_{\ell^{+},K_{c}^{0}}^{-}$	$0.08 \pm 0.10 \pm 0.04$
$\Delta S_{CPT}^{+} = S_{\ell^{+},K_{\ell}^{0}}^{-} - S_{\ell^{+},K_{s}^{0}}^{+}$	$-1.30\pm0.11\pm0.07$	$\Delta C_{CPT}^{+} = C_{\ell^{+},K_{\ell}^{0}}^{-} - C_{\ell^{+},K_{s}^{0}}^{+}$	$0.07 \pm 0.09 \pm 0.03$
$\Delta S_{CPT}^{-} = S_{\ell^{+},K_{L}^{0}}^{+} - S_{\ell^{+},K_{S}^{0}}^{-}$	$1.33 \pm 0.12 \pm 0.06$	$\Delta C_{CPT}^{-} = C_{\ell^{+},K_{L}^{0}}^{+} - C_{\ell^{+},K_{S}^{0}}^{-}$	$0.08 \pm 0.10 \pm 0.04$

Table 2: Measured values of the T, CP and CPT difference parameters. The first uncertainty is statistical and the second systematic. The indexes ℓ^{\pm} and K_S^0/K_L^0 are described in the text.

The results on the *T*, *CP* and *CPT* asymmetries are shown in table 2. The significance of the corresponding differences is shown graphically in figure 2, with the two-dimensional contours in the $(\Delta S_i^{\pm}, \Delta C_i^{\pm})$ planes (i = T, CP, CPT). time-reversal violation is clearly established, with the exclusion of the (0,0) point with a significance of 14 σ . *CP*-violation is also observed at the level of 16 σ . No evidence of *CPT*-violation is observed, the measurement being consistent with the conservation hypothesis within the 1 σ level [8].

2. *CP*-violation in $B^0 \overline{B}^0$ mixing

Two of the three types of *CP*-violation that can be observed in neutral B-mesons systems have been well established, i.e. *CP*-violation in direct B^0 decays and in the interference between mixing and decay [3]. The third one, *CP*-violation in mixing has so far eluded observation. The weak-Hamiltonian eigenstates are related to the flavour eigenstates as $|B_{L,H}\rangle = p|B^0\rangle \pm q|\bar{B}^0\rangle$. The asymmetry between the oscillation probabilities $P = P(B^0 \rightarrow \bar{B}^0)$ and $\bar{P} = P(\bar{B}^0 \rightarrow B^0)$ is defined as: $A_{CP} = \frac{\bar{P}-P}{\bar{P}+P} = \frac{1-|q/p|^4}{1+|q/p|^4} \simeq 2(1-|q/p|^2)$. Hence, there is *CP*-violation in mixing if the parameter $|q/p| \neq 1$. The SM prediction is $A_{CP} = -(4.0 \pm 0.6) \times 10^{-4}$ [10].

Figure 2: Δt distribution for the continuum subtracted data (points with error bars) and fitted contribution from K_R (dark) and K_T (light) for $\ell^+ K^+$ (top-left), $\ell^- K^-$ (top-right), $\ell^- K^+$ (middle-left) and $\ell^+ K^-$ (middleright) events. The bottom plot is the Δt -dependent raw asymmetry between $\ell^+ K^+$ and $\ell^- K^-$ events.

The usual observable to measure the mixing A_{CP} is the di-lepton asymmetry, $A_{CP} = \frac{N(\ell^+\ell^+) - N(\ell^-\ell^-)}{N(\ell^+\ell^+) + N(\ell^-\ell^-)}$, where $\ell = e$ or μ , and ℓ^+ (ℓ^-) tags a B^0 (\bar{B}^0). This measurement benefits from the high statistics but has the drawback on relying on control samples to subtract charge-asymmetric backgrounds. The systematic uncertainty related to this correction constitutes a severe limitation on the precision of the measurement. The present analysis measures A_{CP} with a new technique in which one of the B^0 -mesons in the event is reconstructed in $B^0 \rightarrow D^{*-}X\ell^+\nu$ (referred to as the B_R), with a partial reconstruction of the $D^{*-} \rightarrow \pi^- \bar{D}^0$ decay. The flavour of the other B^0 (referred to as the B_T) is tagged by looking at the charge of the charged kaons in the event (K_T). Because a B^0 (\bar{B}^0) decays most often to a K^+ (K^-), then when mixing takes place ℓ and K_T have the same charge. A kaon with the same sign as ℓ may also come from the partially reconstructed D^0 in the event (K_R). To extract A_{CP} , three raw asymmetries are measured,

$$A_{\ell} = A_{r\ell} + A_{CP} \chi_d, \tag{2.1}$$

$$A_T = \frac{N(\ell^+ K_T^+) - N(\ell^- K_T^-)}{N(\ell^+ K_T^+) + N(\ell^- K_T^-)} = A_{r\ell} + A_K + A_{CP},$$
(2.2)

$$A_{R} = \frac{N(\ell^{+}K_{R}^{+}) - N(\ell^{-}K_{R}^{-})}{N(\ell^{+}K_{R}^{+}) + N(\ell^{-}K_{R}^{-})} = A_{r\ell} + A_{K} + A_{CP},$$
(2.3)

where A_{ℓ} is the inclusive single lepton asymmetry, i.e. the asymmetry between events with ℓ^+ compared to those with ℓ^- , $\chi_d = 0.1862 \pm 0.0023$ [11] and $A_{r\ell}$ (A_K) the detector induced charge asymmetry in the B_R (K^{\pm}) reconstruction.

The B_R is selected by combining a high momentum lepton and an opposite charge soft pion from the decay $D^{*-} \rightarrow \overline{D}^0 \pi_s^-$, both consistent with originating from a common vertex. The B_R events are discriminated against backgrounds by using the unobserved neutrino mass squared $\mathcal{M}_V^2 = (E_{\text{beam}} - E_{D^*} - E_\ell)^2 - (\mathbf{p}_{D^*} + \mathbf{p}_\ell)^2$, where the B^0 momentum is neglected. E_ℓ and \mathbf{p}_ℓ are the energy and momentum of the lepton, and \mathbf{p}_{D^*} is an estimation of the of the D^* momentum by approximating its direction the same as the π_s^- and parameterizing its momentum as a linear function of $\mathbf{p}_{\pi_s^-}$ using MC. \mathcal{M}_V^2 peaks near zero for signal. The production point of the reconstructed K (K-vertex) is estimated by the intersection of its track and the beam-region. Δz is defined as the distance from the $\ell \pi_s$ vertex and K-vertex along the beam-axis. Finally, the proper time difference Δt between B_R and B_T is defined as $\Delta t = \Delta z / \beta \gamma$ (with $\beta \gamma = 0.56$ the average Lorentz boost of the e^+e^- collision). The estimated error on the estimated Δt , $\sigma(\Delta t)$, is as well used as a discriminant variable. Events in which ℓ and K have the same sign are defined as mixed and unmixed otherwise. K_R candidates tend to have a smaller Δt than K_T candidates, therefore Δt is used as one of the main discriminant variables. Furthermore, K_R are usually emitted mainly back-to-back with respect to ℓ , while K_T are produced at random, so we use in addition the angle $\theta_{\ell K}$ between K and ℓ .

The number of B_R events is extracted by fitting the \mathcal{M}_v^2 distributions. The events are split in four lepton categories $((e^{\pm}, \mu^{\pm}))$ and in eight tagged samples $(e^{\pm}K^{\pm}, \mu^{\pm}K^{\pm})$ for the extraction of A_ℓ and (A_T, A_R) , respectively. A total of $(5.945 \pm 0.007) \times 10^6$ peaking events are found. We measure A_{CP} with a binned four dimensional fit to Δt , $\sigma(\Delta t)$, $\cos(\theta_{\ell K})$ and p_K . Figure 2 show the fit projections for Δt . We find $A_{CP} = (0.06 \pm 0.17^{+0.38}_{-0.32})\%$, and $1 - |q/p|^2 = (0.29 \pm 0.84^{+1.78}_{-1.61}) \times$ 10^{-3} [12]. This is the single most precise measurement of this mixing asymmetry well in agreement with the SM expectations.

3. Time-dependent amplitude analysis of $B^0 \rightarrow (\rho \pi)^0$

The $B^0 \rightarrow \pi^+ \pi^- \pi^0$ decay is well suited for *CP*-violation studies. The phase space of this final state is dominated by intermediate vector resonances (ρ). A complete time-dependent Dalitz plot (DP) analysis is sensitive to the interference between the resonant ρ^+ , ρ^- and ρ^0 intermediate states, allowing to extract the strong and weak relative phases, and of the *CP*-violation parameter $\alpha = \arg[-(V_{td}V_{tb}^*)/(V_{ud}V_{ub}^*)$, with $V_{qq'}$ the elements of the *CKM* matrix [14].

The time-dependent amplitude for B^0 decays to the $\pi^+\pi^-\pi^0$ is given by $A_{3\pi} = f_+A^+ + f_-A^- + f_0A^0$, and similarly for \bar{B}^0 decays, with the A^i replaced by \bar{A}^i (i = +, -, 0). The DP-dependent f_i , and are defined in terms of modified Breit-Wigner resonances. The time-dependent probability for a meson which is a B^0 ($g_{3\pi}^-$) or \bar{B}^0 ($g_{3\pi}^+$) at the time the other one decays, to decay to $\pi^+\pi^-\pi^0$ is given by,

$$g_{3\pi}^{\pm}(\Delta t, DP) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} (|A_{3\pi}|^2 + |\bar{A}_{3\pi}|^2) \left(1 \mp C_{3\pi} \cos(\Delta m_d \Delta t) \pm S_{3\pi} \sin(\Delta m_d \Delta t)\right)$$
(3.1)

where $C_{3\pi} = \frac{|A_{3\pi}|^2 - |\bar{A}_{3\pi}|^2}{|A_{3\pi}|^2 + |\bar{A}_{3\pi}|^2}$, $S_{3\pi} = 2\text{Im}\left\{\frac{(q/p)\bar{A}_{3\pi}A_{3\pi}^*}{|A_{3\pi}|^2 + |\bar{A}_{3\pi}|^2}\right\}$ and is τ_{B^0} the B^0 lifetime. The decay amplitudes $A_{3\pi}$ and $\bar{A}_{3\pi}$ [15] are written in terms of 27-real valued parameters U and I coefficients which have a

number of advantages: there is a unique solution of the *U*-*I* from the fit to data; their uncertainties are more Gaussian than those from fits where the decay amplitudes are directly parameterized in terms of the A^i moduli and phases; and it is simpler to combine measurements from different experiments. The physical quantities (branching fraction, *CP*-asymmetry) for each $\rho\pi$ charge states are functions of the *U* and *I* parameters.

The present analysis [15] is an update of the previous BABAR measurement [13] with the full dataset. Background events are discriminated by using two kinematic variables: $m_{ES}^2 = [(s/2 + \vec{p}_i \cdot \vec{p}_B)/E_i]^2 - |\vec{p}_B|^2$ and $\Delta E = E_B^* - \sqrt{s}/2$, where \sqrt{s} is the e^+e^- beam energy in the CM frame, (E_i, \vec{p}_i) and \vec{p}_B the four-momentum of the e^+e^- system and the momentum of the B-candidate in the laboratory frame, and E_B^* the B-candidate energy in the CM frame. m_{ES} and ΔE peak at the B-mass and at zero for signal events, respectively. Further background discrimination is achieved by using a neural-network (NN) which exploits the topological differences between signal and background. A maximum likelihood fit using the Δt and DP variables, as well as m_{ES} , ΔE and NN, is performed to extract the values of the U-I coefficients. Two direct *CP*-violation parameters,

$$A_{\rho\pi}^{+-} = \frac{\Gamma(\bar{B}^0 \to \rho^- \pi^+) - \Gamma(B^0 \to \rho^+ \pi^-)}{\Gamma(\bar{B}^0 \to \rho^- \pi^+) + \Gamma(B^0 \to \rho^+ \pi^-)}, \quad A_{\rho\pi}^{-+} = \frac{\Gamma(\bar{B}^0 \to \rho^+ \pi^-) - \Gamma(B^0 \to \rho^- \pi^+)}{\Gamma(\bar{B}^0 \to \rho^+ \pi^-) + \Gamma(B^0 \to \rho^- \pi^+)} \quad (3.2)$$

are extracted with the values $A_{\rho\pi}^{+-} = 0.09_{-0.06}^{+0.05} \pm 0.04$ and $A_{\rho\pi}^{-+} = -0.12 \pm 0.08_{-0.05}^{+0.04}$. A twodimensional likelihood scan is provided in the left hand plot of figure 3. The origin, corresponding to no direct *CP*-violation, is excluded at the level of ~ 2σ .

Scans of the likelihood function in fits where a given value of the *CKM* α angle is assumed are performed enforcing the SU(2) symmetry in a loose (*unconstrained* analysis using only the $B^0 \rightarrow \rho \pi$ amplitudes) or tight (*constrained* analysis adding the charged $B^+ \rightarrow \rho \pi$ amplitudes) fashion. The Σ scan vs α is shown in the right hand plot of figure 3. The Σ value is commonly referred as "1 - C.L.", however robustness studies have shown that with the current data sample the Σ cannot interpreted in terms of the usual Gaussian statistics [15]. Hence with the current statistics, the analysis cannot reliably determine the angle α . This analysis would benefit greatly from increased sample sizes available at higher-luminosity experiments.

Figure 3: Left: two-dimensional likelihood scan of $A_{\rho\pi}^{+-}$ vs $A_{\rho\pi}^{-+}$ with 1,2 and 3 σ C.L. contours. The yellow dot inside the contours indicate the central value. Right: Isospin-constrained (solid red) and unconstrained (dashed black) scans of Σ (see text) as a function of α .

4. Conclusion

We presented the fist direct observation of *T*-reversal violation in the B-meson system, which is established at the level of 14σ . Deviations of *CPT* conservation are also tested giving null results, in agreement with the expectations of the *CPT*-theorem. We also reported on a new experimental technique for the measurement of the mixing induced *CP*-violation parameter $1 - |q/p|^2$. The measurement is the most precise single measurement up to date and is well in agreement with the SM expectations. Finally, we reported on the update using the full *BABAR* dataset of the timedependent amplitude analysis of the $B^0 \rightarrow \pi^+\pi^-\pi^0$ decays. Measurements of direct *CP*-violation asymmetries are measured, excluding the *CP*-violation conservation hypothesis at the level of 2σ . Constrains on the α CKM angle are calculated. Robustness studies show that with the current dataset the method for extracting α is not robust, meaning that the current constrains cannot be interpreted in terms of the usual Gaussian statistics, but the analysis should benefit from increased data-samples from future experiments.

References

- N. Cabibbo, *Phys. Rev. Lett.* **10**, 531 (1963); M. Kobayashi and T. Maskawa, *Prog. Theor. Phys.* **49**, 652 (1973).
- [2] J. H. Christenson et al. Phys. Rev. Lett. 13, 138 (1964).
- [3] B. Aubert *et al.* (BABAR Collaboration), *Phys. Rev. Lett.* 87, 091801 (2001); K. Abe *et al.* (Belle Collaboration), *Phys. Rev. Lett.* 87, 091802 (2001); B. Aubert *et al.* (BABAR Collaboration), *Phys. Rev. Lett.* 93, 131801 (2004); Y. Chao *et al.* (Belle Collaboration), *Phys. Rev. Lett.* 93, 191802 (2004).
- [4] G. Lüders *et al.* 1954, Vol. 28, p. 5; J. S. Bell, Ph.D. thesis, Birmingham University, 1954; Niels Bohr and the Development of Physics, edited by W. Pauli, L. Rosenfold, and V. Weisskopf (McGraw-Hill, New York, 1955).
- [5] R. Carosi *et al.*, *Phys. Lett.* B 237, 303 (1990); A. AlaviHarati *et al.*, *Phys. Rev.* D 67, 012005 (2003);
 B. Schwingenheuer *et al.*, *Phys. Rev. Lett.* 74, 4376 (1995).
- [6] A. Angelopoulus et al. (CPLEAR Collaboration), Phys. Lett. B 444, 43 (1998).
- [7] J. Bernabeu et al., J. High Energy Phys. 08 (2012) 064.
- [8] J. P. Lees et al., Phys. Rev. Lett. 109, 211801 (2012).
- [9] G. C. Branco, L. Lavoura and J. P. Silva, *CP Violation*, International Series of Monographs on Physics (1999).
- [10] A. Lenz, U. Nierste, arXiv:1102.4274 [hep-ph] (2010); U. Nierste, arXiv:1212.5805 [hep-ph] (2012);
 J. Charles *et al.*, *Phys. Rev.* D 84, 033005 (2011).
- [11] J. Beringer et al., (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
- [12] J. P. Lees et al., arXiv:1305.1575 [hep-ex] (2013).
- [13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D76, 012004 (2007).
- [14] H.R. Quinn and A.E. Snyder, Phys. Rev. D 48, 2139 (1993).
- [15] J. P. Lees et al., arXiv:1304.3503 [hep-ex] (2013).