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I. ABSTRACT

Shot noise can affect the performance of free electron lasers (FELs) by driving instabilities (e.g. the microbunching
instability) or by competing with seeded density modulations. Recent papers have proposed suppressing shot noise to
enhance FEL performance. In this paper we use a one-dimensional (1D) model to calculate the noise amplification from
an energy modulation (e.g. electron interactions from space charge or undulator radiation) followed by a dispersive
section. We show that for a broad class of interactions, selecting the correct dispersive strength suppresses shot noise
across a wide range of frequencies. The final noise level depends on the beam’s energy spread and the properties of
the interaction potential. We confirm and illustrate our analytical results with 1D simulations.

II. INTRODUCTION

In a bunch of random (uncorrelated) electrons, the longitudinal density contains white noise fluctuations, commonly
called shot noise. While shot noise drives Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FELs),
the same density fluctuations may adversely affect FEL operation. For example, the microbunching instability,
thought to originate from shot noise, can incapacitate diagnostics and degrade FEL performance [1–7]. Shot noise
also competes with external modulations in the operation of seeded FELs [8, 9]. Recent papers have proposed schemes
to decrease the noise level below that of shot noise to aid the FEL process or for other applications [10–12]. In this
paper we use the approach of [13] to study the evolution of noise as the beam travels through a system with interactions
between the electrons as well as dispersive regions. To simplify the analysis, we consider a one-dimensional (1D) model
system of a generic self-interaction, h, which changes the particle energies, followed by a dispersive region, R56, which
converts the change in energy to change in position (Fig. 1). We show that for a broad class of interactions, it is
possible to suppress density fluctuations below the shot noise level, and we provide 1D simulations to confirm the
result. Future theoretical and numerical work will extend these results to 3D models, and explore the feasibility of
demonstrating shot noise suppression experimentally.
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FIG. 1. Schematic of our model system. Starting with an initial electron distribution function, f0(z, η), the interaction and
dispersive regions produce a final distribution function, ff (ẑ, η̂). The dispersion may be positive or negative.

III. ANALYTICAL MODEL

A. Noise Factor

To characterize the level of noise at a wavevector, k, we define the noise factor

F (k, s) ≡ 1

N

∑
j,l

eik[zj(s)−zl(s)] (1)

where zj(s) is the longitudinal bunch coordinate of particle j at position s in the accelerator, and N is the number
of particles in the beam. We note that the noise factor can equivalenty be defined by F (k, s) ≡ N |b(k, s)|2, with the
bunching factor b(k, s) ≡

∑
j exp[ikzj(s)]/N .

The noise factor, F (k, s), is a measure of the correlations between particle coordinates at wavevector k. If the
particle positions are uncorrelated, we find the expectation value of shot noise, 〈F (k, s)〉 = 1. On the other hand, if
the positions are strongly correlated at wavevector k, we find 〈F (k, s)〉 ∼ N , with N � 1 generally; such correlated
(or ’bunched’) beams are found at the output of an FEL, and as the result of the microbunching instability [6, 7]. We
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may also consider the case of an anti-correlated (or ’quiet’) beam, with 〈F (k, s)〉 < 1, below the shot noise level. In
this paper, we investigate the possibility of producing quiet beams.

Though the noise factor is defined as a function of accelerator position, s, we are particularly interested in the
noise level at the output of our system, F (k, sf ). Starting from an initial distribution function at s0, we would like
to determine the resulting final noise level at sf .

To facilitate an analytical solution, we will study the simplified system of Fig.1. We assume the particle distribution
is a function of position in the bunch, z(s), and relative, normalized energy, η(s) ≡ [E(s)−E0]/E0, with average beam
energy, E0. Though both z and η are functions of s, we are primarily interested in the initial and final coordinates, so
for brevity we define z, η ≡ z(s0), η(s0), ẑ, η̂ ≡ z(sf ), η(sf ) and F (k) ≡ F (k, sf ). We can then describe the system as
follows. We start with a simple N -particle initial distribution of particles, f0(z1, ..., zN , η1, ..., ηN ). After an interaction
period, the energies are modified, giving distribution fa(z1, ..., zN , η̂1, ..., η̂N ). A dispersive region (assumed to have
zero interaction), then changes the longitudinal positions, giving final distribution ff (ẑ1, ..., ẑN , η̂1, ..., η̂N ).

B. Expectation Value of Noise Factor

To calculate the expectation value, we break 〈F (k)〉 into incoherent (j = l) and coherent (j 6= l) portions. First,
we treat the incoherent portion. With j = l, the phases cancel and we find N terms, all equal to 1, giving

〈F (k)〉SN = 1 (2)

which is simply the noise level due to shot noise.
Next, we calculate the coherent portion. To find the expectation value at the final accelerator position, we integrate

F (k) over the final particle distributions, ff (ẑ1, ..., ẑN , η̂1, ..., η̂N ). In general, ff may be a complicated function of all
2N variables. However, if we assume the electrons are initially uncorrelated, then we can write the initial distribution
function as

f0(z1, ..., zN , η1, ..., ηN ) =

N∏
i

f (1)(zi, ηi) , (3)

with the single particle distribution functions for a beam with Gaussian energy spread of ση and uniform longitudinal
density of length L given by

f (1)(z, η) =

{
e
−η2/2σ2η√
2πσηL

for −L/2 < z < L/2

0 elsewhere
. (4)

We then express the final coordinates in terms of the initial coordinates (ẑ, η̂ → z, η), and integrate over the product
of N simple initial distributions, f (1).

In the interaction region, we assume the bunch is longitudinally frozen (z, η → z, η̂), and likewise in the dispersive
region we assume there is zero interaction (z, η̂ → ẑ, η̂). To further simplify the calculation, we ignore any transverse
effects. (The validity of the 1D approximation will depend on the interaction of interest.) Our resulting map from
initial to final coordinates then is

ηj → η̂j = ηj +

N∑
i=1

h(zj , zi)

zj → ẑj = zj +R56η̂j (5)

with dispersive strength R56, and h(zj , zi) the change in energy of particle j due to the interaction with particle i. We
can now write the coherent portion of F (k) in terms of the initial coordinates, and integrate over each single particle
distribution, fi ≡ f (1)(zi, ηi), to find the expectation value

〈F (k)〉C ≈ N
∫ L/2

−L/2
dz1dη1...

∫ L/2

−L/2
dzNdηNf1...fN

eik(z1−z2+R56(η1−η2)+R56[
∑N
i h(z1,zi)−

∑N
m h(z2,zm)]) (6)

where we have assumed the N2 −N ≈ N2 � 1 coherent terms of the sum in Eq. 1 are identical, and we have chosen
j = 1, l = 2 without loss of generality.
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Our approach (following [13]) will be to explicitly separate the z1, z2 terms. We assume the interaction depends
only on the distance between the particles, h(z1, z2) = h(z1 − z2), so we change variables, z1, z2, zl, zm → ζ, Z, τl, τm
with ζ ≡ z1− z2, Z ≡ (z1 + z2)/2, and τl,m ≡ zl,m− z2. Finally, we assume that the interaction is nonzero only within
a charactersitic distance, Lh, which is much shorter than the bunch length, L. We can then integrate over Z and
η1...ηN to find

〈F (k)〉C = n0e
−k2R2

56σ
2
η

∫ ∞
−∞

dζ

[
1

LN−2

∫
dτ3...

∫
dτN

eik(ζ+R56[h(ζ)−h(−ζ)]+R56
∑N
i=3[h(−τi+ζ)−h(−τi)])

]
(7)

where we have defined the 1D particle density n0 ≡ N/L and we have used Lh � L to both ignore edge effects and
set the ζ integral limits to infinity. First, we note that the N −2 integrals over τi are separable and identical. Second,
we assume kR56h� 1 so we can linearize the exponentials, yielding

〈F (k)〉C ≈ n0e
−k2R2

56σ
2
η

∫ ∞
−∞

dζeikζ
[
1 + Γ1(ζ)

] [
1 +

1

N
Γ2(ζ)

]N−2

(8)

with definitions

Γ1(ζ) ≡ ikR56[h(ζ)− h(−ζ)] + ...

Γ2(ζ) ≡ n0

∫ ∞
−∞

dτ

(
ikR56

[
h(−τ + ζ)− h(−τ)

]
− k2R2

56

2

[
h(−τ + ζ)− h(−τ)

]2
+ ...

)
(9)

where we have expanded Γ1 and Γ2 in powers of the small parameter, kR56h. For Γ1, the term linear in kR56h is
nonzero, so we drop all higher order terms. However, from our assumption of a long bunch, the linear order terms
in Γ2 cancel after the integration, so we must also keep the quadratic term for Γ2. Combining the two square terms,∫
dτh(−τ)2 =

∫
dτh(−τ + ζ)2, we find

Γ1(ζ) ≈ ikR56

[
h(ζ)− h(−ζ)

]
Γ2(ζ) ≈ n0k

2R2
56

∫ ∞
−∞

dτ
[
h(−τ + ζ)h(−τ)− h(−τ)2

]
. (10)

We may be tempted to drop Γ2, because it is second order in kR56h. However, Γ2 is also raised to the power of N ,
and with N � 1 generally, Γ2 may even be the dominant term (as for the microbunching instability, see e.g. [6, 7]).
In this paper, we keep both terms, and will see that noise suppression occurs when Γ1 and Γ2 are comparable.

C. Analytical Expression: Weak Interaction

If we consider a weak interaction under the stronger assumption, Γ2 � 1, we can solve for the noise level analytically.
Adding in the shot noise term again and expanding Eq. 8, we find

〈F (k)〉 ≈ 1 + n0e
−k2R2

56σ
2
η

{∫ ∞
−∞

dζeikζ [Γ1(ζ) + Γ2(ζ)] + 2πδ(k)

}
. (11)

We are interested in k 6= 0, and so will drop the δ function. (The δ function arises from our assumption of L → ∞.
For finite L, we will have a term that is nonzero for k < 1/L, but even so our focus is on much shorter wavelengths.)

We can now identify the three regimes for 〈F (k)〉. For zero interaction, we are left with only the leading shot noise
term, 〈F (k)〉 = 1, which is simply the white noise of an uncorrelated bunch. The Γ2 contribution is positive-definite,
so for Γ2 � Γ1, we find a correlated beam with 〈F (k)〉 > 1. Finally, for Γ1 ∼ Γ2, the term linear in R56 cannot
be neglected. If R56 is chosen so that Γ1 < 0, it is possible to create an anti-correlated beam, with the noise factor
suppressed below the shot noise level, 〈F (k)〉 < 1. In this paper we consider the third regime.

Identifying the ζ integral as a Fourier transform (FT), we rewrite the noise factor as

〈F (k)〉 ≈ 1 + in0kR56[h̃(k)− h̃(−k)]e−k
2R2

56σ
2
η

+ n2
0k

2R2
56FT

{∫ ∞
−∞

dτ
[
h(−τ)h(−τ + ζ)− h(−τ)2

]}
e−k

2R2
56σ

2
η (12)
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where h̃(k) denotes FT{h(τ)}. We drop the second term in the remaining integral because it has no ζ dependence,
and so its Fourier transform is nonzero only for wavelengths longer than the bunch (k < 1/L). The first term is the

autocorrelation of h(τ), which has Fourier transform |h̃(k)|2, yielding

〈F (k)〉 ≈ 1− 2n0kR56Im [h̃(k)]e−k
2R2

56σ
2
η

+ n2
0k

2R2
56|h̃(k)|2e−k

2R2
56σ

2
η . (13)

If the energy spread is small (ση → 0), and the interaction has purely imaginary Fourier transform, h̃(k), we can write
the noise factor as a perfect square

〈F (k)〉 ≈ (1−Υ)2 with Υ ≡ n0kR56Im [h̃(k)] . (14)

We suppress the noise factor below the shot noise level when the suppression parameter is in the range 0 < Υ < 2 and
the noise disappears completely for Υ = 1. (We note that partial noise suppression is possible even if the interaction
contains a real component.) We are particularly interested in interactions that can be approximated as step functions
near ζ = 0: h(ζ) → AH(ζ)+ const, with Heaviside function H, and interaction strength, A. For such interactions,

we find h̃(k) ∝ 1/k for high frequencies, so that Υ is independent of k. We are then able to simultaneously suppress
bunching at a wide range of frequencies.

We can draw a broad lesson from Eq. 13; a quiet beam is attainable from any interaction with primarily imaginary
Fourier transform, e.g. from step function interactions (for k 6= 0). We will treat the special cases of space charge and
undulator interactions later, but here emphasize that any interaction with imaginary Fourier transform will suffice.
For example, the wake from a linac with periodic structures also satisfies these conditions [14]. We have assumed
negligible energy spread here; see the appendix for a discussion of the effect of energy spread on noise suppression.

For a physical interpretation of the requirement for imaginary Fourier transform, we consider a test particle in front
of localized density spike of width 1/k. If h(τ) > 0 for τ > 0, the test particle will receive positive energy change. A
positive dispersive region then causes the test particle to move forward and away from the dense region. Likewise, a
test particle at the back of a dense region (τ < 0) loses energy relative to the front particle for h̃(k) imaginary, and
moves backward and away in a positive dispersive region. The end result is a reduction in the density spike and thus
a reduction in the noise. If h(τ) < 0 for τ > 0, as is the case for an undulator, we have the identical argument, but
require negative dispersion. The process is illustrated in Fig. 2.

E z

density density

Space Charge Undulator

FIG. 2. Schematic of an interaction near a density spike (solid green line). At left, for the space charge case, particles in
the front half of the spike gain energy, while particles in the back half lose energy, and in positive dispersion, the density
spike shrinks (dotted green line). We have a similar result for an interaction due to undulator radiation (right). At high
frequency (spike much shorter than undulator resonant wavelength), all particles lose energy, but following a dispersive region
with negative R56 we still find a reduction in the density spike (dotted green line).

D. Numerical Approximation: Strong Interaction

For stronger interactions, we may not be able to approximate Γ2 � 1. If it is not possible to evaluate Eq. 8
analytically for an arbitrary h, we can carry out the integrals numerically. Using the less stringent approximation
Γ2 � N (satisfied even for simulation parameters with relatively small N) we take (1 + Γ2/N)N ≈ exp(Γ2) to obtain

〈F (k)〉 = 1 + n0e
−k2R2

56σ
2
η

∫ ∞
−∞

dζeikζeΓ2(ζ)
[
1 + Γ1(ζ)

]
(15)

5



For physical interactions, Γ1 → 0 as ζ → ∞, so the second term, eΓ2(ζ)Γ1(ζ), converges and can be integrated
numerically. We cannot directly integrate the first term, exp[Γ2(ζ)], because the h2(−τ) in Eq. 10 has no ζ dependence;
in the limit ζ → ∞, we find Γ2(ζ) → Γ̄2 6= 0, and the integral diverges. However, the divergence occurs only for
k = 0; otherwise, Γ̄2 exp[ikζ] integrates to zero (which is why we dropped the h2(−τ) term from Eq. 12). Following
the same reasoning here, with

Γ̄2 = −n0k
2R2

56

∫ ∞
−∞

dτh(−τ)2 (16)

we explicitly remove the constant term, exp[Γ̄2] to find

〈F (k)〉 = 1 + n0e
−k2R2

56σ
2
η

∫ ∞
−∞

dζ[(
eΓ2(ζ) − eΓ̄2

)
cos(kζ) + ieΓ2(ζ)Γ1(ζ) sin(kζ)

]
(17)

where we’ve used Eq. 10 to see that Γ1(ζ) and Γ2(ζ) are respectively odd and even functions of ζ. We can then
integrate Eq. 17 numerically.

IV. SPACE CHARGE CASE

A. Space Charge Interaction

So far we have not specified the interaction term, constraining only that the energy change, h, is a function of ζ,
the distance between the particles. We now consider the Coulomb interaction between two particles. We assume
the interaction occurs over a distance La in the accelerator, during which the particles are frozen longitidunally. We
consider a 1D system, treating the particles as uniform, rigid sheets of charge with radius a, valid in the limit a� γ/k
[15]. To calculate the relative change in energy due to the longitudinal E-field (Ez), we integrate over the sheets of
source and test particles,

hsc(ζ) =
sgn(ζ)

γmec2
q2La

4πε0S2

∫ a

0

∫ a

0

∫ 2π

0

∫ 2π

0

r1dr1r2dr2dθ1dθ2(γζ)[
(γζ)2 + r2

1 + r2
2 − 2r1r2 cos(θ1 − θ2)

]3/2 (18)

with average particle energy, γmc2, electron charge, e, area of sheet, S = πa2, and

sgn(ζ) ≡


1 ζ > 0

0 ζ = 0

−1 ζ < 0

. (19)

One of the θ integrals trivially gives a factor of 2π, and the remaining integrals can be solved numerically to produce
the interaction hsc(ζ) shown in Fig. 3. We note that the interaction will go to zero for ζ � a/γ, as required in our
derivation of Eq. 7. In the limit of infinite sheets (a→∞), the Ez field is simply

|Ez| =
e

2Sε0
, (20)

so that the interaction causes an energy change per charge, e, of

hsc(ζ) =
e2La

2ε0Sγmec2
sgn(ζ) =

2πreLa
Sγ

sgn(ζ) , (21)

with classical electron radius re ≡ e2/4πε0mec
2.

B. Space Charge Fourier Transform

In the simplified case of infinite sheets, the step function at ζ = 0 dominates h̃(k), and we find a purely imaginary
Fourier transform,

h̃(k) =
iAsc
k

, (22)
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FIG. 3. Space charge from a source sheet produces a change in energy (hsc) in a test sheet located at a distance ζ. We calculate
the energy modulation to the test sheet by averaging over the entire sheet (solid blue curve). Though Ez (and thus hsc) is not
constant everywhere in the test sheet, we note that there is relatively little variation near the center of the sheet, as can be
seen from hsc evaluated at radius r = 0 (dashed green line) and r = a/2 (dotted red line).

with definition

Asc ≡
4πreLa
Sγ

. (23)

Following Eq. 14, we then define the suppression parameter for space charge, Υsc ≡ n0R56Asc, and we expect
broadband suppression for Υsc = 1.

In the finite sheet model, when ζ � a/γ the interaction falls off as 1/ζ2. The cutoff for h(ζ) as ζ →∞ determines

the noise suppression at low frequencies; the approximation of h̃(k) ∝ 1/k breaks and we expect suppression to be
frequency dependent for small k. Averaging the energy modulation across the disc gives (see e.g. [16, 17] 1 )

h̃(k) =
iAsc
k

[
1− 2I1(k)K1(k)

]
, (24)

with modified Bessel functions I1(x),K1(x). As k →∞, we find h̃(k)→ iAsc/k, reproducing the result for the infinite

sheet (Eq. 22). However, as k → 0, we find h̃(k)→ 0, and we expect weaker noise suppression.

C. Space Charge Simulation

To check our analytical result, we simulate the interaction between particles in a 1D code. We load N particles
randomly within a bunch length L, with initial energy spread, ση. A particle at location z0 interacts with all particles
within the range z0 − Lh < z < z0 + Lh, and we choose the interaction distance Lh so that L � Lh � a/γ. To
avoid edge effects from a finite bunch, we enforce periodic boundary conditions on the interaction. Following the
interaction, the longitudinal positions shift according to ẑ = z+R56η̂, where the relative energy η̂ is solely determined
by the interactions of the first stage. We can then calculate the noise factor (or equivalently the FFT) of the resulting
distribution, though even by eye it is apparent we have suppressed high frequency noise (Fig. 4). In the limit of a
cold beam, the 1D space charge interaction results in regularly spaced particles, each separated by the local inverse
density, 1/n0 (Fig. 5).

We check the analytical solution (Eqs. 13, 24) against the simulations in Fig. 6. For all space charge simulations,
units of length are normalized to the sheet radius, a, and for now we assume zero initial energy spread, ση = 0.

1 In Eq. 2 of Reference [17], the Bessel function should be K1, not K0.
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FIG. 4. On the left we show a histogram of particle density for particles loaded with random longitudinal positions. At
right, following the interaction and dispersive regions, we find a reduction in noise in the equivalent histogram. (Example has
n0a = 5× 102,Υ = 1).
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Shot Noise (uncorrelated)

Quiet Beam (n0a=5x102,Y=1)

^

FIG. 5. Longitudinal distribution of particles in simulation before (×) and after (∗) the noise suppression process. For
ση � 1/R56n0 and a 1D beam, it is possible to show that the initially uncorrelated distribution gives way to a regularly
spaced beam with inter-particle spacing 1/n0 (see appendix, Section B). The regular structure amplifies bunching at very high
frequencies, k = 2πn0 and its harmonics, while suppressing F (k) at frequencies below 2πn0.

D. Validity of 1D model

Throughout the paper we use a 1D model of sheet particles (sheets distributed with random longitudinal positions),
so we would like to check that the resulting interaction, Eq. 24, is a reasonable approximation of a 3D distribution
of particles. We may look to Ref. [15], which studies the difference between 1D and 3D models of longitudinal space
charge in the high frequency limit. Though the 1D and 3D distributions of longitudinal fields diverge at high frequency
(see Eqs. 9,11-13 from Ref. [15]), we find that when averaged transversely, the two models give approximately equal
results.

The assumption of rigid 1D sheets may also overestimate the noise suppression. Past work on noise suppression
resulting from plasma oscillations has found that 3D models lead to weaker noise suppression [10, 11]. In our 1D
model we assume a rigid sheet of charge that moves uniformly due to the average longitudinal field, whereas in reality
each particle moves independently. To check the validity of our 1D model, we have written a 3D version of the space
charge simulation. We confirm the existence of noise suppression for Υ = 1, but with somewhat weaker level of
suppression. The 3D theory and simulations will be published elsewhere.
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FIG. 6. A comparison of simulation and analytical results shows noise suppression as a function of frequency. With Υ ≈ 1 at
high frequency, we find strong suppression. At low frequencies (k . 2π/a), we no longer have h̃u(k) ∝ 1/k, so suppression is
weaker for the given parameters.

V. UNDULATOR RADIATION CASE

A. Undulator Radiation Interaction

As a second example, we consider the case of a beam traveling through an undulator. In the 1D limit, we can write
down a simple, closed form solution for the interaction due to a helical undulator [18], providing a convenient system
for studying noise suppression. For this reason, we neglect the space charge component in the following analysis,
though we will see that in the absence of an amplifier [12] the space charge effect is generally dominant. We then find
the undulator interaction (see Section A 1 of the appendix for a derivation)

hu(ζ) =

{
−Au

(
1− ζ

Nuλ0

)
cos k0ζ 0 < ζ < Nuλ0

0 otherwise
(25)

with definition

Au ≡ 2π
e2K2Nuλ

2
u

Sγ3mec2λ0
= 4π

reLu
Sγ

K2

1 +K2
. (26)

undulator strength parameter, K, length, Lu, period, λu, and resonant wavelength, λ0. This 1D expression is valid
in the limit

a� γ

k
√

1 +K2
(27)

with a the transverse beam size (see appendix, Eq. A20).

B. Undulator Fourier Transform

From Eq. 13, noise suppression originates from the imaginary component of the Fourier transform. For the undulator
case,

h̃u(k) ≡
∫ ∞
−∞

dζeikζhu(ζ)

= −AuNuλ0

∫ 1

0

dζ̄
(
1− ζ̄

)
cosαζ̄eimαζ̄ (28)
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with definitions ζ̄ ≡ ζ/Nuλ0, α ≡ 2πNu and m ≡ k/k0. Integrating gives

h̃u(k) = −iAuNuλ0

[
m

(m2 − 1)α
− i (1 +m2)(1− eimα)

(m2 − 1)2α2

]
(29)

with Nu assumed to be an integer. At high frequencies (m � 1), we neglect the second term, and find a purely
imaginary FT

h̃u(k) ≈ −iAu
k
. (30)

As in the space charge case, we use Eq. 14 to define the suppression parameter Υu = −Aun0R56. In general, h̃u(k)
is not purely imaginary, as stipulated in Eq. 13. However, at high frequencies, the undulator interaction looks like a
step function (with the purely imaginary Fourier transform in Eq. 30), and the physical picture in Fig. 2 applies here
as well. Again, Υu has no k dependence, so we expect broadband suppression.

At low frequencies, the approximation in Eq. 30 fails and the Fourier transform will be complex. If we take the
limit of m→ 1, then from Eq. 29 we find

h̃u(k = k0) = −AuNuλ0

(
1

4
+

i

4α

)
(31)

which is approximately real. We then find 〈F (k)〉 ∼ 1 + |h̃u(k0)|2 and consequently expect bunching to increase at

low frequencies. Note that |h̃u(k0)| = (Nuπ/2)Υu, so for Nu � 1, we can expect an enhancement of ∼ N2
uπ

2/4 at the
fundamental when Υ = 1.

It is interesting to note that at high frequencies, the undulator interaction is strictly weaker than space charge
(Eq. 26 vs. Eq. 23). Because the interactions have opposite sign, the undulator would only act to dampen the noise
suppression from space charge.

C. Undulator Simulation

To check our analytical result, we again run the simulation code but with the undulator interaction (Eq. 25) instead
of space charge. We load N particles randomly within a length L � Nuλ0, and for the undulator case a particle at
location z0 interacts with all particles within the range z0 −Nuλ0 < z < z0.

The simulations confirm both the analytical solution (Eq. 13, valid for Γ2 � 1) and the numerical integral (Eq. 17).
In all undulator simulations, we normalize units of length to the resonant wavelength, λ0, and we assume zero initial
energy spread, ση = 0. (In the appendix, we consider the effects of initial energy spread and energy modulation to
the beam.)

D. Undulator Numerical Integration

While we already know the noise factor in the weak-interaction limit from Eq. 14, we would like to calculate
Γ2 explicitly to evaluate the numerical integral. For Υ ≈ 1, we find the weak interaction limit is equivalent to
n0 � k2Lu. While the weak approximation is valid for many realistic examples, to facilitate simulations we use low
particle numbers, where the approximation fails. For that reason, we use the numerical integration, Eq. 17, to check
our simulations without the assumption of weak interaction.

Plugging the undulator interaction into Eq. 10 yields (see appendix, Section A 2)

Γ
(u)
2 (ζ̄) =

k2R2
56

L
A2
uNuλ0

(
1

6
+

1

4α2
+

1

12α3

[
α(1− ζ̄)

[
α2(ζ̄2 + ζ̄ − 2)− 3

]
cos(αζ̄)

+ 3
[
α2(1− ζ̄)− 1

]
sin(αζ̄)

])
, (32)

Plugging into Eq. 16 gives constant term for the undulator interaction

Γ̄
(u)
2 =

n0αk0(mR56Au)2

N

[
1

6
+

1

4α2

]
, (33)
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and then from Eq. 17 we find

〈F (k)〉 = 1 + 2n0αe
−k2R2

56σ
2
η[

AumR56

∫ 1

0

dζ̄e−NΓ
(u)
2 (1− ζ̄) cos(αζ̄) sin(mαζ̄)

+
1

k0

∫ 1

0

dζ̄
(
e−NΓ

(u)
2 − e−N Γ̄

(u)
2

)
cos(mαζ̄)

]
(34)

which can be integrated directly. Simulations for the case of Nu = 1 show good agreement with both the analytical
result, Eqs. 13 and 29, and the numerical integration of Eq. 34, though as expected the analytical result fails for
n0 ∼ k2Lu (Figs. 7, 8). For a case with a longer undulator (Nu = 10), the numerical integration is essential for
comparison with simulations (Fig. 9). At this point we can also explicitly confirm the result from Section III C by

plugging h̃(k) and Γ
(u)
2 (ζ̄) back into Eqs. 8 and 10 (see appendix, Section A 2).
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FIG. 7. A comparison of simulation, analytical result and numerical integral shows noise suppression at high frequency for
Υ = 1. At low frequencies (m ∼ 1), we find h̃u(k) is approximately real (Eq. 31), and bunching increases to F (k) ≈
1− 2n0k0R56Im [h̃u(k0)] + (n0kR56)2|h̃u(k0)|2 ≈ 3.
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FIG. 8. A closeup of Fig. 7 shows agreement with the analytical expression starts to fail for m >∼ 2, but the numerical integral
matches well everywhere.

11



0 2 4 6 8 10
0

2

4

6

8

Harmonic Number (m)

N
oi

se
 F

ac
to

r (
<F

>)

Simulation, Nu=10, n0λ0=103,Y=1
Analytical Estimate
Numerical Integral
Shot Noise Level

FIG. 9. A simulation example for 10 undulator periods shows good agreement with the numerical integral.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Suppression Parameter (Υ)

N
oi

se
 F

ac
to

r (
<F

>)

Simulation, Nu=1, n0λ0=103, m=5.5
Numerical Integral (same parameters)
Simulation, Nu=10, n0λ0=103, m=20.5
Numerical Integral (same parameters)
(1−Υ)2

FIG. 10. Simulations show the noise factor for both Nu = 1 and Nu = 10 as a function of Υ. When the approximation
k2Nuλ0/n0 � 1 is valid, the noise scales as (1−Υ)2. We have chosen m so that h̃u(k) is approximately imaginary.

VI. EXAMPLE PARAMETERS

Though the focus of this paper is strictly theoretical, we calculate the interaction strength for SLAC’s Next Linear
Collider Test Facility (NLCTA) to illustrate the scale of parameters involved. For the case of space charge over a
length of La ∼ 10m with beam cross section S ∼ 10−6m2 and energy γ ∼ 100MeV, we find Asc ≡ 4πreLa

Sγ ≈ 2× 10−9.

A beam of 20A (n0 = 4 × 1011m−1), then needs R56 ∼ 2mm to produce Υ = 1. We note that we are within the 1D
limit even for optical wavelengths (k0σ/γ >∼ 25).

For the undulator radiation to dominate over the space charge interaction, we may use an amplifier, as proposed by
Litvinenko [12]. The increase in the interaction strength also has the benefit of decreasing the required dispersion, R56,
allowing for larger energy spreads and higher frequency suppression. However, the larger modulation may increase
the beam energy spread (see appendix, Section C).

VII. CONCLUSION

We present a longitudinal 1D model of shot noise suppression for a simplified system of an interaction region
followed by a dispersive region. In the limit of small energy spread (|kR56ση| � 1), interactions with primarily
imaginary Fourier transforms can suppress the noise factor below the shot noise level. We work out the specific cases
of undulator and space charge interactions, and confirm both results with a 1D simulation. We note that a wide range
of imaginary impedances (e.g. linac wakefields) may also reduce shot noise. In the 1D limit with small energy spread,

12



the suppression process may amplify bunching at very high frequencies near the inter particle spacing, 1/n0.
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Appendix A: Derivations for Noise Suppression for the Undulator Interaction

1. Helical Undulator Interaction in the 1D Limit

In this appendix we will derive Eq. 25 for the interaction of two slices of a bunch separated by distance ζ during
passage through a helical undulator and obtain an applicability condition for our 1D approximation. For now, we only
consider the transverse field, E⊥; the contribution from the longitudinal space charge field, Ez, is given in Section IV,
with γ replaced by γz = γ/

√
1 +K2/2 due to the presence of the undulator [19].

Our derivation is based on the paraxial approximation for the field of a relativistic particle from Ref. [20]. The
Fourier component (indicated by hat) of the field of a point charge q (which we call a source charge) at a point with
coordinates x, y, z is given by the following formula (see Eq. 28 in [20])

~̂E⊥(x, y, z, ω) =
iωq

c3

∫ ∞
−∞

dz′

z − z′
H(z − z′)eiΦ[~v⊥(z′) + ~a(z′)], (A1)

where

Φ = ω

[
s(z′)

v
− z′

c
+
z

c

]
+

ω

2c(z − z′)
(
[x− x0(z′)]2 + [y − y0(z′)]2

)
, (A2)

and H is the step-function. In these equations ~v⊥(z) is the transverse component of particle’s velocity as a function
of coordinate z, x0(z) and y0(z) define the particle trajectory, s(z) is the length of the trajectory as a function of z,
and v is the absolute value of particle velocity that is assumed constant. The vector ~a(z′) is

~a(z′) = −cx− x0(z′)

z − z′
~x− cy − y0(z′)

z − z′
~y, (A3)

with ~x and ~y the unit vectors in corresponding directions. The step function under the integral (Eq. A1) is missing
in Eq. 28 of [20]—a mistake that was corrected by the authors in a later publication [19].

Let us consider a helical undulator of length Lu. Inside the undulator, 0 < z < Lu, the transverse velocity of the
particle and its orbit are

~v⊥(z) =
cK

γ
(~x sin kuz + ~y cos kuz) ,

x0(z) = − K

γku
cos kuz,

y0(z) =
K

γku
sin kuz, (A4)

where K is the undulator parameter, γ is the Lorentz factor and ku = 2π/λu with λu the undulator period. Note that
since the transverse velocity of the source charge is zero outside of the undulator, the integration over z′ in Eq. A1 is
actually limited to the interval 0 < z′ < Lu.

Let us now consider a test particle of charge e travelling in front of the source particle on a parallel trajectory
shifted in the transverse direction by vector X~x+ Y ~y in such a way that it passes through each point z earlier than
the source particle by time T > 0. The current density associated with the test particle is

~j(x, y, z, t) =
e

vz
~v(z)δ(x− x0(z)−X)δ(y − y0(z)− Y )δ

(
s(z)

v
− t− T

)
. (A5)
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We can calculate the energy change U of the test particle due to the interaction with the source one as the product
~E ·~j integrated over the space and time

U =

∫ ∞
−∞

dt

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ Lu

0

dz ~E⊥(x, y, z, t) ·~j(x, y, z, t), (A6)

where we limited integration over z from 0 to Lu taking into account that ~E ·~j = 0 outside of the undulator, where
the transverse component of the test particle velocity is equal to zero. Substituting Eq. A5 into Eq. A6 and expressing

the field ~E⊥(x, y, z, t) through its Fourier transform ~E⊥(x, y, z, t) = (2π)−1
∫
dωeiωt ~̂E⊥(x, y, z, ω) using Eq. A1 one

finds

U = e

∫ Lu

0

~E⊥

(
x0(z) +X, y0(z) + Y, z,

s(z)

v
− T

)
· ~v⊥(z)

dz

vz(z)

=
e

2πc

∫ ∞
−∞

dω

∫ Lu

0

eiω(T−s(z)/v) ~̂E⊥ (x0(z) +X, y0(z) + Y, z, ω) · ~v⊥(z) dz

=
ieq

2πc4

∫ ∞
−∞

ωdω

∫ Lu

0

dz dz′

z − z′
H(z − z′)[~v⊥(z′) + ~a(z′)] · ~v⊥(z)eiΦ1 , (A7)

with

Φ1 = ω

[
s(z′)

v
− z′

c
− s(z)

v
+
z

c
+ T

]
+

ω

2c(z − z′)
(
[X + x0(z)− x0(z′)]2 + [Y + y0(z)− y0(z′)]2

)
(A8)

where we approximated vz ≈ c.
Let us now assume that instead of a source point charge q we are dealing with a thin uniformly charged disk of

radius a moving in the undulator according to Eq. A4. This disk represents a thin slice of an electron bunch. We
assume that the radius a is much larger than the orbit deviations from the straight line, a � |x0(z)|, |y0(z)|. To
calculate the energy change U of the test charge due to the interaction with the source disk q, we need to average
Eq. A7 over the disk surface, that is to calculate

Ū =
1

S

∫
S

UdXdY (A9)

where S is the cross section area of the disk and the subscript S at the integral sign indicates integration of the surface
of the disk. Note that this integration cancels the term involving ~a(z′) in Eq. A7, because it is an antisymmetric
function of X and Y (in the limit X � |x0(z)| and Y � |y0(z)|). Calculation of Ū involves the following integral

I =

∫
S

dXdY exp

[
ω

2c(z − z′)
(
[X + x0(z)− x0(z′)]2 + [Y + y0(z)− y0(z′)]2

)]
. (A10)

If the factor ω/2c(z − z′) can be considered as large, that is∣∣∣∣ ωa2

2c(z − z′)

∣∣∣∣� 1, (A11)

integration over X and Y can be extended from −∞ to ∞ with the result

I =
2iπc(z − z′)

ω
. (A12)

We assume that this is the case, and postpone discussion of the condition Eq. A11 toward the end of this section. We
then have

Ū = − eq

Sc3

∫ ∞
−∞

dω

∫ Lu

0

dz dz′H(z − z′)~v⊥(z′) · ~v⊥(z)

× exp

(
iω

[
s(z′)

v
− z′

c
− s(z)

v
+
z

c
+ T

])
. (A13)
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Using γ � 1, it is easy to find that in the helical undulator

1

v
s(z) ≈ z

c
+

z

2cγ2
(1 +K2), (A14)

and

~v⊥(z′) · ~v⊥(z) =
c2K2

γ2
cos ku(z − z′), (A15)

which gives

Ū = −eqK
2

Scγ2

∫ ∞
−∞

dω

∫ Lu

0

dz dz′H(z − z′) cos ku(z − z′)

× exp

(
−iω

[
z − z′

2cγ2
(1 +K2)− T

])
= −2πeqK2

Scγ2

∫ Lu

0

dz

∫ z

0

dz′ cos ku(z − z′)δ
(
z − z′

2cγ2
(1 +K2)− T

)
. (A16)

Noting that the integral over the δ function can be written in terms of step functions,∫ z

0

dz′δ

(
z − z′

2cγ2
(1 +K2)− T

)
=

2cγ2

1 +K2
H(T )H

(
z

2cγ2
(1 +K2)− T

)
(A17)

we calculate the last integral in Eq. A16 as

Ū = −4πeqLu
S

K2

1 +K2

(
1− 2cγ2T

Lu(1 +K2)

)
cos

2cγ2kuT

1 +K2
. (A18)

Observing that ζ = cT , λ0 = λu(1 +K2)/2cγ2 and h = Ū/γmc2 it is easy to see that Eq. A18 coincides with Eqs. 25
and 26.

Let us now discuss the applicability condition Eq. A11. The frequency ω in this inequality we can estimate as T−1,
and characteristic value of z − z′ is 2cγ2T/(1 +K2), which gives∣∣∣∣ ωa2

2c(z − z′)

∣∣∣∣ ∼ a2(1 +K2)

c2γ2T 2
=
a2(1 +K2)

γ2ζ2
� 1. (A19)

Equivalently, since we use the Fourier transformation of the function h (see Eq. 28), with k = ω/c, we can write the
applicability condition as

k2a2(1 +K2)

γ2
� 1 . (A20)

2. Quadratic Term (Γ2) for Helical Undulator

We calculate Γ2 explicitly for use in the numerical integral (Eq. 34). Plugging Eq. 25 into Eq. 10 gives

Γ2(ζ) = n0k
2R2

56

[∫ 0

−Nuλ0

dτhu(−τ)2

−
∫ 0

−Nuλ0+ζ

dτhu(−τ + ζ)hu(−τ)]2
]

(A21)

where we’ve used hu(x) = 0 outside of the range 0 < x < Nuλ0 to choose the integration limits. Plugging in for hu,
defining normalized variables τ̄ ≡ τ/Nuλ0, ζ̄ ≡ ζ/Nuλ0 and α ≡ 2πNu, we have

Γ2(ζ̄) = n0k
2R2

56A
2
uNuλ0

[∫ 0

−1

dτ̄ (1 + τ̄)
2

cos(ατ̄)2

−
∫ 0

ζ̄−1

dτ̄
(
1 + τ̄ − ζ̄

)
(1 + τ̄) cos(α(τ̄ − ζ̄)) cos(ατ̄)

]
, (A22)
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We can then integrate to find

Γ2(ζ̄) = n0k
2R2

56A
2
uNuλ0

[
1

6
+

1

4α2
+

1

12α3(
α(1− ζ̄)

[
α2(ζ̄2 + ζ̄ − 2)− 3

]
cos(αζ̄)+

3
[
α2(1− ζ̄)− 1

]
sin(αζ̄)

)]
, (A23)

where we’ve assumed an integer number of undulator periods, Nu, to simplify the trigonometric functions. Note that
this expression is valid only for 0 < ζ̄ < 1; while Eq. A23 does not look symmetric about ζ = 0, from Eq. 10 we know
that Γ2 is an even function of ζ̄.

In the main text, we use Γ2 to evaluate Eq. 17. We can also use Γ2 to explicitly confirm the result from Section III C
for the high frequency undulator case by plugging Eq. A23 into Eq. 11. With Γ2 an even function, we can write the
third (quadratic) term from Eq. 11 as

〈F2(k)〉 ≡ 2n0e
−k2R2

56σ
2
ηN2

uλ
2
0

∫ L

0

dζ̄ cos(mαζ̄)NΓ2(ζ̄) (A24)

We are interested in k 6= 0, so as in Eq. 17, we subtract off the two constant terms. By definition, the product of
interactions must disappear for ζ̄ > 1 (when at least one of z1 and z2 cannot interact with the test charge), so we set
the upper limit to 1 and integrate to find

〈F2(k)〉 = −2n2
0k

2R2
56A

2
uNuλ0e

−k2R2
56σ

2
η

1

4α4(m2 − 1)4[
2m2α2(m2 − 1)2 + 4(m2 + 1)2(cos(mα)− 1)

+ 4mα(m4 − 1) sin(mα)

]
(A25)

In the limit m� 1 the result simplifies to

〈F2(k)〉 = n2
0k

2R2
56A

2
uN

2
uλ

2
0e
−k2R2

56σ
2
η

1

m2α2

= Υ2
ue
−k2R2

56σ
2
η , (A26)

Adding in the first two terms of Eq. 13 and taking the limit of m� 1 and ση = 0, we confirm 〈F (k)〉 = (1−Υu)2.

Appendix B: Bunching at the Average Inter-Particle Spacing

In the cold, sheet-beam limit (treating each particle as a sheet), we show that an interaction, h(ζ), results in nearly
full bunching factor at the inter-sheet spacing if there is a step function at ζ = 0 (Fig. 5). To facilitate the calculation,
we number our particles (sheets) such that zi < zk if i < k. The energy change for particles k and k + 1 is given by

∆Ek =

N∑
i=1

h(zk − zi) , ∆Ek+1 =

N∑
i=1

h(zk+1 − zi) . (B1)

To find the difference in energy modulations, ∆Ek+1 −∆Ek, we rewrite ∆Ek+1 in terms of ∆Ek,

∆Ek+1 = h(zk+1 − zk) +

N∑
i6=k

h(zk+1 − zk + zk − zi)

≈ h(∆zk) +

N∑
i 6=k

h(zk − zi) + ∆zk

N∑
i 6=k

h′(zk − zi)

= ∆Ek +
[
h(∆zk)− h(−∆zk)

]
+ ∆zk

N∑
i 6=k

h′(zk − zi) , (B2)
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where we’ve defined the initial distance between particles, ∆zk = zk+1 − zk, and assumed that the average spacing,
〈∆z〉, is small to make the Taylor expansion in the second step. (Specifically, we assume [h(ζ + ∆)− h(ζ)]/h(ζ)� 1,
everywhere except at the step function.) Hence the energy difference between the two neighboring particles is

∆Ek+1 −∆Ek =
[
h(∆zk)− h(−∆zk)

]
+ ∆zk

N∑
i 6=k

h′(zk − zi). (B3)

To compute the last sum, we replace the summation by an integration (assuming, as before, a uniform longitudinal
distribution of particles in the beam). Skipping over the region where we’ve explicitly assumed there are no particles,
for a longitudinally uniform beam we find

N∑
i=1

h′(zk − zi) ≈ n0

[∫ z−k

−∞
dzh′(zk − z) +

∫ ∞
z+k+1

dzh′(zk − z)

]

= n0

[∫ 0+

∞
(−dζ)h′(ζ) +

∫ −∞
−∆z+k

(−dζ)h′(ζ)

]
≈ −n0[h(0+)− h(0−)] . (B4)

where we’ve approximated h(∆z±k ) ≈ h(0±). For an interaction with a step function at ζ = 0 of amplitude A =
[h(0+)− h(0−)], we can rewrite

∆Ek+1 −∆Ek = A(1− n0∆zk) . (B5)

The energy difference, ∆Ek+1 −∆Ek, depends linearly on the initial distance between the particles (Fig. 11).

0 2 4 6 8 10
x 10−3

−2

0

2

4

6

8

10

x 10−3

Initial z−step of neighbors (∆z/λ)En
er

gy
 st

ep
 b

et
w

ee
n 

ne
ig

hb
or

s, 
(∆

E k-∆
E k+

1)/
E 0

FIG. 11. The relative modulation between neighboring particles, Ek+1−Ek, is proportional to the initial distance between the
particles (sheets), ∆z. Simulation is for the undulator interaction, with Υ = 1, n0λ0 = 103. Particles that are closer (farther)
than the inter-particle spacing, ∆z < 1/n0, lose (gain) energy relative to the previous particle, and move away (closer) in
negative dispersion.

Following the dispersive section of strength R56, the new distance between particles k and k + 1 is

∆znew
k = ∆zk +R56(∆Ek+1 −∆Ek)

= R56A+ (1−R56n0A)∆zk . (B6)

At full suppression, Υ = R56n0A = 1, we obtain

∆znew
k =

1

n0
, (B7)
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giving a uniform structure with inter-particle spacing of 1/n0, as in a quasi-crystalline beam [21].
The increase in noise at low frequencies (Eq. 31) leads to variation in local density, and thus variation in particle

spacing. From simulations we confirm ∆znew
k = 1/n̄0, where n̄0 is the local density over a region of length Ln with

1/n0 � Ln � λ0/Nu. In reality, the beam is not transversely uniform as assumed in the 1D sheet model, so we
do not expect a rigid quasi-crystalline structure. However, we still expect to find an amplification of the bunching
factor at the inverse of the inter-particle spacing. Though the uniform beam is an intriguing theoretical result, due to
the requirement of cold beam (ση � 1/n0R56) and a true step function interaction, practical applications may prove
elusive.

Appendix C: Effects of Energy Spread and Modulation

In the main text we have treated only the case of vanishing energy spread, ση → 0. When kR56ση >∼ 1, the
energy spread factor, exp[−k2R2

56σ
2
η], washes out noise suppression; at high enough frequencies, noise suppression

fails. To suppress noise for larger k we must decrease the dispersive strength, R56. However, from Υ ≡ R56n0A = 1,
weak dispersion implies a strong interaction, A, which in turn heats the beam. To determine an upper limit on the
interaction strength, we consider how the energy modulation in the suppression process affects the energy spread of
the beam.

1. Energy Modulation from Noise Suppression

The noise suppression process (interaction and dispersive regions) changes the particle energies, η → η̂ (Fig. 12).
For the undulator case, the expected amplitude of the resulting energy modulation for a single particle is

〈
h2
u(ζ)

〉
=

∫ Nuλ0

0

dζ

Nuλ0
h2
u(ζ)

= A2
u

∫ 1

0

dζ̄
(
1− ζ̄

)2
cos2 αζ̄

=
A2
u

24

(
4 +

6

α2
− 2 sin 2α

α3

)
. (C1)

With α ≡ 2πNu ≥ 2π, we drop the final two terms. We can then guess that if a particle interacts with on average
N̄ = n0Nuλ0 particles, the expected energy spread will be approximately

〈∆η〉 ≈
√
N̄ 〈h2

u(ζ)〉 ≈
√
n0Nuλ0

6
Au . (C2)

Combined with the suppression condition, Υ = −n0R56Au ∼ 1, we have

〈∆η〉 ≈ −
√
Nuλ0

6n0

1

R56
(C3)

for the case of maximum suppression (Fig. 13).

2. Suppression Wavelength Limit

The energy spread washes out noise suppression for wavelengths below λmin ∼ 2πσηR56. Expressing λmin in terms
of the energy modulation, we find

λmin = 2π

√
Nuλ0

6n0

ση
〈∆η〉

. (C4)

From Eq. C4, we note that suppression is possible even when the modulation amplitude is small compared to the
beam’s natural energy spread, 〈∆η〉 � ση (Fig. 14). Decreasing R56 extends suppression to shorter wavelengths, but
heats the beam. If we require that the interaction has negligible effect on the energy spread, then we find a lower
limit on λmin when 〈∆η〉 ∼ ση.
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3. Energy Spread for FEL

Our goal is to create a quiet beam, so we would like to consider the extent to which reducing shot noise will amplify
energy noise. For example, FELs require energy spreads smaller than the Pierce parameter, ρ, giving 〈∆η〉 . 10−3

for current XFEL designs [22].
Quiet beams may be useful for controlling FEL start-up, which is driven by noise, F (k), for SASE FELs, and from

an external radiation field for seeded FELs. However, there is also a contribution to the FEL start up from the energy
noise [23],

Fη(k) =
1

N

∑
j,l

η̂j η̂l
ρ2

eik[ẑj−ẑl] . (C5)

We note that Fη(k) scales as η̂2, which is always small. However, if η̂j(z) is longitudinally periodic (as can be seen
in Fig. 12 for k = k0), Fη(k) will also scale as the number of particles, N , which is generally very large. To claim a
quiet start up for an FEL, we must ensure that Fη(k) . F (k).
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