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Abstract

Beginning with Maxwell’s equations and assuming only that the wall interaction

can be approximated by a surface impedance, we derive formulas for the generalized

longitudinal and transverse impedance in flat geometry, from which the wakefields

can also be obtained. From the generalized impedances, by taking the proper limits,

we obtain the normal longitudinal, dipole, and quad impedances in flat geometry.

These equations can be applied to any surface impedance, such as the known dc,

ac, and anomalous skin models of wall resistance, a model of wall roughness, or

one for a pipe with small, periodic corrugations. We show that, for the particular

case of dc wall resistance, the longitudinal impedance obtained here agrees with a

known result in the literature, a result that was derived from a very general formula

by Henke and Napoly. As concrete example, we apply our results to representative

beam and machine parameters in the undulator region of LCLS-II and estimate the

impact of the transverse wakes on the machine performance.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.



INTRODUCTION

In linac-based X-Ray Free Electron Lasers (FELs), such as LCLS-II at

SLAC, electron bunches are accelerated to energies on the order of GeV’s

and compressed to lengths of 10’s of microns before entering an undulator for

lasing. The undulator chamber typically has a small aperture (a 5 mm vertical

aperture in the case of LCLS-II), and the resistive wall wakefields induced

in the chamber can be strong and result in significant head-to-tail energy

variation; this, in turn, can negatively affect the lasing process. Thus, it is

important to be able to perform accurate, short-range wakefield calculations

in order to predict the FEL performance.

The cross-section of the LCLS-II undulator beam pipe has a racetrack

shape, with a smaller vertical than horizontal aperture, and in terms of the

wakefield effects it can be well approximated by two parallel plates which we

designate as “flat” geometry. In a cylindrical pipe (“round” geometry) the

calculation of the resistive wall (rw) high frequency impedances, or equiva-

lently, the short-range wakefields has long been well understood [1, 2]. In flat

geometry the long-range rw wake—where by long-range we mean long com-

pared to the characteristic distance s0, which in the LCLS-II undulator case is

∼ 10 µm—is also well understood [3]. For the case of arbitrary bunch lengths

in flat geometry, Henke and Napoly have obtained a general solution for the

longitudinal and transverse rw impedances [4]. However, under the assump-

tion of normal metallic walls, it was shown in Ref. [5] that their solution for

longitudinal impedance can be greatly simplified.

In this note, beginning with Maxwell’s equations and assuming only that

the wall interaction can be approximated by a surface impedance, we derive

a formula for the generalized longitudinal impedance in flat geometry. By

“generalized” we mean that the transverse positions of the driving and test
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charges can be located anywhere between the two plates. Note that Piwinski

has derived generalized impedances for round and flat geometries, but his

results are limited to low frequencies [3, 6]. The generalized impedance allows

one to consider situations such as when a beam is mis-steered far from the

axis, or when a beam is spread over an aperture as sometimes is the case

with collimators. In this note we next show that for the special case where

both particles are located near the axis, where the impedance is normally

defined, the longitudinal impedance agrees with the previously obtained result

of Ref. [5]. Next we obtain the generalized transverse impedances, and also

the normal quadrupole and dipole impedances as limits as the driving and

test particles approach the axis. In this note, as specific examples, we generate

plots of the normal impedances and wakes for the special case where the surface

impedance represents resistive walls with dc conductivity. We also estimate

the effect of the transverse wakes in the undulator region of the LCLS-II. The

note ends with conclusions.

Selected beam and machine properties in the LCLS-II undulator region,

that we use in calculations, are given in Table I. In this note most calculations

are performed in cgs units. To convert an impedance or wake to MKS, one

needs to multiply the cgs expression by Z0c/4π, with Z0 = 377 Ω.

Round Geometry

Consider a sinusoidally oscillating beam with wave number k moving along

the axis, in the +z direction, at the speed of light c in a round metallic pipe.

The interaction with the resistance in the walls can be characterized by the

surface impedance Zs(k) ≡ Z0Ez/Hφ or equvalently by the dimensionless sur-

face impedance, ζ(k) = Zs/Z0 = Ez/Hφ. Here Z0 = 4π/c is the impedance

of free space, and Ez and Hφ are the longitudinal electric and azimuthal mag-
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TABLE I. Selected beam and machine properties in the undulator region of LCLS-II

that are used in our calculations. Nominally the bunch charge is 100 pC, and the

maximum charge is 300 pC (but with the same peak current). The longitudinal

bunch distribution is approximately uniform. The vacuum chamber is made of

aluminum.

Parameter name Value Unit

Charge per bunch, Q 100 (300) pC

Beam current, I 1 kA

Full bunch length, ` 90 µm

Normalized emittance, εn 1 µm

Beam energy, E 4 GeV

Average beta function, βy 10 m

Vacuum chamber half aperture, a 2.5 mm

Vacuum chamber length, L 130 m

Vacuum chamber dc conductivity, σc 35 µΩ−1m−1

netic fields on the wall surface. Known surface impedance models include

dc [2], ac [1], and anomalous skin models of wall resistance [7], a model of wall

roughness [8], and one for a pipe with small, periodic corrugations [9].

In the round case the resistive wall impedance and wakefield excited are

well understood. The simplest “dc” model takes ζ to be

ζ(k) =

√
k

2Z0σc
(1− i) , (1)

with σc the dc conductivity of the metallic walls. The more accurate “ac”

model uses the same surface impedance Eq. 1, but with the dc conductivity

replaced by σ̃c = σc/(1− ikcτ), where τ is the so-called relaxation time of the

metal. (Note that in LCLS-II the undulator beam pipe is made of aluminum,
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which has a relatively small relaxation time, resulting in ac and dc wakes and

impedances that are similar.)

In the expressions for the longitudinal, dipole, and quadrupole impedances

in flat geometry that we derive in this note, ζ is just an arbitrary function

of k, and the same expressions can be used with surface impedances other

than that of the resistive wall; for example, ζ can represent the case of two

metallic plates with small corrugations. As numerical examples, however, we

limit ourselves to the dc resistive wall model. One nice feature of this model is

that the impedances and wakes can be written as universal functions involving

the characteristic distance s0, defined as

s0 =

(
2a2

Z0σc

)1/3

, (2)

where a is the beam pipe radius. (For the LCLS-II undulator beam pipe

s0 = 9.8 µm.) For example, the longitudinal impedance in round geometry is

given by [2]

Zl(κ) = 2
( s0
ca2

)( 2

1− i
1√
κ
− iκ

2

)−1
, (3)

where κ = ks0; the longitudinal wake is also a universal function, of s/s0,

where s is the distance the test particle trails the exciting particle. When the

exciting particle moves slightly off axis, the transverse (dipole) impedance is

excited, given by [2]

Zyd(κ) = 4

(
s20
ca4κ

)(
2

1− i
1√
κ
− iκ

2

)−1
. (4)

Note that the function diverges at the origin as κ−1/2.

LONGITUDINAL IMPEDANCE

We begin by deriving a general formula for the longitudinal impedance in

flat geometry valid for high frequencies assuming a given surface impedance
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ζ(ω). The material planes are located at y = ±a, and the beam is at x = x0 =

0 and y = y0 (> 0). We start by allowing the transverse positions of both

the driving beam and the test particle to be arbitrary, giving us a generalized

longitudinal impedance that we denote by Z̃l. At the end we set the test

particle position to x = y = 0 and the driving particle position to y0 = 0 to

obtain the longitudinal impedance on axis, Zl ≡ Z̃l(y0 = 0, x = 0, y = 0).

The beam current density in ω representation is jz = Iωδ(x)δ(y − y0).

Assuming frequency representation, the longitudinal electric field Ez on the

metal surface is related to Hx by Ez = ζHx
1. From Maxwell’s equations

it follows that ikEz = ∂Hx/∂y, so we can write the boundary condition at

y = ±a as

∂Hx

∂y
= ikζHx. (5)

One can derive from Maxwell’s equations the following equation for Hx:

∂2Hx

∂x2
+
∂2Hx

∂y2
= −4π

c
(∇×~j)x = −4π

c
Iωδ(x)δ′(y − y0) . (6)

We can take the Fourier transform over x to obtain

Ĥx(q) =

∫ ∞
−∞

dxHx(x)eiqx, Hx(x) =
1

2π

∫ ∞
−∞

dqĤx(q)e
−iqx. (7)

In terms of Ĥx(q), Eq. 6 becomes

−q2Ĥx +
∂2Ĥx

∂y2
= −4π

c
Iωδ
′(y − y0) . (8)

This equation implies that Ĥx has a step discontinuity at y0, Ĥx(y
+
0 ) −

Ĥx(y
−
0 ) = −4πIω/c. The field can be written as

Ĥ±x (y) = ∓2π

c
Iω cosh[q(y − y0)] + A sinh(qy) +B cosh(qy), (9)

1 The sign here is determined from the vector relation ~Et = ζ ~Ht × ~n, where ~n is directed

inside the metal.
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where Ĥ±x (y) gives the field in the region y ≷ y0, and A and B are constants.

The boundary condition at y = ±a [Eq. (5)] yields:

q[−2π

c
Iω sinh[q(a− y0)]+A cosh(qa) +B sinh(qa)]

= ikζ[−2π

c
Iω cosh[q(a− y0)] + A sinh(qa) +B cosh(qa)] ,

q[−2π

c
Iω sinh[q(a+ y0)]+A cosh(qa)−B sinh(qa)]

= −ikζ[
2π

c
Iω cosh[q(a+ y0)]− A sinh(qa) +B cosh(qa)] .(10)

Solving these equations simultaneously we obtain

A =
2π

c
Iω cosh(qy0)

q sinh(qa)− ikζ cosh(qa)

q cosh(qa)− ikζ sinh(qa)
,

B = −2π

c
Iω sinh(qy0)

q cosh(qa)− ikζ sinh(qa)

q sinh(qa)− ikζ cosh(qa)
. (11)

We can now find the generalized longitudinal impedance as Z̃l = −Ez/Iω:

Z̃l(k) = − 1

ikIω

(
∂Hx

∂y
− ∂Hx

∂y

∣∣∣∣
ζ=0

)
, (12)

where the second term in the equation is needed to subtract out the vacuum

field of the charge; the expression with ζ = 0 represents the case of perfectly

conducting planes, where we know there is no longitudinal impedance. Com-

bining Eqs. 9,11,12, we obtain the result:

Z̃l(k) =
2ζ

c

∫ ∞
−∞

dq q csch3(2qa)f(q)e−iqx , (13)

where f(q) = n/d, with

n = q(cosh[q(2a− y − y0)]−2 cosh[q(y − y0)] + cosh[q(2a+ y + y0)])

−ikζ(sinh[q(2a− y − y0)] + sinh[q(2a+ y + y0)]) ,

d = [q sech(qa)− ikζcsch(qa)][q csch(qa)− ikζsech(qa)] . (14)

7



(Note that the result is the same whether we take the upper or lower value of

Eq. 9.) Eq. 13 gives the general form of the longitudinal impedance, valid for

any combination of x, y, y0, within our geometric domain.

The longitudinal impedance Zl(k) is normally defined with the driving par-

ticle on the y axis, and with the test particle following right behind it. From

Eq. 13 we obtain

Zl(k) ≡ Z̃l(k)

∣∣∣∣
x=y=y0=0

=
2

ca

∫ ∞
0

dx
sech(x)

cosh(x)/ζ − ika sinh(x)/x
. (15)

Note that the last expression, when applied to the dc rw impedance, was

given in Ref. [5]; there the expression was derived from a more general result

of Henke and Napoly [4], under the assumption that s0/a� 1—which is true

for normal metallic walls.

Using the dc resistive wall surface impedance, given in Eq. 1, we numerically

calculated Zl(k) using Eq. 15. In Fig. 1 we plot Re[Zl(k)] (the solid curve); the

dashed curve in the figure gives, for comparison, the result in a round beam

pipe, with a representing the pipe radius (given by the real part of Eq. 3).

From Re(Zl) one can obtain the wake using the equation

Wl(x) =
2c

πs0

∫ ∞
0

Re[Zl(κ)] cosκx dκ , (16)

where x = s/s0. Again using the dc resistive wall surface impedance of Eq. 1,

we obtain the longitudinal rw wake in flat geometry (see Fig. 2, the solid

curve). Note that the value at the origin Wl(0
+) = (π2/16)(Z0c/πa

2). The

dashed curve in the figure gives, for comparison, the wake in the round beam

pipe, with a representing the pipe radius.
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FIG. 1. Longitudinal resistive wall impedance on the axis between two parallel

plates separated by distance 2a (solid). Note that the abscissa gives the scaled

frequency κ = ks0 and the ordinate gives (ca2/s0)Re(Zl). The round result, with a

the radius, is given by the dashed curve for comparison.

TRANSVERSE IMPEDANCE

From the Panofsky-Wenzel theorem [10] the generalized transverse impedance

is obtained from the generalized longitudinal one by

Z̃y =
1

k

∂Z̃l
∂y

. (17)

Using Eq. 13 we find that

Z̃y(k) = −2ζ

ck

∫ ∞
−∞

dq q2 csch3(2qa)g(q)e−iqx , (18)

where g(q) = n′/d, with

n′ = q(sinh[q(2a− y − y0)]+2 sinh[q(y − y0)]− sinh[q(2a+ y + y0)])

−ikζ(cosh[q(2a− y − y0)]− cosh[q(2a+ y + y0)]) ,

d = [q sech(qa)− ikζcsch(qa)][q csch(qa)− ikζsech(qa)] . (19)
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FIG. 2. Longitudinal resistive wall wake on the axis between two parallel plates

separated by distance 2a (solid). Note that the abscissa gives x = s/s0 and the

ordinate gives (Z0c/πa
2)Wl. The round result, with a the radius, is given by the

dashed curve for comparison.

However, like the normal longitudinal impedance, the normal transverse

impedance is defined near the axis. In round geometry, if the driving current is

slightly off-axis, transversely the dipole impedance is excited. In flat geometry,

for transverse driving and test positions near each other and near the (y =

0) symmetry plane, both dipole and quadrupole transverse impedances are

excited, with the total impedances given by

Z̃y = y0Zyd + yZyq , Z̃x = (x0 − x)Zyq . (20)

Here x0 and y0 (x and y) are the offsets of the driving (test) particle, with

Zyd (Zyq) the vertical dipole (quadrupole) impedance. Note that the quad

and dipole impedances are normalized to particle offset. Note also that the

corresponding wake functions W̃y, Wyd, Wyq, W̃x, also satisfy the relations of
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the impedances, Eqs. 20.

The Quadrupole Impedance

The quadrupole impedance is due to the distortion of the symmetric modes

(those with non-zero Ez on axis). It is antisymmetric and defocusing in y. For

the calculation, we first put the driving particle on the axis in Eq. 18 to get

Z̃y(k)
∣∣
y0=0

=
1

ck

∫ ∞
−∞

dq q e−iqx
sech(qa)sinh(qy)

cosh(qa)/ζ − ik sinh(qa)/q
. (21)

Then the vertical quad impedance is defined with the test particle at x = 0 as

a limit with small vertical offset:

Zyq(k) = lim
y→0

1

y
Z̃y(k)

∣∣
x=y0=0

=
2

cka3

∫ ∞
0

dx x2
sech(x)

cosh(x)/ζ − ika sinh(x)/x
.

(22)

We have numerically calculated the quad impedance in flat geometry using

as surface impedance that of the dc rw wall (Eq. 1). The product
√
κRe(Zyq),

is plotted as function of κ = ks0 in Fig. Ref. 3 (the green curve). We see that

the asymptote near the origin is given by

Re[Zyq(κ)] =
π2

12

(
s20
ca4

)
κ−1/2 . (23)

From the real part of a transverse impedance, like Re(Zyq), one can obtain the

wake from the sine transform:

Wyq(x) =
2c

πs0

∫ ∞
0

Re[Zyq(κ)] sinκx dκ , (24)

where x = s/s0. The quad wake in flat geometry is shown in Fig. 4 (the green

curve). Note that the slope at the origin

dWyq

ds

(
0+
)

=
2Z0c

πa4

(π
4

)4
, (25)

and that the peak is located near s = s0.
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FIG. 3. Transverse resistive wall impedance near the axis between two paral-

lel plates separated by distance 2a, showing Re(Zyd) (blue) and Re(Zyq) (green).

Note that the abscissa gives the scaled frequency κ = ks0 and the ordinate gives

(ca4/s20)
√
κRe(Zy). The round result, with a the radius, is given by the dashed

curve for comparison.

The Dipole Impedance

The dipole impedance is due to the offset of the driving charge. To obtain

it we first put the test particle at x = 0 and on axis in Eq. 18:

Z̃y(k)
∣∣
x=y=0

=
2

ck

∫ ∞
0

dq q
csch(qa)sinh(qy0)

sinh(qa)/ζ − ik cosh(qa)/q
. (26)

Then the vertical dipole impedance is defined as a limit for small offset of the

driving particle (at y = y0) as

Zyd(k) = lim
y0→0

1

y0
Z̃y(k)

∣∣
x=y=0

=
2

cka3

∫ ∞
0

dx x2
csch(x)

sinh(x)/ζ − ika cosh(x)/x
.

(27)

We have numerically calculated the dipole impedance in flat geometry using
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FIG. 4. Transverse resistive wall wake between two parallel plates separated by

distance 2a, showing Wyd (blue) and Wyq (green). Note that the abscissa gives

x = s/s0 and the ordinate gives (a4/s0)Wy. The round result, with a the radius, is

given by the dashed curve for comparison.

as surface impedance that of the dc rw wall (Eq. 1). The real part of the dipole

impedance, Re(Zyd), is plotted in Fig. 3 (the blue curve), where the dipole

wake for a round pipe (dashed; given by the real part of Eq. 4) is also given

for comparison. We see that, like the quad wake, Re(Zyd) varies as κ−1/2 near

the origin, but with an asymptote that is twice as large,

Re[Zyd(κ)] =
π2

6

(
s20
ca4

)
κ−1/2 . (28)

From the real part of a transverse impedance one can again obtain the wake

from a sine transform, see Fig. 4 (the blue curve). Note that the slope at the

origin is the same as we found for the quad wake. The sum of the two slopes

is 2(π/4)4 = 0.76 times the size of the slope of the dipole wake in a round pipe

(with a the beam pipe radius).
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LCLS-II EXAMPLE

The longitudinal impedance formula, Eq. 15, has previously been applied to

LCLS-II undulator parameters, taking the surface impedance to represent wall

resistance and roughness [8], and recently to represent wall resistance at cryo-

genic temperatures, by using an anomalous skin effect surface impedance [7].

Rather than repeating longitudinal calculations, we will here, instead, apply

our new transverse impedance formulas, Eqs. 22,27, to LCLS-II parameters,

and estimate the importance of the transverse effects.

The effects of the transverse impedance in the LCLS-II undulator beam

pipe have been characterized as weak, because the bunch is very short; they

can be approximated using the transverse wake in round geometry. However,

the new formulas allow us to more accurately quantify the effects. In LCLS-

II the transverse wake effects will be strongest for the large charge (300 pC)

option, which is the one we consider now. In the undulator region of LCLS-II

the bunch longitudinal distribution is approximately uniform. The transverse

kick induced along a bunch with a uniform charge distribution, for a bunch

that is offset by a small, fixed amount, is given by

Vy(s) =
I

c

∫ s

0

Wy(s
′) ds′ [0 < s < `] , (29)

with I the peak beam current, where the head of the bunch is at s = 0 and

the tail at s = `. The units of Vy are [V/m2]. A plot of the dipole and quad

components, Vyd and Vyq, for LCLS-II parameters is given in Fig. 5. The

peak current I = 1 kA. For the 300 pC configuration the bunch head (tail)

is at s = 0 (90) µm. The dashed curve gives the round, dipole result, for

comparison. We see that, in all cases, the effect is strongest at the bunch tail.

The quad wake vertically defocuses the bunch slices, by an amount depend-

ing on longitudinal position: the bunch head sees no effect, the bunch tail sees
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FIG. 5. Transverse induced voltage in the undulator region of LCLS-II, assuming a

uniform bunch distribution: Vyd (blue) and Vyq (green). The round result, with a

the radius, is given by the dashed curve for comparison. The peak current I = 1 kA.

For the 300 pC configuration the bunch head (tail) is at s = 0 (90) µm.

the maximum effect. The defocusing effect at the tail and at the end of the

undulator can be estimated by

1

f(`)
=
eβy
E
Vyq(`) , (30)

with f(s) the effective focal length and βy the lattice focusing parameter.

(Note that pipe length L has been replaced by βy in Eq. 30, since the defo-

cusing force continues for L � βy.) Taking as quad induced voltage Vyq(`) =

0.29 kV/(m·mm) [see Fig. 5], βy = 10 m, E = 4 GeV, 1/f(`) = 7× 10−4 m−1,

or f(`) = 1.4 km. The focal length is very large compared to βy; thus, the

quad wake effect is negligible and can be ignored.

The dipole wake can lead to the single bunch, beam break-up (BBU) insta-

bility. If the bunch enters the beam pipe off center, the wake effect amplifies
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the offset (in phase space), again by an amount depending on longitudinal po-

sition. In a structure that is not round, BBU is slightly more complicated than

in a round structure. In both types of structure the dipole wake drives the

instability. However, in a non-round structure the quad wake adds detuning

to the equation of motion. Nevertheless, to estimate the effect one can still

use the formalism developed for the case of round geometry [11]. The strength

of the instability can be characterized by the BBU strength parameter which,

at the end of the undulator chamber equals

Υ(s) =
eβyL

2E
Vyd(s), (31)

with L the chamber length. If Υ(`) . 1 then a two particle model of beam

motion suffices; in this case, if the beam initially is offset by some amount,

then at the end of the structure the amplitude (in normalized phase space) is

increased by a relative amount of Υ(s) (added in quadrature).

Taking as induced dipole voltage Vyd(`) = 0.52 kV/(m·mm) [see Fig. 5]

and L = 130 m, we find that, at the end of the structure at the tail of the

bunch, Υ(`) = 0.085. This means that a transverse injection error will—

by the end of the undulator—have been amplified by the relative amount

Υ2(`)/2 = 3.5× 10−3 or less along the entire bunch. Thus, we see that in the

LCLS-II undulator the BBU effect will be negligibly small, even for the case

of maximum charge, 300 pC.

CONCLUSIONS

In this note, beginning with Maxwell’s equations and assuming only that

the wall interaction can be approximated by a surface impedance, we have

derived formulas for the generalized longitudinal and transverse impedance in

flat geometry, where by generalized we mean that the (transverse) positions
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of the driving and test particle trajectories can be located anywhere within

the region between the two plates; from these, the corresponding point charge

wakefields can also be obtained. Then, from the generalized impedance for-

mulas, by limiting the driving and test particle trajectories to be near each

other and near the axis, we have obtained the normal longitudinal, dipole,

and quad impedances in flat geometry. These equations can be applied to any

surface impedance, such as the known dc, ac, and anomalous skin models of

wall resistance, a model of wall roughness, and a model for a pipe with small

corrugations.

In this note, we have shown that—for the particular case of dc wall

resistance—the longitudinal impedance obtained here agrees with a result

found in the literature, a result that was originally derived from a very general

formula by Henke and Napoly. We have here, in addition, produced plots of

the longitudinal and transverse impedances and wakes for the case of dc wall

resistance. Finally, we applied our results to representative beam and ma-

chine parameters in the undulator region of LCLS-II, to estimate the impact

of the transverse wakes on machine performance. Even for the largest-charge,

longest-bunch-length scenario we find that the transverse wake effects are

negligibly small.
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