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Abstract

We present calculations of the longitudinal wakefields at cryogenic temperatures for ex-

tremely short bunches, characteristic for modern x-ray free electron lasers. The calculations

are based on the equations for the surface impedance in the regime of the anomalous skin

effect in metals. This work extends and complements an earlier analysis of Ref. [3] into

the region of very high frequencies associated with bunch lengths in the micron range. We

study in detail the case of a rectangular bunch distribution for parameters of interest of

LCLS-II with a superconducting undulator.
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I. INTRODUCTION

Resistive wall wakefields generated due to finite conductivity of an accelerator

vacuum chamber often play an important role in beam dynamics [1, 2]. They

become increasingly important for smaller apertures and shorter bunches. The

techniques to evaluate these wakefields for the regime of normal skin effect (NSE)

for various cross sections of the vacuum chamber are well developed. While the

NSE regime commonly applies to accelerator components operating at room

temperature, it generally does not hold when beam-exposed metal surfaces are at

cryogenic temperatures. In the latter case, metals enter the anomalous skin effect

regime (ASE) where the conductivity is substantially different from NSE. A

detailed study [3] of wakefields in the ASE regime was conducted earlier by one of

the co-authors of this paper (BP). In order to calculate the wakefields analytically,

that work was restricted to the so-called “extreme” range of the ASE regime,

where the surface impedance expressions can be significantly simplified. As a

tradeoff, the results of [3] are not directly applicable to bunches shorter than

approximately 0.1 ps rms, which is more than adequate for storage ring

applications, such as those described in [3].

Another area where the ASE wakefields can play an important role is a small gap

vacuum chamber of a superconducting undulator in a free electron laser [4]. The

energy loss of the beam due to the resistive wall wakefield in the undulator

interferes with the lasing process, and its knowledge and control is important for

optimization of the FEL performance. The results of [3] cannot be directly used

for very short bunches in x-ray FELs, where the typical bunch length could be as

low as a few femtoseconds, and, in addition, the bunch shape is non-Gaussian,

extending the bunch shape spectrum further in frequency. It is the goal of this

paper to present numerical calculations of wakefields for such extremely short

bunches in the ASE regime. We limit our consideration to the longitudinal
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wakefields; the transverse wakes in the undulator are believed to be of lesser

importance due to the shortness of the bunches.

The vacuum chamber within the superconducting undulator of LCLS-II will likely

have a racetrack cross-section with a large ratio of horizontal to vertical

dimensions. From an impedance point of view, with the beam on axis, the effect of

the wakefield is essentially the same as for the case of flat geometry, i.e. for a

chamber consisting of two parallel plates with the same vertical separation, which

we denote by 2a (a is the half aperture). This is the model that we accept in this

paper. For comparison, we also calculate the wakefields for a round geometry with

the radius equal to a.

Selected beam and machine properties in the undulator region of LCLS-II that are

used in our calculations are given in Table I [5]. We consider two options for the

bunch charge—100 and 300 pC—each with the beam current of 1 kA.

TABLE I. Selected beam and machine properties in the undulator region of LCLS-II with

superconducting undulator. The longitudinal bunch distribution is approximately uniform.

Parameter name Value Unit

Beam current, I 1 kA

Bunch charge, Q 100(300) pC

RMS bunch length, σz 8.7(26) µm

Beam energy, E 4 GeV

Vacuum chamber half aperture, a 2.5 mm

Undulator length, L 100 m

The paper is organized as follows. In Section II, we briefly review the anomalous

skin effect and present the equation for the surface conductivity of the metal in this

regime. In Section III, we calculate the impedance and wake of a point charge in

ASE regime in a round vacuum chamber. In Section IV, we calculate the
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impedance and wake in flat geometry, which is more relevant for the typical

racetrack shape of an undulator vacuum chamber. Assuming parameters of the

LCLS-II with a superconducting undulator, we also compute the relative energy

change of electrons in the bunch. Section V summarizes the results of the paper.

II. ANOMALOUS SKIN EFFECT AND SURFACE IMPEDANCE

The classical skin depth δNSE as a function of frequency ω is defined by the

following formula,

δNSE =

√
2c

Z0σcω
, (1)

where σc is the metal conductivity, Z0 is the free space impedance, Z0 = 120π

Ohm, and c is the speed of light. When the skin depth δNSE becomes less than or

comparable to the mean free-path of electrons l the classical model of the skin

effect no longer holds [6, 7]. Different expressions for the skin effect are known for

the cases of specular and diffuse reflection of electrons at the surface. Fitting these

formulas to infrared measurements for Cu, Ag, Au, Lenham and Treherne

concluded that the diffuse model is normally applicable, even for well-prepared

samples [8]. This is the model we use in this paper.

The conductivity σc in the free-electron (Drude) model of metals is given by

σc =
ne2l
mv f

=
ω2

pl

Z0cv f
, (2)

where n is the concentration of conducting electrons, m is the effective mass, ωp is

the corresponding plasma frequency, l is the mean-free path of conducting

electrons and v f is the Fermi velocity. For reference, we list in Table II the

free-electron model parameters for Al and Cu, which are two commonly used

metals in accelerator applications. Conductivity of pure metals increases several

orders of magnitude when they are cooled from room temperature to cryogenic
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temperatures, where the conductivity is impurity dominated. A commonly used

parameter, the residual resistivity ratio (RRR), is defined (at 4 K) as

RRR ≡ σc(4 K)/σc(293 K). Relevant for this paper is that bulk pieces of Cu and

Al with RRR values of a hundred or more are commercially available for use in

cryogenic components of accelerator vacuum chambers. In our calculations, we

assume RRR = 100 with the room temperature conductivities

σc(293 K) = 5.7 · 107 (Ohm m)−1 for copper and σc(293 K) = 3.7 · 107 (Ohm m)−1

for aluminum.

TABLE II. Free-electron Fermi gas model parameters for Al and Cu [9].

n 1028 m−3 v f 106 m/s ωp 1016 rad/s

Al 18 2.0 2.4

Cu 8.5 1.6 1.7

Solving Maxwell’s equations inside a metal chamber requires one to specify a

relation between the tangential components of the electric Et and magnetic Ht

fields on the metal surface. At high frequencies, this relation is known as the

Leontovich boundary condition [10]. In frequency representation it is given by the

following equation:

Et = ζ(ω)[Ht × n], (3)

where n is a unit vector directed into the metal perpendicular to the surface and

ζ(ω) denotes the dimensionless surface impedance.

The ASE theory developed in [6, 7] gives the following expression for the complex

conjugate of the surface impedance1:

ζ∗(ω) = −
iωl

cF(ω)
, (4)

1 The complex conjugate appears here because of a different choice of the sign in the Fourier trans-

forms in Refs. [6, 7].

5



where the function F is defined by

F(ω) = −
1
π

u
∫ ∞

0
ln

[
1 +

η + ξκ(t)
t2

]
dt, (5)

with u = 1 + iωl/v f , η = −ω2l2/c2u2, κ(t) = 2t−3[(1 + t2)arctan(t) − t], ξ = iαu−3

and α = 3
2 (l/δNSE)2. As discussed in [6], the parameter η is typically small in

comparison with other terms in Eq. (5) and is neglected. In our calculations the

value of the mean free path l in these equations was expressed through the

conductivity σc = RRR · σc(293 K) using Eq. (2) and parameters in Table II.

The case of extreme anomalous skin effect (EASE) studied in [3] is characterized

by |ξ| � 1. In this limit Eq. (5) can be considerably simplified,

F(ω) ≈ −2(πξ)1/3/
√

3. With this expression for F, one finds the surface impedance

which coincides with Eq. (8) of Ref. [3]. As is pointed out in [3], the condition

when one can use the EASE expression for the impedance is limited by the

requirement ω � ωpv f /c which constraints the applicability of EASE to bunches

with rms length σ � σ0 ≡ c2/ωpv f . To estimate this limit for our case, we take

RRR = 100, and using parameters from Table II, find σ0 ≈ 1.9 µm for aluminum

and σ0 ≈ 3.3 µm for copper as a lower limit of validity. Comparing these numbers

with the shortest bunch length of 8.7 µm from Table I we see that the value of σz

of interest is not quite in the regime of EASE. And indeed, we found a noticeable

deviation of the wakefield for such short bunch from the result of EASE.

We mention in passing that the NSE regime is obtained from Eq. (5) in the limit

|ξ| � 1. In this limit one can replace κ(t) in (5) by its value κ(0) = 4
3 , which gives

F(ω) ≈ −2u
√
ξ/3 = −2u−1/2√iα/3. Substituting this expression into (4) gives

ζ = (1 − i)ωδNSEu∗1/2/2c which is a standard expression for the surface impedance

in the NSE regime with the correction that takes into account the frequency

dependence of the conductivity (a so called ac conductivity [11]).

We should point out that Eqs. (4) and (5) were also used in [12] to calculate the

wake effect for short bunches at room temperature, when the result was found to
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agree well with the normal, NSE regime.

III. ROUND VACUUM CHAMBER

Consider first a round chamber of inner radius a. The beam impedance in this case

is [1]

Z(k) =
Z0

2πa

(
1
ζ(k)

−
ika
2

)−1

, (6)

where k = ω/c, and we consider here ζ as a function of k, rather than the

frequency ω, as defined by (4). Once the impedance is known, the wake is

obtained by the inverse Fourier transform:

w(s) =
c

2π

∫ ∞

−∞

Z(k)e−iksdk, (7)

with s the distance the test particle is behind the driving particle. The wake defined

by this equation has a property w(s) = 0 for s < 0, and a positive value of w

indicates energy loss.

In Fig. 1 we show the real and imaginary parts of the impedance as a function of

frequency for copper and aluminum for a pipe of radius a = 2.5 mm. Note that the

impedance has a resonant-like character with the peak of the resonance located

close to 10 THz. In Fig. 2 we show the corresponding wakes for a point charge.

For comparison, on the same plot, we also show the wake for the case when the

aluminum pipe is at room temperature (no ASE), repeating the calculation of

Ref. [14]. Comparing the latter with the low-temperature wake, it might seem

counterintuitive that the room-temperature wake is not too much different from the

low-temperature limit, where the resistivity is hundred times smaller. We remind

the reader however, that for extremely short distances of interest in this paper, the

wake is not directly related to the wall conductivity. In particular, as one can see

from Fig. 2, all the wakes are equal at the origin s = 0, where universally

w(0) = Z0c/πa2 (see, e.g., discussion in [13]).
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FIG. 1. For round geometry: real (solid lines) and imaginary (dashed lines) parts of the

impedance (6) for copper (red) and aluminum (blue).

FIG. 2. The wake of the point charge for copper (red) and aluminum (blue) pipes. The

dashed black line shows the wake for the case when the aluminum pipe is at room temper-

ature (no ASE).
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IV. FLAT VACUUM CHAMBER

The impedance of a resistive wall in flat geometry is given in Ref. [14],

Z(k) =
Z0

2πa

∫ ∞

0

dq
cosh(q)

[
cosh(q)
ζ(k)

−
ika
q

sinh(q)
]−1

. (8)

Using Eqs. (4) and (5) for the surface impedance we numerically calculated the

integral (8) as a function of k. In Fig. 3 we present the real and imaginary parts of

Z as a function of frequency for copper and aluminum. In Fig. 4 we show the
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FIG. 3. For flat geometry: real (solid lines) and imaginary (dashed lines) parts of the

impedance (8) for copper (red) and aluminum (blue).

corresponding wake for a point charge. For comparison, we also show the wake

for the case when the aluminum pipe is at room temperature (no ASE).

As mentioned before, the bunch distribution in the undulator region of LCLS-II is

approximately uniform. For a uniform bunch distribution with peak current I the

relative wake induced energy variation η = ∆E/E at the end of the undulator is

given by

η(z) = −
eIL
cE

∫ z

0
w(s)ds, (9)
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FIG. 4. For flat geometry: the wake of the point charge for copper (red) and aluminum

(blue) pipes. The dashed black line shows the wake for the case when the aluminum pipe is

at room temperature (no ASE).

with L the length of the undulator pipe and E the beam energy. In Fig. 5 we plot

the relative energy change of electrons in the beam as a function of position in the

bunch z. The energy E = 4 GeV, and the length of pipe L = 100 m. The beam has

a uniform distribution with its head located at z = 0. Because we assume the same

peak current I = 1 kA for the two cases Q = 100 pC and Q = 300 pC, the function

η(z) is the same for both of them, extending from 0 to 30 µm in the first case and

from 0 to 90 µm in the second one. For comparison, we also show the warm wake

result for aluminum as well as the relative energy change obtained in the EASE

model of Ref. [3]. The discrepancy between the solid and dashed curves clearly

shows that the EASE model is not applicable for the extremely short bunches of

interest for this work.

Using the results shown in Fig. (5) we calculated the average energy loss ηav and

the rms energy spread ση at the end of the undulator due to the wake. For the

bunch charge of 100 pC they are: for Cu ηav = −0.076%, ση = 0.085%; for Al

ηav = −0.052%, ση = 0.077%. The same quantities for a bunch charge of 300 pC

10



FIG. 5. For flat geometry: the relative energy change of electrons in a beam with flat distri-

bution in aluminum chamber (left panel, solid line) and copper chamber (right panel, solid

line). For comparison, we show by dashed lines (with the same correspondence between

the color and the wall material) obtained for the energy change when one uses the EASE

model of Ref. [3]. The dotted lines show the relative energy change for the case when the

pipe is at room temperature. The vertical green lines indicate the rear edge of the bunch

distribution: 30 µm for 100 pC and 90 µm for 300 pC.

are: for Cu ηav = −0.026%, ση = 0.064%; for Al ηav = −0.023%, ση = 0.049%.

The average energy loss ηav can be easily converted to the heating of the vacuum

chamber walls. Denoting by P the power deposition per unit length of the

chamber, we have P = frep|ηav|EQ/eL, where frep is the bunch repetition rate in the

FEL. As an example, using |ηav| = 0.023% for Al and the 300 pC beam and

assuming frep = 1 MHz, we obtain P = 2.8 W/m. This extra heating of the cold

bore of the vacuum chamber should be taken into account in the design of the

cryogenic system of the superconducting undulator.

In conclusion of this Section, we would like to point out that our results are rather

insensitive to the exact choice of the value of RRR. To illustrate this insensitivity,

we repeated calculations of the relative energy loss ∆E/E for two more values,

RRR = 10 and RRR = 3 for Al. The last low value of RRR may be representative

of Al alloys (see, e.g., [2], p. 466) that typically do not exhibit a strong ASE effect.
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The comparison of the three different values of RRR is shown in Fig. 6. One can

FIG. 6. Relative energy change for three values of RRR, for Al: the solid line is for RRR =

100, the dashed line is for RRR = 10, and the dotted line is for RRR = 3.

see that the large variations of the value of RRR result in a relatively small effect

on the wakefield.

V. SUMMARY

In this paper we presented calculations of the longitudinal wakefields at cryogenic

temperatures for extremely short bunches, characteristic for modern x-ray free

electron lasers. The calculations are based on the equations for the surface

impedance in the regime of the anomalous skin effect in metals. We find that, even

though the metal conductivity at cryogenic temperatures may be two orders of

magnitude higher than at the room temperature, the wakefield do not drastically

differ in the two cases.

This work extends and complements an earlier analysis of Ref. [3] into the region

of very high frequencies associated with bunch lengths in the micron range. We

have studied in detail the case of a rectangular bunch distribution that often

approximates well the realistic bunch profiles in FELs. This special kind of
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distribution emphasizes the high-frequency content of the bunch spectrum, and

require treatment that goes beyond simplifications accepted in [3].
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