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Electron beam energy chirp is an important parameter that affects the bandwidth and
performance of a linac-based, free-electron laser. In this paper we study the wakefields
generated by a beam passing between flat metallic plates with small corrugations, and then
apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS)
energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have
been tested in several places at relatively low energies (∼100 MeV) and with relatively long
bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size
similar to the gap between the plates, the analytical solutions of the wakefields are no longer
applicable, and we resort to a field matching program to obtain the wakes. Based on the
numerical calculations, we fit the short-range, longitudinal wakes to simple formulas, valid
over a large, useful parameter range. Finally, since the transverse wakefields—both dipole
and quadrupole—are strong, we compute and include them in beam dynamics simulations
to investigate the error tolerances when this device is introduced in the LCLS.

I. INTRODUCTION

In a linac-based X-ray free electron laser
(FEL) there is often a need for energy chirp con-
trol of the beam as the magnetic compression
employed in such FELs [1–4] typically leaves an
undesired time-energy correlation in the bunch.
Such a chirp, if left uncorrected, can broaden
the FEL bandwidth and degrade FEL perfor-
mance [5, 6]. While the chirp can be removed
by off-crest acceleration in a following linac sec-
tion, this solution can be costly or impractical,
particularly for a superconducting linac-based
FEL. For such cases, a dedicated passive struc-
ture that can intentionally generate a strong
longitudinal wakefield was recently proposed to
“dechirp” the beam. Additionally, the dechirper
can do the opposite to make X-ray pulses with
a broader energy spectrum and generate ultra-
short pulses for a variety of applications.

In Ref [7], a round metallic structure with
corrugated walls was suggested and analyzed as
a passive dechirper. Compared to the round
geometry, the flat geometry using two corru-
gated plates has the advantage of allowing the
dechirper strength to be adjusted by changing
the separation of the plates [8]. In both round
and flat structures, the short-range transverse

wakes can be strong, with amplitude scaling
as the −4th power of aperture (vs. the −2nd
power for the longitudinal wake). In a flat struc-
ture, however, in addition to the usual dipole
wakefield that is excited when the beam passes
through off axis, there is also a quadrupole
wake excited, even when the beam moves ex-
actly along the symmetry axis. These transverse
wakes will, if not properly controlled, increase
the projected transverse emittance and lead to a
deterioration in FEL performance.

Recently dechirper systems have been tested
in Pohang, Brookhaven and Shanghai at rela-
tively low energies (∼100 MeV) [9–11]. However,
when this structure is used for multi-GeV beams,
such as the several GeV beams of the Linac Co-
herent Light Source (LCLS) [12, 13], in order to
generate a significant dechirping effect within a
reasonable length of structure, the gap between
the two plates needs to be set very small (e.g.
∼ 1 mm), which will introduce strong trans-
verse effects. In addition, from the point of view
of manufacturing feasibility with relaxed toler-
ances, the preferred size of corrugations should
not be too small (e.g. & 0.5 mm). In this case,
the corrugation parameters become comparable
to the gap of the two plates and the analytical
solutions of wakefields for the structure [7, 14]
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are no longer applicable.
In this paper we adopt the field match-

ing method [15] to calculate the longitudinal
and transverse wakefields of the flat corrugated
structure that will serve as a dechirper for the
LCLS. For the longitudinal case, we, in addition,
perform wake calculations over a wide parame-
ter range and find a simple fitting formula that
can be useful for quickly finding the short-range
wake of such devices. In these studies, it is found
that higher band modes arise with small gap size.
The amplitude of the rising second band modes
is evaluated numerically for comparison. Finally,
for the application to the LCLS, we study the ef-
fects of the transverse wakefields on beam qual-
ity and the tolerances these imply.

The structure we consider in this paper is a
periodic, rectangular structure, two periods of
which are sketched in Fig. 1. The parameters
are: half-gap a and width w; corrugation param-
eters: depth h, period p, opening g. The nomi-
nal parameters of the proposed LCLS dechirper
are shown in Table I. They will be used in illus-
trative calculations of wakefields in the follow-
ing sections. The appropriateness of this choice
of parameters for LCLS applications will be ad-
dressed in Sec. III.
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FIG. 1. Geometry of dechirper parameters: longitu-
dinal cut with two periods (left) and transverse cut
(right).

This paper is organized as follows. In Sec. II
we introduce the field matching method and
present some numerical results. Fitting formu-
las of the longitudinal wakefield are obtained
based on the field matching calculations, which
are given in Appendix A. The application of this
structure to the LCLS of this structure is ana-
lyzed in Sec. III, including simulations of chirp

TABLE I. Structure Parameters of LCLS Dechirper

Parameter Value Units

Half-gap a > 0.5∗ mm

Period p 0.5 mm

Depth h 0.5 mm

Opening g 0.25 mm

Width w 12 mm

Total length L 4∗∗ m

* Nominal half-gap is 0.7 mm.
** The dechirper is composed of two sections of
2 m each.

control, the effects of the transverse wakefields
and the subsequent tolerances for the beam po-
sition jitter and the misalignment of the struc-
ture necessary to preserve the transverse beam
emittance. Finally, in Sec. IV we give concluding
remarks.

II. WAKEFIELDS AND FIELD
MATCHING

A. Analytic Formulas

The analytical solutions of the wakefields for
the structure in Fig 1 are developed from the
ones for a round pipe with similar corrugations
[16, 17]. For round geometry, if we assume all
corrugation dimensions are much smaller than
the gap size (p, h� a, with a the radius) and the
corrugations are relatively deep (h & p), then
the point charge wake can be written as a pure
cosine oscillation with one mode wave number
k =

√
2p/(ahg) and with amplitude Z0c/(πa

2)
(Z0 = 377Ω is the characteristic impedance of
free space and c is the speed of light). And
the dipole wakefield is given by a sine oscilla-
tion of the same frequency, with the slope at
the origin of W ′d(0

+) = 2Z0c/(πa
4). There is no

quadrupole wakefield.

For the flat geometry, the wakefield is more
complicated than a simple cosine function. How-
ever, if we assume a large aspect ratio, (w/2a),
and only care about the wakefield over the short
range, we can still approximate its longitudinal
wake by a single frequency oscillation, with a
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modified amplitude factor: [15]

W||(z) =
π2

16

Z0c

πa2
H(z) cos(kz) 0 < kz . 3π,

(1)

where z is the distance the test particles is be-
hind the driving particle and H(z) = 1(0) when
z > 0(< 0). For small corrugations, the wave
number k is well approximated by [15]

k =

√
p

ahg
. (2)

In flat geometry there are both dipole and
quadrupole transverse wakes, where the total
vertical wake effect near the y = 0 symmetry
plane is given by

Wy = y0Wd + yWq , (3)

with y0 (y) the offset of the driving (test) par-
ticle. The short-range transverse wakes are
reasonably well approximated by sine functions
with the same wave number k, and with slopes
near the origin [18]

W ′d(0
+) = W ′q(0

+) =
2Z0c

πa4

(π
4

)4
. (4)

Note that in Eqs. (1) and (4), the amplitudes
of the wakefields are independent of the dimen-
sions of corrugations. However, for structures
with corrugation size comparable to a, such as
the LCLS dechirper as shown in Table. I, Eqs. (1)
and (4) are no longer applicable and we need to
use a numerical method, such as the field match-
ing method, to find the wakefields.

B. Field Matching Method

The field matching method to solve the wake-
fields of the structure of Fig.1 is described in an
appendix of Ref. [15]. We have written a Math-
ematica program based on this formalism with
which we perform our parameter studies. We
sketch the method briefly here; the reader is re-
ferred to Ref. [15] for more details (though she
should be warned that there are a few typos in
the equations there). It is useful to understand
the method, in order to better make sense of

the parameters studies. In addition, the calcula-
tion of the transverse wakes, which were not ad-
dressed in Ref. [15], are also sketched out here.
(Note that all derivations in this section are in
Gaussian units.)

Field matching is used to find the syn-
chronous (to a speed-of-light particle), resonant
modes of the structure. The domain of calcu-
lation is one period of the structure in Fig. 1,
which extends longitudinally to z = ±p/2. The
domain is divided into two regions: Region I, the
“tube region,” extends to y = ±a; Region II, the
“cavity region,” for z ≤ ±g/2, extends beyond
y = ±a to y = ±(a + h). In the field match-
ing program smooth walls at x = ±w/2 are as-
sumed. (In the real structure there are no side
walls. However, the side walls do not affect the
short-range wake, provided the structure width
is chosen so that w/a� 1.)

We are interested in the steady-state wakes
excited by the beam and assume that the fields
of a mode have a time dependence ejkct, where
k is the mode wave number and t is time. For
either region the electric and magnetic fields can
be obtained from two Hertz vectors Πm,Πe, that
represent TM and TE components:

E = ∇×∇×Πe − jk∇×Πm ,

H = ∇×∇×Πm + jk∇×Πe . (5)

Since there is no boundary variation in the x
direction the Hertz vectors have only an x com-
ponent. To satisfy the boundary condition at
x = ±w/2, the fields vary as cosines and sines of
kxx where

kx =
lπ

w
, (6)

with l an odd integer. The general solution of
the wake involves a summation over all l.

Consider modes with a given horizontal mode
number l. If the modes with Ez 6= 0 on axis
are chosen, the Hertz potentials for each region
can be written as the sum of space harmonics as
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follows. For region I:

ΠI
mx =

∞∑
n=−∞

[
Bn cosh(kIyny)

]
sin(kxx)e−jβnz ,

ΠI
ex =

∞∑
n=−∞

[
Cn sinh(kIyny)

]
cos(kxx)e−jβnz ,

(7)

with

βn = β0 +
2πn

p
, kIyn =

√
β2
n − k2 + k2

x , (8)

For region II:

ΠII
mx =

∞∑
s=1

Es sin
[
kIIys(a+ h− y)

]
sin(kxx)

× sin
[
αs(z +

g

2
)
]
,

ΠII
ex =

∞∑
s=0

Fs cos
[
kIIys(a+ h− y)

]
cos(kxx)

× cos
[
αs(z +

g

2
)
]
, (9)

with

αs =
πs

g
, kIIys =

√
k2 − α2

s − k2
x . (10)

The Bn, Cn, Es, Fs, are expansion coefficients.
The arbitrary phase constant is set to β0 = k, so
that the modes of the system are those excited
by the beam (the synchronous modes).

Then the tangential components of the fields
Ez,x,Hz,x in the two regions are obtained from
the Hertz vectors and are matched in the match-
ing planes, at y = ±a:

EIz,x =

{
EIIz,x |z| < g/2 ,

0 g/2 < |z| < p/2 ,
(11)

HIz,x = HIIz,x |z| < g/2 . (12)

From the orthogonality of the expansion
functions a system of equations is obtained that
can be written as a real, symmetric, homoge-
neous matrix equation involving the expansion
coefficients. The solution will give the fields to
an arbitrary scale factor. For numerical calcu-
lation the infinite matrix is truncated to finite
size. If N is the largest value of n—the space

harmonics number in region I—that is kept, the
system matrix equation will be of dimension
2(2N + 1)×2(2N + 1). (The parameter s is also
truncated, so that its maximum value S ∼ N .)
The wave numbers at which the determinant of
the resulting matrix vanishes correspond to the
modes excited in the structure.

The loss factor κ of each mode (which is de-
fined per unit length of structure) can be calcu-
lated from the field components:

κ =
|E0|2 p

4u(1− vg/c)
, (13)

with E0 the synchronous component of the longi-
tudinal field (n = 0 represents the synchronous
space harmonic), u the stored energy per period,
and vg is the group velocity of the mode. Note
that the arbitrary constant in the numerator and
denominator cancel.

The longitudinal wakefield is given as the sum
over l, of the modes, which can be written as

W||(z) = 2H(z)
∑
l

κl cos(klz) , (14)

where kl (κl) is the wave number (loss factor)
of mode l. The quadrupole wakefield can be ob-
tained as

Wq(z) = 2H(z)
∑
l

κ
(q)
⊥l sin(klz) , (15)

where κ
(q)
⊥l = (lπ/w)2(κl/kl) is the kick factor

of the quadrupole mode with horizontal mode
number l.

For the dipole modes, we need to rewrite the
Hertz potentials Eq. 7 in terms of the functions
that yield Ez = 0 on axis (viz. by exchanging
the sinh and cosh functions) and repeat the pro-
cedure above to obtain the corresponding wave
numbers. The dipole kick factors are obtained
as:

κ
(d)
⊥l =

∣∣∣dE0dy ∣∣∣2 p
4u(1− vg/c)k(d)

l

, (16)

where k
(d)
l is the wave number of the dipole

modes. Then the dipole wakefield becomes

Wd(z) = 2H(z)
∑
l

κ
(d)
⊥l sin(k

(d)
l z) . (17)
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Finally, note that in the field matching we
have assumed perfect conductivity in the walls.
This approximation is good in that the resis-
tance of metallic walls has but a small effect on
the wake of these structures. Also we have as-
sumed that the steady-state solution is a good
approximation to the wake. The so-called catch-
up distance, zcu = a2/2σz (σz is the rms bunch
length), is the approximate distance over which
the transient response becomes the steady-state
response. For representative LCLS dechirper pa-
rameters, a = 1 mm, σz = 25 µm, zcu = 25 mm,
which shows that the distance to steady-state
indeed is small compared to the total structure
length L = 4 m.

We have programmed the truncated field-
matching equations—for both longitudinal and
dipole modes—into Mathematica. For given
horizontal mode number l, in the longitudinal
case the program obtains the wave number kl,

loss factor κl, and quadrupole kick factor κ
(q)
⊥l ;

for the dipole modes it obtains the dipole wave

number k
(d)
l and dipole kick factor κ

(d)
⊥l . Then,

by performing the sums Eqs. (14), (15) and (17),
we obtain the wakes.

C. Numerical Results

In this section we numerically address the
questions of what matrix size should be cho-
sen, how many horizontal modes are needed (in
the wake sums), and how strong is the effect of
higher band modes. In addition, we perform lon-
gitudinal wake calculations over a large useful
parameter range, and then provide fitting for-
mulas that can be used for generating the wake
without needing to resort to numerical calcula-
tions. (Details of the fitting are given in Ap-
pendix A.) We focus here on the longitudinal
wake calculations because we want to accurately
know the wake effect on the beam chirp, whereas
for the transverse wake effects, which we want to
keep under control, accuracy is not as important.

Convergence Studies

We begin by studying the question of what
is a reasonable matrix size for the calculations.
We use the nominal parameters of the LCLS
dechirper in Table. I, with a = 0.7 mm. Note
that (w/2a) = 8.6, meaning that the side walls
have little effect on the wakes. We calculate the
first three horizontal modes (l = 1, 3, 5) for dif-
ferent values of N . The wave numbers and loss
factors versus N are shown in Fig. 2. It can be
seen that the two wakefield parameters converge
quickly as functions of N , and even a small num-
ber suffices (N > 3). A similar kind of conver-
gence was found for other horizontal modes and
for other dechirper parameters. Consequently, in
the following sections of this report, we choose
N = 5—which corresponds to a system matrix
of size 22—for the field matching calculations.
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FIG. 2. Wave number (left) and loss factor (right)
convergence versus N for l = 1, 3, 5. The correspond-
ing matrix size is 2(2N + 1).

Another question is, how many horizontal
modes (with mode number l) are needed to ob-
tain a good approximation to the wakefields?
As an example, we again consider the LCLS
dechirper parameters. Fig. 3 presents the wave
number, longitudinal loss factors, and transverse
kick factors as functions of horizontal mode num-
ber l. Note that, in the plot, the units for loss
factor are [mm−2] and for kick factor [mm−3].
Also note that for given l, the longitudinal and
quadrupole wakefields have the same wave num-
ber. We can observe that for these dechirper
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parameters, the contributions from l & 30 can
be neglected. In general, when performing these
wake calculations one needs to be sure to take
enough terms so that the series has converged.
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FIG. 3. (Up) wave numbers and (down) loss fac-
tor of longitudinal wake and kick factor of dipole
and quadrupole wake for horizontal mode number l
for nominal LCLS dechirper parameters, with a =
0.7 mm.

The Wakefields

Inserting the wave numbers, loss factors, and
kick factors of Fig. 3 into Eqs. (14), (15), and
(17), we obtain the longitudinal, quadrupole,
and dipole wakefields, respectively, of the LCLS
dechirper. The results are shown in Fig. 4 (the
solid lines), where the wakes have been converted
to MKS units (to convert wakes from cgs to
MKS, they are simply multiplied by Z0c/4π).
Note that, in MKS, the units of the longitudi-
nal and transverse wakes are [MV/(nC m)] and
[MV/(nC m2)], respectively. In the figure we
also give the wake functions of the flat, analyt-
ical model for comparison [18] (the dashes). It
is expected that the results of the field match-
ing method agree well with the analytical model

when the size of the corrugations is small com-
pared to the gap. However, it is obvious that in
the parameter regime of the LCLS dechirper, the
analytical model no longer applies. The ampli-
tudes of the wake functions with field matching
are smaller than the ones of the analytical model
(67% for the longitudinal wake) and the oscilla-
tion periods also differ.
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FIG. 4. Wake of the dechirper (see Table I with a =
0.7 mm), as calculated using the field matching pro-
gram (solid lines): (up) the longitudinal, W||, (down)
the dipole Wd (blue) and quadrupole Wq (red) wake
functions. The wakes according to the analytical
model are also shown, for comparison (dashed lines).
The fitting formula for the longitudinal wake is also
shown for comparison (red square).

Based on the calculations of the field match-
ing program, we obtain simple fitting formulas
for the short-range longitudinal wakefield, which
can be used for dechirper design and optimiza-
tion studies (see Appendix A). The parameter
range of validity is p, h ≤ a, h/p & 0.8, and
g/p = 0.5. The fitting formula is given by

W||(z) =
π2

16

Z0c

πa2
FH(z)e

− kz
2Q cos(kz) , (18)

where F is an amplitude correction factor, k is
an effective wave number, and Q is an effective
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quality factor. By short-range we mean that the
formula is valid for kz . 3π. The three fitting
parameters are all simple functions of structure
parameters a, h, p. For example, the effective
wave number is given by

k =
1

a

(
c1√
h/a

+ c2

)
, (19)

with c1 = 1.7096 and c2 = −0.5026. The expres-
sions for F and Q are given in Appendix A. We
show the fitting formula in Fig. 4 for comparison
with the field matching and analytical model.

Higher Band Modes

Up to now, for any horizontal mode number
l, we have considered only the lowest modes;
but there are also higher such modes—i.e.
higher frequency solutions to the system matrix
equation—which we call “higher band modes.”
For a wide structure (w/a � 1) with small cor-
rugations, the spacing of the bands will be large
compared to the spacing of the modes in the first
band, and the loss factors of the modes in the
higher bands will be small compared to those
of the lowest modes. But when the corrugation
parameters p, h, become comparable to a, the
contribution of the next band modes starts to
grow.

For the nominal LCLS dechirper parameters,
with a = 0.7 mm, we compare in Fig. 5 the wave
numbers and loss factors of the first two band
modes as functions of horizontal mode number l.
We note that the second band mode loss factors
are small, contributing about 10% of those of
the first band. If we further extend the range of
solving the system matrix equation, we find still
higher band modes; however, in the parameter
space of interest, their loss factors will be even
smaller. So in this report we consider mainly
the contribution of the first band modes to the
wakes; the second band modes are calculated
only for the purpose of gauging the accuracy of
this approximation.

The impact of the second band modes on the
wakefields is to add high-frequency features to
the wakefield shape. In Fig. 6 we compare the
longitudinal wakefields including only the first
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FIG. 5. Wave numbers (up) and loss factors (down)
of the first two bands of modes as functions of hor-
izontal wave number l, for nominal LCLS dechirper
parameters with a = 0.7 mm.

band modes (solid) with those including the first
two bands (dashed). For the three cases con-
sidered the aperture is a = 0.5, 0.7, 1.0 mm,
while the other parameters are left unchanged
(the a/h = 1.4 curves correspond to the nom-
inal parameters of Fig. 4). The distortion of
the wake from a cosine shape is largest for the
case of largest corrugations, i.e. for a/h = 1.
Note that such distortions have little effect on
the dechirping, other than slightly changing the
strength of interaction, because the bunch is very
short compared to the wake oscillation period
(the rms bunch length in an X-ray FEL is typi-
cally σz . 20 µm).

Fig. 7 gives the relative increase in the wake-
field amplitude after including the second band
modes as functions of a/h, for different h/p. As
h/p increases the effect of the second band modes
first becomes larger and then settles down. For
the LCLS dechirper, h/p = 1, so when a ∼ h =
1 mm, the amplitude when including the second
band modes increases by ∼ 18%. Since the fit-
ting formula of Eq. 18 only considered the first
band modes, for the LCLS dechirper, when a is



8

0 1 2 3 4 5
-60

-40

-20

0

20

40

60

80

z  [mm]

W
||
  
[M

V
/(

n
C

 m
)]

𝑎

ℎ
= 1 

𝑎

ℎ
= 1.4 

𝑎

ℎ
= 2 
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a with other nominal parameters in Table I.

small (. 1 mm) the formula will noticeably un-
derestimate the dechirping effect.
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FIG. 7. Relative increase in the wakefield amplitude
after including the second band modes as functions
of a/h, for different h/p. Here p, g, have the nominal
values of Table I.

III. APPLICATION TO LCLS CHIRP
CONTROL

In this section, we apply the analysis of
the previous section to the proposed LCLS
dechirper [13]. We also analyze other physical
effects that are important.

As a demonstration experiment of chirp-
control for high energy beams, the dechirper will
be installed at the linac-to-undulator (LTU) area
of the LCLS. Essential diagnostics for the pro-
posed dechirper experiment are shown in Fig. 8.

The dechirper will be located in a low β re-
gion. Neighboring BPMs will be used to ensure
beam alignment through the device. A distant
downstream BPM will be used to detect any de-
flection due to the dipole wakefield. Transverse
emittance measurements will be performed using
LTU quads (not shown) along with the COTR-
mitigated transverse profile monitor [19] at the
end of LTU or, alternatively, LTU wire scanners
(not shown). Finally, slice energy spread mea-
surements will be performed in the LCLS elec-
tron dump using an X-band transverse deflecting
cavity (XTCAV) [20] in conjunction with the fi-
nal spectrometer bend.

The beam parameters for the proposed
dechirper experiment are shown in Table II. The
beam peak current after compression is ∼ 1.5 kA
and the energy chirp induced by the RF off-crest
acceleration in the downstream linac is not fully
canceled by the linac wakefield.

TABLE II. Beam Parameters for Proposed Dechirper
Experiment

Parameter Value Units

Charge Q 150 pC

Peak current Ip ∼1.5 kA

Energy E 6.6 GeV

Emittance εx 0.77 µm

Emittance εy 0.39 µm

βx 5 m

βy 19 m

The proposed dechirper for the LCLS is 4 me-
ters with two 2-m sections. The total length is
chosen with the aim of generating a significant
dechirping effect while at the same time main-
taining the beam quality. A longer dechirper
will benefit the experiment as it allows a larger
gap to achieve the same integrated longitudinal
wake, while the transverse wakefields decrease
more quickly with gap size. The parameters of
the dechirper used in the simulations have been
given in Table. I.

The gap of the two plates can be varied in
the experiment based on the required longitu-
dinal wakefield strength. The minimum gap is
1.0 mm due to physical constraints and the nom-
inal full gap size is 2a = 1.4 mm. The lon-
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FIG. 8. Schematic of the proposed dechirper experiment (not to scale). See text for description.

gitudinal, dipole and quadrupole wakefields for
this gap were presented in Fig. 4, and the beam
longitudinal phase space before and after the
dechirper are given in Fig. 9 by Elegant [21] sim-
ulation with beam parameters in Table II and
nominal gap of the dechirper. The head of the
beam lies to the left side with negative time
values. The energy loss of the tail particle is
∼ 20 MeV at nominal gap, inducing energy chirp
-0.4 MeV/fs for 50 fs bunch length. The pro-
jected energy spread can be tuned as much as
±200% of the core slice energy spread. In the
experiment, we will use the XTCAV to measure
the beam longitudinal phase space downstream
of the FEL undulator. The final simulated im-
ages with and without the dechirper wakefields
at the dump screen, which is located after the
XTCAV and at a location of vertical dispersion,
are given in Fig. 10. The expected dechirping
effect can be clearly measured. The simulated
images at dump screen appear to have devia-
tions with the longitudinal phase space in Fig. 9.
This is due to the effects of the wakefields in the
undulator vacuum chamber. During FEL oper-
ations, the gap will be varied to minimize the
energy chirp of the real beam.

The dechirper can, in addition, do the oppo-
site, i.e. it will increase the energy chirp for an
over-compressed beam. The large energy chirp
can help make X-ray pulses with a broader en-
ergy spectrum and generate ultrashort pulses
under the self-seeding scheme [22].

A. Quadrupole Wakefield

The choice of dechirper parameters is deter-
mined by the following considerations. A smaller
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FIG. 9. Longitudinal phase space w/o (left) and w/
(right) the dechirper wakefields after the dechirper
location with half-gap 2a = 1.4 mm. Bunch head lies
at the left.
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FIG. 10. Simulated images on the dump screen w/o
(left) and w/ (right) the dechirper wakefields with
half-gap 2a = 1.4 mm. Bunch head lies at the left.
The simulated images appear to have deviations with
longitudinal phase space in Fig. 9 due to the wakefield
effects of the undulator vacuum chamber.

dechirper gap generates a stronger longitudinal
wakefield, and allows one to shorten the device
for the required strength of effect. However, an
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extremely small gap makes the transverse dipole
and quadrupole wakefields stronger and leads to
projected emittance growth and tight tolerances
on the beam position jitter and dechirper align-
ment. Note that the transverse wakefields used
in the following tolerance study were calculated
by the field matching program (see the solid lines
in lower plot of Fig. 4).

The quadrupole wakefield can introduce
time-dependent focusing or defocusing in the
beam and increase the projected emittance. In
the proposed design, the dechirper will be di-
vided into two sections of equal length. The
two sections will be oriented orthogonal to each
other, one with vertical plates and the other with
horizontal ones. (Here the direction of dechirper
is determined by the direction of the gap, e.g.
the dechirper structure shown in Fig. 1 is a ver-
tical dechirper.) There are four possible arrange-
ment for the two sections. We use Elegant with
beam parameters in Table II and nominal gap
to simulate the different combinations and com-
pare the projected emittance in Fig. 11, which is
defined as

δε

ε0
=

ε

ε0
− 1 , (20)

where ε0 and ε are the emittance before and after
the dechirper,respectively. The smaller increase
in the horizontal plane is due to the smaller βx
value and larger initial emittance εx before the
dechirper, due to the CSR effect in upstream
magnetic compression. It can be observed that
if the two sections are oriented in the same di-
rection, the projected emittance growth in the
vertical plane will be ∼ 5% even when the beam
and the device are both perfectly aligned. How-
ever, if the second is rotated by 90◦ with re-
spect to the first one, the emittance increase in
both planes will become very small. That is,
the quadrupole wakefield effect can be largely
canceled if the two sections are crossed by 90◦.
According to Fig. 11 we adopt the “V+H” de-
sign for the LCLS dechirper: the first section is
vertical and the second one is horizontal. It is
also noticed that in the simulations in order to
cancel the quadrupole wakefield we need to keep
the average β functions nearly symmetry over
the structures.
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FIG. 11. Projected emittance increase for dif-
ferent combinations of the two dechirper sections.
“V”means vertical dechirper and “H” means hori-
zontal dechirper.

We also studied the projected emittance in-
crease versus different crossing angles of the two
sections as shown in Fig. 12. When the cross-
ing angle is not 90 ◦, there will be a residual
quadrupole wakefield effect that deteriorates the
beam quality. However, based on the simula-
tions, we find that the tolerance for the crossing
angle is very relaxed, with 0.5% or less emittance
increase even for 10◦ deviation from the nominal.
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FIG. 12. Projected emittance increase versus the
cross angle of the two sections.

B. Dipole Wakefield

If the beam enters the structure offset from
the axis, it will excite the dipole wakefield, where
the tail of the beam will be kicked, increasing
the projected emittance. In Fig. 13 we present
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the projected emittance growth versus beam off-
set for beam parameters in Table. II with nomi-
nal gap a = 0.7 mm. Vertical (horizontal) offset
leads to vertical (horizontal) emittance growth.
An analytical estimate is derived based on the
method in Ref. [8] with the fitting formulas of
the longitudinal wakefields. The results are plot-
ted in Fig. 13. We can see the emittance growth
is more sensitive in the vertical plane due to the
larger β function and smaller initial emittance.
In the vertical plane, the beam position jitter
should be controlled to within 30µm if the al-
lowed emittance growth is to be less than 10%.
This tolerance can be relaxed to 50 µm for the
horizontal plane. These numbers are achievable
for the LCLS beam conditions and current diag-
nostics.
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FIG. 13. Projected emittance growth versus the
beam offset. Vertical (horizontal) offset leads to ver-
tical (horizontal) emittance growth.

Note that this transverse jitter requirement is
for the nominal gap of the dechirper. For other
values, the requirement will differ. For exam-
ple, if the full gap is reduced to a = 0.5,mm to
generate larger (factor of∼ 2) longitudinal wake-
field, the beam transverse position jitter should
be controlled within 20µm if we want limit the
emittance growth to 10%. A smaller gap requires
better control of the beam.

In addition to the beam offset, the alignment
errors of the device will also induce dipole wake-
fields and increase the projected emittance, as
analyzed in Appendix B. However, different from
beam offset, the alignment error is steady after
installation. We can offset the beam at the de-
vice entrance to find a trajectory that has no

dipole kick on the beam. Thus, we are left with
the requirements for transverse position jitter.

Note that the effects of the transverse wake-
fields are both depends on the betatron functions
of the beam optics. For the quadruple wake-
field, it is required that the change of betatron
function be small or symmetric over the device.
And for dipole wakefield, smaller betatron func-
tion means looser tolerance for beam position
jitter. So optimization of the optics should be
performed for better performance and relaxed
tolerance.

IV. CONCLUSIONS

We have investigated the use of a pair of flat
metallic plates with small corrugations as a pas-
sive device for chirp control—a “dechirper”—, a
type of device that will be installed in the LCLS.
We studied the device’s wakefields and provided
numerical results obtained by field matching.
When the the corrugation dimensions become
comparable to the gap between the two plates,
the wakefields of the structure deviate from the
analytical solutions that are valid for small cor-
rugations. In addition, higher band modes arise,
changing the shape of the wakefields and increas-
ing their amplitude slightly. We also scanned the
structure parameters over a large range and fit
the longitudinal wake to a simple formula that
can be used for quick calculation in further stud-
ies.

We then considered the application of this
structure to the LCLS for the proposed chirp
control, including effects of both longitudinal
and transverse wakefields. Under nominal op-
erating conditions, the 4-meter-long device will
generate a large dechirping range for the LCLS
beam. The energy loss of the beam tail is
∼ 20 MeV, inducing large energy chirp over
short (∼ 50 fs) bunch. The projected energy
spread is estimated to be as much as ±200%
of the core slice energy spread (with the pre-
cise amount depending on the incoming beam
conditions). Through analysis and simulation,
the quadrupole wake can be largely canceled by
crossing the two sections of the device by 90◦ and
locally using symmetric optics. The dipole wake-
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field gives a tolerance on beam position jitter. If
the emittance growth is to be limited to 10%,
the beam position jitter needs to be controlled
to within 30µm for half-gap a = 0.7 mm, and
20µm for a = 0.5 mm. We have also studied pos-
sible structure alignment errors in the dechirper
that can induce transverse wakefields and cause
beam quality to deteriorate. The dipole wake
due to an alignment error of the two plates can
be canceled by offsetting the beam trajectory.
After optimizing the beam optics in the LTU
area of LCLS, mechanical stability and position-
ing requirements are found to be acceptable for
the current beam parameters and available diag-
nostics.
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Appendix A: Fitting Formulas for the
Longitudinal Wake

In this appendix, we give the fitting formulas
for the longitudinal wakefields. The form of the
fitting formula is taken to be a damped cosine
oscillation as shown as

W||(z) =
π2

16

Z0c

πa2
FH(z)e

− kz
2Q cos(kz) , (A1)

where F is an amplitude correction factor, k is an
effective wave number, andQ is an effective qual-
ity factor. The three fitting parameters are all
simple functions of structure parameters a, h, p.
The fitting formula is valid in the specific range
of the interest shown in Fig. 14. We assume the
dimensions of corrugations are not larger than
the gap size

p, h ≤ a , (A2)

and the corrugation is “deeply corrugated” in
order to have a strong dominant mode

h/p & 0.8 . (A3)

The factor 0.8 here is chosen based on the re-
sults of numerical calculations. The applications
of this structure focus on the short-range wake-
fields, and the longitudinal range of the fitting
formulas is limited to

kz . 3π . (A4)

Note that in the field matching calculations, we
keep g/p = 1/2 for simplicity.
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FIG. 14. Validity range (colored) of the fitting for-
mula Eq. (18).

The field matching and the fitting results for
F , k and Q are shown in Figs. 15, 16 and 17.
Each line in Fig. 15 corresponds to a value of
p/a from 0.1 to 1 and the range of h/a is deter-
mined by the requirement Eq. A3. The double-
arrow line in Figs. 16 and 17 signify that for a
given h/a, we plot all wave numbers under dif-
ferent p/a values ranging from 0.1 to 1. Based
on these results, we can obtain the formulas for
the three fitting parameters. The fitting forms
for the parameters:

F
(h
a
,
p

a

)
=b1

(
1− p

a

)(
1− h

a

)
+ b2

(
1− h

a

)
+ b3

(
1− p

a

)2
+ b4

(
1− p

a

)
+ b5 ,

(A5)

k =
1

a

(
c1√
h/a

+ c2

)
, (A6)

Q

(
h

a

)
= d1

(
h

a

)2

+ d2
h

a
+ d3 , (A7)
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to Eq. (A5) (red dashed line).
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where bi(i = 1, .., 5), c1, c2, d1, d2, d3 are the fit-
ting coefficients. The best fit result for these
coefficients is given in Table. III.

The results of the fitting formulas are also

TABLE III. Coefficients of best fit for Eqs. (A5),
(A6), (A7) to the field matching calculations.

Coefficient Value Coefficient Value

b1 0.1483 c1 1.7096

b2 0.1418 c2 -0.5026

b3 -0.0437 d1 3.2495

b4 0.1460 d2 -9.1830

b5 0.5908 d3 10.2230

indicated in the corresponding figures by red
dashed lines. It can be seen that for the am-
plitude factor F and wave number k the fitting
formulas agree well with the results of the field
matching program. The sum of the five coeffi-
cients F (0, 0) =

∑5
i=1 bi ≈ 1 indicates that the

new formula is consistent with the analytical for-
mula as p/a � 1, h/a � 1. For the wave num-
ber k and quality factor Q, the precision is also
good enough for applications which focus on the
short-range wakefields, such as for energy chirp
control.

Appendix B: Dechirper Structure Errors

We study here the effect of the structure ro-
tation error as shown in Fig. 18. The two planes
of the dechirper can both have a rotation angle
with respect to the beam direction, which can
induce dipole wakefields, even when the beam
passes through the structure on axis.

𝜃1 

𝜃2 

𝑧 

𝑦 

FIG. 18. Dechirper with x-rotation error. Anti-
clockwise (clockwise) rotation corresponds to positive
(negative) angle.

The period of the corrugation is much shorter
than the length of the dechirper and the rotation
angles (denoted by θ1, θ2 in Fig. 18) should be
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small, so we can assume that within a short lon-
gitudinal range, the corrugations can be viewed

as of a constant gap size. Then we can write
down the emittance growth due to the dipole
wakefield within a small rang s→ s+ ∆s

(√( ε
ε0

)2 − 1

)
s→s+∆s

=0.375Z0c ·
Fqβσz∆s

(a+ s(θ1 − θ2)/2)4E
· s(θ1 + θ2)

2σ0
, (B1)

with q bunch charge, σz bunch length, σ0 trans-
verse beam size, E beam energy , β the twiss
parameter and F the amplitude factor of dipole
wakefield calculated by the field matching. For
simplicity, we choose θ1 as the variable and set
θ2 = 0, then we can integrate Eq. B1 over the
beam path in the 2-meter-long section to get
the effect of the dipole wakefield. The projected
emittance increase versus the rotation angle θ1

is given in Fig. 19. The vertical projected emit-
tance will increase by ∼ 9% if one plane of the
dechirper is tilted 0.1 mrad (θ1 = 0.1 mrad, θ2 =
0).
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FIG. 19. Emittance increase versus the rotation an-
gle θ1 (θ2 = 0) for a 2-meter-long section.

However, for a given rotation angle we can
cancel the dipole wakefield effect by offsetting
the beam at the entrance. Assuming the beam
is offset by ∆, Eq. B1 can be rewritten as

(√( ε
ε0

)2 − 1

)
s→s+∆s

=0.375Z0c ·
Fqβσz∆s

(a+ s(θ1 − θ2)/2)4E
· s(θ1 + θ2)/2−∆

σ0
, (B2)

For example, if the rotation angles of the two
planes are θ1 = 0.1 mrad and θ2 = 0, we can
offset the beam in y in Fig. 18 by +40µm to
cancel the dipole wakefield, which can be seen in

Fig. 20. Although the analysis here is only for
the angle errors of the two plates, it can be also
applied to other structure errors that can excite
the dipole wakefields.
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