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Abstract

We construct an effective QCD light-front Hamiltonian for both mesons and baryons in the chiral

limit based on the generalized supercharges of a superconformal graded algebra. The superconfor-

mal construction is shown to be equivalent to a semi-classical approximation to light-front QCD

and its embedding in AdS space. The specific breaking of conformal invariance inside the graded

algebra uniquely determines the effective confinement potential. The generalized supercharges con-

nect the baryon and meson spectra to each other in a remarkable manner. In particular, the π/b1

Regge trajectory is identified as the superpartner of the nucleon trajectory. However, the lowest-

lying state on this trajectory, the π-meson is massless in the chiral limit and has no supersymmetric

partner.
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I. INTRODUCTION

Light front holographic QCD (LFHQCD) has brought important insights into hadron

dynamics, especially to the color confinement problem. In Refs. [1, 2] a remarkable equiv-

alence between the bound-state equations of the light-front Hamiltonian in 3+1 physical

space-time [3] and those obtained in five-dimensional anti-de Sitter space (AdS5) has been

observed: The holographic coordinate z in AdS5 space can be identified with the boost-

invariant light front (LF) separation ζ between constituents [4]. This holographic equivalence

allows one to relate the effective light-front potential for bosons to the symmetry-breaking

factor introduced in AdS5. In the case of integer spin fields, the breaking of the conformal

isometries of AdS space can be done by introducing an additional model-dependent factor

into the AdS action – a dilaton term eϕ(ζ). The specific form of the symmetry-breaking

factor, however, is not fixed a priori, but it can be deduced from the comparison with

the experimentally observed spectra. Linear Regge trajectories demand for ϕ(ζ) the form

ϕ(ζ) = λM ζ2 [5, 6]. The resulting LF effective potential is harmonic and confining, and it

also includes a J-dependent constant term. This extra term is a consequence of the separa-

tion between kinematical and dynamical quantities for arbitrary spin [7], prescribed by the

light-front mapping of AdS bound-state equations. The extra constant term has important

phenomenological consequences; in particular, it leads in the chiral limit to a massless pion.

A large step forward in understanding why the effective potential must have the form

of a confining harmonic potential was made by applying a method developed in conformal

quantum mechanics by de Alfaro, Fubini and Furlan [8] (dAFF) to the light-front bound-

state equations [9]. Starting from a conformally invariant action, a new Hamiltonian can be

constructed as a superposition of the generators of the conformal algebra. Remarkably, the

action remains conformally invariant, and the form of the resulting confining potential is

uniquely fixed [9]. It has the form of a harmonic oscillator and corresponds to the quadratic

dilaton term previously introduced before by purely phenomenological arguments [5, 6].

However, the J-dependent constant term, referred to above, cannot be derived from the

DAFF procedure. Furthermore, for half-integer spin a dilaton term in the AdS action

does not lead to confinement [10], and therefore an additional Yukawa-like interaction term

ψ̄V (ζ)ψ has to be added to the fermionic action. This Yukawa interaction term V (ζ) again

has to be determined phenomenologically – one finds that the linear baryon Regge trajecto-
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ries, with equal spacing in the orbital and radial excitations, as observed phenomenologically,

requires the form V (ζ) = λB ζ [11, 12].

Recently, we have shown [13] that a comparison of the half-integer LF bound-state equa-

tions with the Hamiltonian equations of superconformal quantum mechanics fixes the form of

the LF potential in full agreement with the phenomenologically deduced form V (ζ) = λB ζ.

This procedure, originally developed by Fubini and Rabinovici (FR) [14], is the superconfor-

mal extension of the procedure applied by dAFF [8]. In brief: a new evolution Hamiltonian

can be constructed using a generalized supercharge which is a superposition of the original

supercharge together with a spinor operator which occurs only in the superconformal algebra.

The resulting superconformal quantum mechanics applied to the fermionic LF bound-state

equations is completely dual to AdS5; this is in contrast to conformal quantum mechanics

without supersymmetry, which is dual to the bosonic sector of AdS5 only up to a constant

term, which in turn is fixed only by embedding the LF wave equations for arbitrary integer

spin into AdS5.

As we shall discuss in this paper, superconformal quantum mechanics applied to LF

Holographic QCD also implies striking similarities between the meson and baryon spectra.

In fact, as we shall show, the holographic QCD light-front Hamiltonians for the states on

the pion and proton trajectories are identical if one shifts the internal angular momenta

of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. The baryon and meson

trajectories are actually observed to be linear in the squared masses M2 ∝ (n + L), as

predicted by holographic QCD, a feature not obvious for states satisfying effective bound-

state equations (Dirac or generalized Rarita-Schwinger). The slope of the trajectories in the

principal quantum number n and the orbital angular momentum L are also very similar. In

fact, the best fits to the numerical values for the Regge slopes agree within ±10% for all

hadrons, mesons and baryons; this leads to a near-degeneracy of meson and baryon levels in

the model.

The idea to apply supersymmetry to hadron physics is certainly not new [15–17]. In [15]

mesons and baryons are grouped together in a big supermultiplet, a representation of U6/21.

In [16] the supersymmetry results of Miyazawa [15] are recovered in a QCD framework,

provided that a diquark configuration emerges through an effective string interaction. This

approach relies heavily on the fact that in SU(3)C a diquark can be in the same color

representation as an antiquark, namely a 3̄. A meson is formed by a quark-antiquark pair
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and a baryon by a quark and a diquark, which remains color singlet. It is plausible to assume

that the color force between a quark and a diquark is approximately equal to that between

a quark and an antiquark; and from this, an effective supersymmetry between mesons and

baryons follows. An apparent difficulty in this approach is that the pion and the nucleon

would have the same mass and thus, supersymmetry would be badly broken [17]. In fact, in

the chiral limit – the limit of massless quarks – the pion is massless, and this state has no

obvious supersymmetric partner: there is no (nearly) massless baryonic state. In the direct

diquark approach [15–17] there is no natural way to take into account the special role of the

pion.

In certain aspects, our approach is similar to the diquark picture described above. The

light-front clustering decomposition used here divides the baryon constituents into a special

constituent, the active quark, and the rest, the spectator cluster, which could be identified

with a diquark. However, in contrast to the direct diquark picture, the problem of a baryonic

partner of the pion does not occur in our approach. It yields a massless pion, but the

supercharge, which transforms meson into baryon wave functions, annihilates the pion wave

function and therefore it has no baryonic partner. The details of this mechanism, which

only occurs for a massless pion, are explained in Sec. IV A.

The approach described here, in contrast to the direct diquark picture of Refs. [15–17],

is by no means restricted to a special number of colors. Indeed, in this effective theory the

color quantum number does not appear explicitly. However, since it is an offspring of the

Maldacena AdS/CFT correspondence [18], it is reminiscent of an NC → ∞ theory. This

interpretation is also in accordance with the zero width of all states, including the excited

ones. It is interesting to note that there exists a genuine supersymmetric approach to the

meson-baryon relation relying on the NC → ∞ limit. Armoni and Patella [19] consider

N = 1 supersymmetric SU(NC); in their approach, the meson is formed by a bosonic

string from a quark to an anti-quark, whereas the baryon is formed by a fermionic string

between two quarks. In the large NC limit the string tension for both objects become equal:

“Supersymmetric relics” [20] from the supersymmetric theory lead to equal string tension

for mesons and baryons in SU(NC).

We emphasize that the supersymmetric relations between the observed baryons and

mesons, which we derive here, are not a consequence of supersymmetric QCD with scalar

quarks and gluinos. Since no supersymmetric partners of the fundamental QCD fields have
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been observed, such a theory is evidently broken below the TeV scale. The relations derived

here are relations between the wave functions of hadrons, not field operators. The relations

obtained in the framework of supersymmetric quantum mechanics reflect properties of the

confining mechanism in an effective semiclassical theory. One thus expects deviations from

experiment which are of the same order as in light-front holographic QCD.

This article is organized as follows: After briefly reviewing some important results of

light-front holographic QCD in Sec. II, we discuss in Sec. III the construction of the bound-

state Hamiltonian within the superconformal algebra and the breaking of dilation invariance

following [14]. The search for the supersymmetric partners of the baryon trajectories is

discussed in Sec. IV. A summary of the main results and our conclusions are presented in

Sec. V. Some useful formulae for the derivations presented in this article are given in the

appendices.

II. LIGHT FRONT HOLOGRAPHIC QCD

We first briefly review some principal results of light-front holographic QCD [21]. In holo-

graphic QCD an integer-spin field in AdS5, with a free hadronic field at the four-dimensional

border ζ = 0, is split into a component ΦJ(ζ), describing the behavior in the bulk, and a

plane wave with an integer J-spinor describing the Minkowski space-time behavior (See [21],

Sec. 5.1.1):

Φν1···νJ
(P, ζ) = ΦJ(ζ)eiP ·xεν1···νJ

(P ). (1)

The four-momentum squared is the mass squared of the hadron represented by the free field,

P 2 = M2.

A Schrödinger-like wave equation [2, 7] follows from the AdS action for arbitrary integer

spin-J modified by a dilaton term eϕ(ζ):(
− d2

dζ2
+

4L2 − 1

4ζ2
+ U(ζ, J)

)
φJ(ζ) = 0, (2)

where we have factored out the scale (1/ζ)J−3/2 and dilaton factors from the AdS field ΦJ by

writing ΦJ(ζ) = (R/ζ)J−3/2 e−ϕ(ζ)/2 φJ(ζ). Equation (2) has exactly the form of a LF wave

equation for massless quarks with a LF effective potential U and LF angular momentum L.

The latter is related to the total spin J and the product of the AdS mass µ with the AdS
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radius R by

(µR)2 = L2 − (J − 2)2. (3)

The potential U is related to the dilaton profile by [6, 7]

U(ζ, J) =
1

2
ϕ′′(ζ) +

1

4
ϕ′(ζ)2 +

2J − 3

2ζ
ϕ′(ζ). (4)

The holographic variable ζ is identified with the LF invariant invariant transverse separation:

ζ2 = b2
⊥u(1− u) [1, 2], where b⊥ is the transverse separation of the constituents and u is the

longitudinal light-front momentum fraction.

In the case of the quadratic dilaton profile ϕ(ζ) = λMζ
2, the LF effective potential is

U(ζ, J) = λ2
Mζ

2 + 2λM(J − 1), and the holographic bound-state wave equation (2) can be

written as (
− d2

dζ2
+ λ2

M ζ2 + 2λM (J − 1) +
4ν2 − 1

4ζ2

)
φJ = M2 φJ , (5)

for a meson with total spin J . Near ζ = 0 the regular solution behaves as φJ(ζ) ∼ ζν+ 1
2 ,

corresponding to twist 2 + ν. In LFHQCD one thus has ν = LM , where LM is the LF

angular momentum of the meson, LM = |LzM |max. The eigenvalues of (5) predict the meson

spectrum

M2
n,L,J = 4

(
n+

J + LM
2

)
λM , (6)

for λM > 0, where n indicates the radial excitation quantum number: the number of notes

in the wavefunction.

Similarly, the AdS field for arbitrary half-integer spin-J can be factorized into a bulk wave

function Ψ±J (ζ) and a plane wave with a Rarita-Schwinger or Dirac spinor with momentum

P and mass M , representing a freely propagating baryon at the AdS border (See [21], Sec.

(5.2))

Ψ±ν1···νJ−1/2
(P, ζ) = Ψ±J (ζ) eiPxu±ν1···νJ−1/2

(P ), (7)

where the chiral spinors u±ν1···νJ−1/2
= 1

2
(1± γ5)uν1···νJ−1/2

satisfy the equations

γ · P u±ν1···νJ−1/2
(P ) = Mu∓ν1···νJ−1/2

(P ) ; γν1 u
±
ν1···νJ−1/2

(P ) = 0. (8)

The spinors u± have positive and negative chirality, respectively.

The bound-state wave equations for the AdS bulk wave functions Ψ±J can be derived

from the action for arbitrary half-integer spin-J if one includes the effective interaction
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V (ζ) = λBζ. The result is [7](
− d2

dζ2
+ λ2

B ζ
2 + 2λB (ν +

1

2
) + λB +

4ν2 − 1

4ζ2

)
ψ+
J =M2 ψ+

J , (9)(
− d2

dζ2
+ λ2

B ζ
2 + 2λB (ν +

1

2
)− λB +

4(ν + 1)2 − 1

4ζ2

)
ψ−J =M2 ψ−J , (10)

where we have factored out the scale (1/ζ)J−5/2 by writing Ψ±J (ζ) = (R/ζ)J−5/2 ψ±J (ζ), and

ν is related to the product of the AdS fermionic mass and the AdS radius R by

ν = µR− 1

2
. (11)

The baryon spectrum which follows from (9,10) is

M2
n,ν = 4(n+ ν + 1)λB, (12)

for λB > 0. The eigenvalues given by (12) do not depend explicitly on J , an important

result also found in Ref. [22].

III. SUPERCONFORMAL ALGEBRA AND BREAKING OF DILATATION SYM-

METRY

We will now show how the preceding results can be systematically derived using super-

conformal algebra, but with important new consequences. One starts with the simplest

graded algebra of two fermionic operators, the supercharges Q and Q†, and a Hamiltonian

H [23]

{Q,Q†} = 2H, (13)

{Q,Q} = {Q†, Q†} = 0, (14)

[Q,H] = [Q†, H] = 0. (15)

A simple realization is:

Q = ψ†(−ip+W ), Q† = ψ(ip+W ), (16)

where p is the canonical momentum operator; ψ and ψ† are fermionic operators with anti

commutation relation

{ψ, ψ†} = 1, (17)
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and W is an arbitrary potential (the superpotential).

A realization using Pauli matrices ~σ is:

ψ =
1

2
(σ1 − iσ2), ψ† =

1

2
(σ1 + iσ2), (18)

leading to

B =
1

2
[ψ†, ψ] =

1

2
σ3, (19)

where B is the generator of U(1) transformations ψ → eiαψ, ψ† → e−iαψ† with eigenvalues

+1
2

and −1
2
.

In the Schrödinger picture the supercharges are realized as operators in L2(R1), with

p = −i d/dx:

Q = ψ†
(
− d

dx
+W (x)

)
, (20)

and

Q† = ψ

(
d

dx
+W (x)

)
, (21)

leading to the supersymmetric Hamiltonian:

H =
1

2
{Q,Q†} =

1

2

(
− d2

dx2
+W 2(x)− 2W ′(x)B

)
. (22)

The Hamiltonian operates on 2-spinors

|φ〉 =

φ1

φ2

 , (23)

of which one component can be attributed to fermion number 1 and the other 0. Imposing

conformal symmetry leads to an unique choice of W [14, 24], namely

W (x) =
f

x
, (24)

with a dimensionless constant f .

Introducing the spinor operators

S = ψ† x, S† = ψ x, (25)

one can construct the larger graded algebra [25] (superconformal algebra), which contains the

conformal algebra with the dilatation generator D and the special conformal transformation
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generator K. The extended algebraic structure is

1

2
{Q,Q†} = H,

1

2
{S, S†} = K, (26)

{Q,S†} = f −B + 2iD, (27)

{Q†, S} = f −B − 2iD, (28)

where the operators

H =
1

2

(
− d2

dx2
+
f 2 + 2Bf

x2

)
, (29)

K =
1

2
x2, (30)

D =
i

4

(
d

dx
x+ x

d

dx

)
, (31)

satisfy the conformal algebra

[H,D] = iH, [H,K] = 2iD, [K,D] = −iK. (32)

The anti-commutators of all the other generators vanish: {Q,Q} = {Q,S} = · · · = 0.

Fubini and Rabinovici considered several ways to construct a new compact quantum

mechanical evolution operator inside the superconformal algebra. The most straightforward

way is to directly follow the procedure of dAFF [8] and construct a linear combination

of the (old) Hamiltonian and the generator of special conformal transformations [14, 24].

There is, however, the interesting possibility of constructing a new Hamiltonian using the

superposition of generalized supercharges within the extended graded algebra [14] and thus

preserving supersymmetry. This is the procedure we shall follow here. To this end, we

slightly generalize the definitions of FR [14] and introduce a new supercharge R as a linear

combination of the generators Q and S

Rλ = Q+ λS. (33)

This leads, in analogy to the dAFF procedure in conformal quantum mechanics, to the

introduction of a constant with nonzero dimensions; in fact, since Q has dimension [x−1],

and S has dimension [x1], λ must therefore have dimension [x−2] .

One can now construct a new evolution operator G inside the superconformal algebra in
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terms of the new supercharge R:

{Rλ, R
†
λ} = G, (34)

{Rλ, Rλ} = {R†λ, R
†
λ} = 0, (35)

[Rλ, G] = [R†λ, G] = 0. (36)

We find

G = 2H + 2λ2K + 2λ (fI−B), (37)

which is a compact operator for λ ∈ R.

The supercharge operator R†λ transforms a state |φ〉 into the state R†|φ〉 with different

fermion number (See Appendix B). By construction, the evolution operator G commutes

with Rλ; it thus follows that the states |φ〉 and R†|φ〉 have identical eigenvalues. In fact, if

|φE〉 is an eigenstate of G with E 6= 0,

G |φE〉 = E |φE〉, (38)

then GR†λ |φE〉 = R†λG |φE〉 = E R†λ|φE〉, and thus R†λ |φE〉 is also an eigenstate of G with

the same eigenvalue.

The new Hamiltonian G is diagonal. In the Schrödinger representation:

G11 =

(
− d2

dx2
+ λ2 x2 + 2λ f − λ+

4(f + 1
2
)2 − 1

4x2

)
, (39)

G22 =

(
− d2

dx2
+ λ2 x2 + 2λ f + λ+

4(f − 1
2
)2 − 1

4x2

)
, (40)

with G10 = G01 = 0. For f ≥ 1
2

and λ > 0 the spectra of both operators are identical:

En = 4

(
n+ f +

1

2

)
λ. (41)

Comparing (9, 10) with (39, 40) we recover the result of Ref. [13], namely that the mod-

ified Hamiltonian G of superconformal quantum mechanics is the same as the Hamiltonian

derived in LF holographic QCD, provided we identify φ2(x), the eigenfunction of G22, with

the positive chirality wave function ψ+
J (ζ), identify φ1(x), the eigenfunction of G11, with

ψ−J (ζ); and take f − 1
2

= ν = LB and λ = λB. The consequences of this remarkable result

have been discussed extensively in Ref. [13].
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In Ref. [13] the U(1) operator (19) B = [ψ†, ψ] was identified in the light-front with the

Dirac matrix γ5 which acts on physical spinors. In that paper we showed that the super-

charges relate the chirality-plus component of a baryonic wave function with the chirality-

minus component of the same baryonic state. In the usual applications of supersymmetry,

however, the supercharges connect bosonic to fermionic states. We therefore shall explore

in the next section the possibility to relate mesonic with baryonic wave functions by the su-

percharges within the extended graded algebra. In this case, the supercharges act on some

internal space. The supercharges in [13] and those used in the following are therefore only

formally related. The bosonic operators H,D and K, however, have in both cases the same

physical meaning. In particular, we will show that the G11 and G22 equations (39) and (40)

match our light-front holographic equations for both the pion and nucleon trajectories. The

extension of this superconformal connection to the ∆-ρ families will also be discussed.

IV. BARYON-MESON SUPERSYMMETRY

A. The Superpartner of the Nucleon Trajectory

In the case of baryons, the assignment of the leading-twist parameter ν in Eqs. (9, 10), as

given in Table I [13], successfully describes the structure of the light baryon orbital and radial

excitations [26]. The assignment ν = LB for the lowest trajectory, the nucleon trajectory,

is straightforward and follows from the stability of the ground state – the proton – and the

mapping to LF quantized QCD.

The bound-state equations for the nucleon trajectory are (cf. Eqs. (9, 10)):(
− d2

dζ2
+ λ2

B ζ
2 + 2λB(LB + 1) +

4L2
B − 1

4ζ2

)
ψ+
J = M2 ψ+

J , (42)(
− d2

dζ2
+ λ2

B ζ
2 + 2λB LB +

4(LB + 1)2 − 1

4ζ2

)
ψ−J = M2 ψ−J . (43)

We will now search for the meson supersymmetric partners of the nucleon trajectory. We

choose as starting point the leading-twist chirality component ψ+
J (ζ) which satisfies (42).

With the identifications x = ζ, f − 1
2

= LB and λ = λB, the plus chirality component ψ+
J (ζ)

is also an eigenfunction of G22, Eq. (40). This identification allow us to define an effective

“baryon number” NB as a convenient convention to label our “meson” and “baryon” states.
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TABLE I. Orbital quantum number assignment for the leading-twist parameter ν for baryon

trajectories according to parity P and internal spin S.

S = 1
2 S = 3

2

P = + ν = LB ν = LB + 1
2

P = – ν = LB + 1
2 ν = LB + 1

In terms of the U(1) operator B = 1
2
[ψ†, ψ]

NB =
1

2
−B, (44)

with eigenvalues

NB|φ〉M = 0, (45)

NB|φ〉B = |φ〉B, (46)

where |φ〉B has only a lower component (φ1 = 0) and |φ〉M only an upper component

(φ2 = 0):

|φ〉B =

 0

φ2

 , |φ〉M =

 φ1

0

 . (47)

Therefore, the supersymmetric partner G11 (39) should describe a meson trajectory. In-

deed, the Hamiltonian G11 with the above mentioned substitutions agrees with the bound-

state equation (5) for mesons with J = LM , provided we identify f + 1
2

= LM = LB + 1 and

set λM = λB. The lowest state on the mesonic trajectory, with J = LM = 0 – the pion

– is massless in the chiral limit. It corresponds to a negative value of f , namely f = −1
2

and thus its baryonic partner would have LB = −1, which is an unphysical state. As dis-

cussed in Appendix A, this remarkable result, also follows directly from the superconformal

algebra. As shown there, the operator which transforms a mesonic state into its baryonic

supersymmetric counterpart, annihilates the meson state if f = −1
2
.

We have thus derived the astonishing result that the pion has no supersymmetric partner

even though no explicit breaking of supersymmetry has been introduced. Since the super-

charges Rw, R
†
w, which connect mesonic and baryonic wave functions, commute with the
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Hamiltonian G (34 - 36), it follows that if |φ〉M is a mesonic state with eigenvalue E, then

there exists also a baryonic state R†w|φ〉M = |φ〉B with the same eigenvalue E. Indeed

G |φ〉B = GR†w|φ〉M = R†wG |φ〉M = E |φ〉B. (48)

However, for the specific eigenvalue E = 0 we can have the trivial solution

|φ(E = 0)〉B =

 0

0

 . (49)

This remarkable feature underlines the special role played by the pion in light-front holo-

graphic QCD. As a unique state of zero energy, it plays the same role as the unique vacuum

state in a supersymmetric quantum field theory [23, 27].

In is interesting to note that the case of negative f was not considered in [14], since the

classical potential f
2x2 + λ2x2 has no stable ground state for f < 0. Nevertheless, the lowest

lying bound state of G11 with f = −1
2

has the normalizable wave function x
1
2 e−λMx2/2. This

situation is reminiscent of the AdS/QCD correspondence: angular momentum L = 0 corre-

sponds to a tachyonic AdS mass µ2 < 0 (See Eq. (3)), but nonetheless the Breitenlohner-

Freedman stability bound [29] is still satisfied.

We thus obtain from superconformal quantum mechanics a very satisfactory result: both

the nucleon and the I = 1, S = 0 mesons lie on linear trajectories with the same slope

and the same radial and orbital excitation energies. The lowest lying state on the meson

trajectory is the massless pion. In superconformal quantum mechanics it corresponds to the

value f = −1/2, and therefore it has no supersymmetric partner.

In the framework of superconformal quantum mechanics all eigenstates with eigenvalues

different from zero have supersymmetric partners. We emphasize that the pion with f = −1
2

and zero mass is unique: it is annihilated by the fermion-number changing supercharge R†λ,

and it therefore has no supersymmetric partner (See Fig. 1). This is in accordance with

the spectroscopy derived from light-front holographic QCD, where the partners have the

masses M2
B = 4λB(n + LB + 1) and M2

M = 4λM(n + LM) respectively. This result follows

from (12) and (6) with ν = LB and J = LM , respectively. If one takes λB = λM in LF

holographic QCD, which is automatic in the superconformal theory, the spectral results are

then identical for LM = LB + 1.

The predictions of supersymmetric quantum mechanics are based on the fact that the

supercharge operator Rλ transforms baryon states with angular momentum LB into their
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FIG. 1. Meson-nucleon superconformal connection. The predicted value of M2 in units of 4λ

for mesons with S = 0 (red triangles), and baryons with S = 1
2 (blue squares) is plotted vs the

orbital angular momentum L. The π-meson has no baryonic partner. The baryon quantum number

assignment is taken from Ref. [13]. Nucleon trajectories for Jz = Lz ± Sz are degenerate.

mesonic superpartners with angular momentum LM = LB + 1. The operator R†λ operates

in the opposite direction. We thus have a complete correspondence between light-front

holographic QCD and supersymmetric quantum mechanics. The pion has a very special role:

its existence is predicted by the superconformal algebra, and according to the formalism, it

is massless and has no supersymmetric partner.

The superconformal predictions presented in Fig. 1 should be understood as a zeroth-

order approximation. There are, however, several phenomenological corrections to this initial

approximation. First, the slope of the π/b1 trajectory is not exactly identical to the slope of

the nucleon trajectory: for the mesons
√
λM = 0.59 GeV, whereas for the nucleons

√
λB =

0.49 GeV [21]. This makes the b1 heavier than its supersymmetric partner, the nucleon. In

terms of LFHQCD this indicates that for this internal spin configuration, the confining force

between the spectator and the cluster in the baryon is weaker than between the constituents

of the meson; this makes the meson a more compact object since 〈r2〉 ∼ 1/λ. Second,

the negative parity nucleon states are systematically higher than the nucleons with positive

14



parity, a fact which in LF holographic QCD has been taken into account phenomenologically

by the half-integer twist assignment ν = L+ 1
2

given in Table I. It is expected that this effect

could be explained by the different quark configurations and symmetries of the baryon wave

function [30–32].
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N
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2 4
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1-2015
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FIG. 2. Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and baryons

with S = 1
2 (blue squares). The experimental values of M2 are plotted vs LM = LB + 1. The solid

line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

The nucleon-meson superpartner pairs are plotted in Fig. 2 with their measured masses.

The observed difference in the squared masses of the supersymmetric partners indicates that

the most important breaking of supersymmetry is due to the difference between λB and λM .

Only confirmed PDG states have been included [33].

B. The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and mesons

follows from the action of the fermion-number changing supercharge operator Rλ. As we

have discussed in the previous section, this operator transforms a baryon wave function with

angular momentum LB into a superpartner meson wave function with angular momentum
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LM = LB + 1 (See Appendix B), a state with the identical eigenvalue – the hadronic mass

squared. We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2
, such as

the ∆
3
2

+

(1232), and baryons with with negative parity and internal spin S = 1
2
, such as the

∆
1
2

−
(1620), lie on the same trajectory; this corresponds to the phenomenological assignment

ν = LB + 1
2
, given in Table I. From (12) we obtain the spectrum [34]

M
2(+)

n,LB ,S= 3
2

= M
2(−)

n,LB ,S= 1
2

= 4

(
n+ LB +

3

2

)
λB. (50)

If we now apply the superconformal relation LM = LB + 1 and λM = λB we predict a meson

trajectory with eigenvalues

M2
n,LM

= 4

(
n+ LM +

1

2

)
λM , (51)

which is, precisely, the expression for the spectrum of the ρ-meson (6) for J = LM+1. Again,

one sees that the lowest-lying mesonic state, in this case the ρ meson, has no superpartner,

since LM would be negative.

Since the phenomenological value of λ for the ∆ trajectory is close to that of the ρ

trajectory,
√
λ∆ = 0.51 and

√
λρ = 0.54 (See Ref. [21]), one can expect good agreement for

the masses of the supersymmetric partners. This is indeed the case, as can be seen from

Fig. 3, where we have included the confirmed ∆ and J = L+S, S = 1, vector-meson states

from Ref. [33].

Using the assignment ν = LB+ 1
2

from (Table I) and the comparison of Eqs. (9) with (40)

(or (10) with (39)), we obtain the relation f = ν+ 1
2

= LB + 1 = LM for the superconformal

relation LM = LB + 1. Thus from (39) we obtain the LF-Hamiltonian for the superpartner

vector meson trajectory

G11 =

(
− d2

dζ2
+ λ2

M ζ2 + 2λM(LM − 1) +
4(LM + 1

2
)2 − 1

4ζ2

)
, (52)

with λ = λM = λB. This expression is to be compared with the light-from holographic

Hamiltonian which follows from (5) for J = LM + 1 and ν = LM :

HLF =

(
− d2

dζ2
+ λ2

M ζ2 + 2λM LM +
4L2

M − 1

4ζ2

)
. (53)
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FIG. 3. Supersymmetric vector-meson and ∆ partners: Mesons with S = 1 (red triangles) and

S = 0 (red circles) and ∆ states with S = 3
2 and S = 1

2 (blue squares) for plus and minus parity

respectively. The experimental values of M2 are plotted vs LM = LB+1. The solid line corresponds

to
√
λ = 0.53 GeV. The ρ and ω have no baryonic partner, since it would imply a negative value

of LB.

Thus, by extending the meson-baryon connection for baryons with ν = LB + 1
2

we obtain

an identical expression for the vector meson-spectrum, but with a different LF Hamiltonian.

This somewhat less satisfactory feature of the ∆-ρ relations is reflected in the transforma-

tion under the supercharge R†w (Appendix B). The ρ meson wave function φ1, that is the

eigenfunction of G11 with f = 0, is not annihilated by the action of R†w (31). Indeed the

two Hamiltonians G11 and G22, (39) and (40) respectively, are identical for f = 0. Thus in

this case, the unphysical value of the angular momentum, LB = −1, is the only reason to

exclude the baryonic superpartner of the ρ. This is in contrast to the case of the pion, where

the fermion-number changing operator R†w actually annihilates the pion wave function (29),

since it is a zero mass eigenmode.
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V. SUMMARY AND CONCLUSIONS

Conformal and superconformal Quantum Mechanics, together with light-front holo-

graphic QCD, has revealed the importance of conformal symmetry and its breaking for

understanding the confinement mechanism of QCD.

If one introduces the mass scale scale for hadrons using the method developed by de

Alfaro, Fubini and Furlan [8], one obtains a confining theory for mesons while retaining a

conformally invariant action. If one applies the DAFF procedure to light-front Hamiltonian

theory, the form of the LF potential is uniquely fixed to that of a harmonic oscillator in

the invariant LF radial variable ζ [9]. It predicts color confinement and linear Regge meson

trajectories with the same slope in the radial and orbital excitations n and L. If one compares

the construction of the confining LF potential with the Hamiltonian obtained in light-front

holographic QCD, then the dilaton factor in the AdS action is uniquely fixed [5, 6]. The

appearance of the extra spin-dependent constant term in the LF potential is a consequence

of the specific embedding of the LF wave equations in AdS for arbitrary integer-spin [7].

This extra term is essential for agreement with experiment, including the prediction of a

massless pion in the chiral limit.

In the case of half-integer spin, the dilaton in the AdS action does not lead to confinement

for baryons since such a term can be absorbed into the wave function. Confinement thus

requires the addition of a Yukawa-like term in the half-integer spin Lagrangian. However,

this apparent deficiency of the AdS theory is cured [13] by the application of superconformal

quantum mechanics.

Superconformal quantum mechanics can be constructed by restricting the superpotential

in Witten’s construction [23] to a conformally invariant expression [14, 24]. Remarkably, it is

possible to introduce a mass scale into the quantum mechanical evolution equations, without

violating supersymmetry, by introducing a new supercharge which is a linear combination

of generators of the super conformal algebra [14]. Furthermore, by connecting the resulting

wave equations to the light-front holographic formalism, one fixes not only the confining term

for baryons and mesons for all spins, but also the constant terms in the LF potential. The

resulting spectra reproduces the principal observed features of mesonic and baryonic Regge

trajectories: the resulting trajectories are linear, and the spacing of the radial excitations

equals the spacing of the orbital ones. Furthermore, the baryon masses depend only on the
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LF angular momentum L, but not on the total spin J , as observed in experiment.

There are striking phenomenological similarities between the baryon and meson spectra

which would not be expected from the underlying quark degrees of freedom, given that in

QCD the valence state in the meson case consists of confined qq̄ excitations, and baryons

are normally considered qqq bound states. However, the observed Regge trajectories are

linear in the squared mass for both cases, with equal spacings of the orbital and angular

excitations – both features which are typical for the proto-string theory such as the Veneziano

model [35]. These essential features also follow from the light-front clustering properties of

the semiclassical approximation to strongly coupled QCD and its holographic embedding

in AdS space. In this approximation a nucleon is effectively a quark-diquark object, and

it is also described by a one-dimensional effective theory. Furthermore, the coefficients of

the confining term for mesons and baryons agree within ±10 %, although they would seem

to be completely unrelated. These similarities suggest that supersymmetric relations are

responsible for these remarkable features.

In Ref. [13] superconformal quantum mechanics was used to describe baryonic states.

There, the supercharges were shown to relate the positive and negative chirality compo-

nents of the baryon wave functions, consistent with parity conservation. In this paper we

have shown that supercharges, constructed formally as in [13], can also be used to relate

hadronic states with different fermion number. This leads to remarkable relations between

the spectroscopy of baryons and mesons, thus extending the applicability of light-front su-

perconformal quantum mechanics to hadronic physics.

An important feature of the Hamiltonian operators (39, 40), which act on the two com-

ponents of a supermultiplet |φ〉, is the difference in the singular term of the potential. For

one component of the Hamiltonian, it is 1
4x2

(
(f + 1

2
)2 − 1

)
; for the other component, it is

1
4x2

(
(f − 1

2
)2 − 1

)
. This has the consequence that the power behavior of the wave function

at the origin (twist) differs by one unit for the two components. In in light-front holographic

QCD this implies a difference of the LF angular momentum by one unit LM = LB + 1.

Comparing the spectra of the nucleon and the π/b1 trajectory one indeed observes this de-

generacy (See Fig. 2). The leading-twist wave function of the baryons is identified with the

component φ2 of the supermultiplet |φ〉, and the wave function of the mesons is identified

with the component φ1. As a consequence, the shared symmetric features of mesons and

baryons are in fact a consequence of the properties of the superconformal algebra.
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The problem for supersymmetry posed by the pion, which is massless in the chiral limit,

and therefore can have no baryonic superpartner, is solved in a simple way: The value of the

dimensionless constant f of the conformal potential (24) has the value f = LM − 1
2

= −1
2
.

The supercharge R†λ, (33), which transforms the meson into the baryonic partner, annihilates

the pion state, and therefore there cannot be a baryonic partner. The case f = −1
2

was not

considered by Fubini and Rabinovici [14], since the classical potential in this case has no

lower limit. Nevertheless, the pion wave function is regular at the origin and normalizable.

We have previously demonstrated a correspondence between superconformal quantum

mechanics and light-front holographic QCD; however, this demonstration requires both a

dilaton term eλζ
2

in the bosonic AdS action, as well as a Yukawa-like interaction term

λψ̄ z ψ. One must also assume in LFHQCD the same positive value of λ in both terms.

In contrast, in the superconformal theory, the equality of of λ for mesons and baryon is

exact. (Phenomenologically, this relation is broken since
√
λ = 0.59 GeV for the π/b1 and

√
λ = 0.49 GeV for the nucleon trajectory (See Fig. 2).

We have also applied the same procedure to the ρ/a2 and the ∆-trajectories. The wave

functions of the ρ-trajectory are identified with the component φ1, and the component φ2

of the super multiplet is identified with the ∆-states. As for the case of the π-nucleon

connection, the properties of the fermion-changing supercharge Rλ imply that the meson

angular momentum LM is one unit larger than the baryon angular momentum LB, LM =

LB + 1 consistent with the Hamiltonians (39, 40). One indeed obtains excellent agreement

between the spectra of the mesonic and baryonic states (See Fig. 3). The values of
√
λM

and
√
λB are nearly degenerate as predicted by superconformal quantum mechanics.

There is, however, a problem with the ρ/a2-∆ connection in that half-integer twist is

apparently required. For the ∆ trajectory the observed spectrum corresponds to half-integer

twist 2 +LB + 1
2
, which also implies half-integer twist for the mesons on the ρ/a2 trajectory.

Although the spectra of this half-integer twist obtained with the superconformal Hamiltonian

operator (39) correspond fully to those obtained by LFHQCD (and experiment), the wave

functions do not; they differ by a factor x
1
2 . Related to this problem is the fact that the

supercharge R†λ does not annihilate the ρ wave function, but it formally leads to a baryonic

state with the same mass. However, this state is excluded as a physical state, since it would

have the angular momentum LB = −1.

It should be noted that the semiclassical equations of light-front holographic QCD and
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superconformal quantum mechanics are intended to be a zeroth order approximation to the

complex problem of bound states in QCD. We also emphasize that the quantum mechanical

supersymmetric relations derived here are not a consequence of a supersymmetry of the

underlying quark and gluon fields; they are instead a consequence of the superconformal-

confining dynamics of the semi-classical theory and the clustering inherent in light-front

holographic QCD.

In this paper we have concentrated on the consequences of superconformal algebra for the

spectral properties of meson and baryons. Since the meson and baryon wave functions are

also related, there are also interesting dynamical consequences; e.g., for elastic and transition

form factors. The b1 wave function is predicted to be identical to the non-leading-twist wave

function of the nucleon, which in turn is related to the leading-twist wave function via a

parity transform – see [13]; therefore, at low resolution the form factors of the nucleon and

the b1 are related. Another dynamical consequence of the model is that for high resolution, at

large momentum transfer when the baryon cluster is resolved into its individual constituents,

the twists of the superpartners are equal: the higher value of L of the meson, LM = LB + 1,

is compensated by the additional constituent in the baryon.
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Appendix A: Other Possible Evolution Operators

Fubini and Rabinovici have discussed three different ways of constructing compact Hamil-

tonians from the superconformal algebra. Some care should be taken, however, in transfer-

ring their interpretation to our application. The emphasis in [8] and later in [14, 24] was on

quantum mechanics as a one dimensional field theory and the investigation of the vacuum

structure in this field theory. Therefore they only the case with a stable classical poten-

tial, implying f > 0, was considered. In our search for semiclassical bound-state equations,

however, the lowest state is a hadronic state. Furthermore, in the field theoretical investi-

gations of FR the dimensionless constant f is an arbitrary positive parameter, each value of
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f representing a different field theory with a different vacuum. In our investigations, where

the procedure of dAFF [8] and its extension by FR [14] has been embedded in LFHQCD

the dimensionless constant f determines the angular momentum and we are confined to the

series of discrete values representing the orbital excitations. Nevertheless, it is informative to

discuss the three different ways to construct the compact Hamiltonian representing hadronic

bound states also from our perspective. For generality purposes we use in the appendices

for the dimensionful constants the symbols w and v, which can be positive or negative. In

our applications to meson and baryon spectroscopy we are restricted w > 0.

The simplest way to construct a Hamiltonian with discrete spectrum in the frame of the

superconformal graded algebra is to apply directly the method of dAFF [8]. This yields the

Hamiltonian [14, 24], again in the slightly generalized notation

G0 = {Q,Q†}+ w2K. (A1)

Both supersymmetry and dilatation symmetry are broken here. The two components of the

eigen-spinor of G0 have different spectra

(G0)11φ1 = (4n+ 2f + 3)|w|φ1, (A2)

(G0)22φ2 = (4n+ 2f + 1)|w|φ2, (A3)

and thus supersymmetry is broken from the onset for all levels. This approach would yield a

LF potential U(ζ) = w2ζ2, without any additional constants which occur in LFHQCD (See

5, 9, 10), and which are phenomenologically very important.

On the other hand, the approach where supersymmetry is conserved by constructing a

new Hamiltonian from the spinor operator Rw, a superposition of the supercharges Q and

S within the superalgebra [14],

Rw = Q+ wS, (A4)

conserves supersymmetry for f > 1
2
, since Rw commutes with the evolution operator

G(w) = {Rw, R
†
w}. (A5)

Therefore Rw|φw〉 is an eigenstate of Gw with identical eigenvalue as the eigenstate |φw〉.

The spectra of G(w) for real values of f and w are:

E1 = (4n+ 2)|w|+ 2

∣∣∣∣f +
1

2

∣∣∣∣ |w|+ 2(f − 1

2
)w, (A6)

E2 = (4n+ 2)|w|+ 2

∣∣∣∣f − 1

2

∣∣∣∣ |w|+ 2(f +
1

2
)w, (A7)
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where E1 are eigenvalues of G11 representing mesonic states and E2 the eigenvalues of G22

for baryons. For w < 0 and f > −1
2

the spectra are independent of f :

E1 = 4(n+ 1)|w|, (A8)

E2 = 4n|w|, (A9)

and therefore cannot lead to angular excitations of the corresponding LF Hamiltonians. For

f = −1
2

and w > 0, we have

E1 = 4nw, (A10)

E2 = 4(n+ 1)w. (A11)

There exists no baryonic state

|φ〉 =

 0

φB

 , (A12)

with zero energy. The reason for this seeming contradiction with the above mentioned

commutation relation, lies in the fact that the operator R†w annihilates the mesonic state

(See (29)).

Appendix B: Transformation Operators and Quantum Mechanical Evolution

The generalized hypercharge R has the commutation relations

[G(w), Rv] = −2(w − v)R−w, (B1)

[G(w), R†v] = 2(w − v)R†−w, (B2)

with the new Hamiltonian G(w) = {Rw, R
†
w}.

For v = w the commutator vanishes, therefore if |φ〉 is an eigenstate of G, also Rw |φ〉

is an eigenstate with the same eigenvalue. Therefore the spinor supercharge R transforms

the baryonic superpartner with angular momentum LB, into the mesonic one with angular

momentum LM = LB + 1. The operator R†w acts in the opposite direction.

For v = −w, however, we have the typical commutation behavior of a raising and lowering

operator, respectively:

[G(w), R−w] = −4wR−w, (B3)

[G(w), R†−w] = 4wR†−w. (B4)
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That is, if |φ〉 is eigenfunction of G with eigenvalue E, then R−w |φ〉 is eigenstate with the

energy E + 4w. This means that a baryonic state with angular momentum LB and radial

excitation n is transformed into a mesonic state with angular momentum LM = LB + 1

and radial excitation n + 1, which has the same energy as the baryonic state with angular

momentum LB and radial excitation n+ 1.

There is also a bosonic raising operator, that is, a raising operator which does not change

fermion number. It is composed of the bosonic operators of the graded algebra. Generalizing

again slightly the operators introduced by FR in Ref. [14]

Lv = H + v2K + 2i v D, (B5)

one obtains from the algebra (26) the commutation relations

[G(w), Lw] = 4wLw, (B6)

[G(w), L−w] = −4wLw. (B7)

These relations imply that also Lw is a raising operator, which transforms a baryon with

LB, n into a baryon with LB, n + 1 and the same with the mesons. Since it is composed

of operators of the conformal group, it can also be applied to the lowest mesonic state,

although there is no supersymmetric partner.

Since the hypercharges Rw change the angular momentum by one unit, it is tempting

to look for an operator which also leads to angular excitations. Such an operator which

increases the angular momentum by one unit is easily constructed and has the form:

Λw = {Q,ψ}+ w{S†, S}+
1

ζ
ψ†ψ. (B8)

If |φ〉L is an eigenstate to the Hamiltonian operator GL constructed with f = L + 1
2
, then

|φ〉L+1 = Λw |φ〉L is eigenstate to GL+1, constructed with f = L + 1 + 1
2
. This operator

Λ is, however, not an element of the superconformal algebra. The action of the different

operators in the baryon-meson system is illustrated in Fig. 4.

1. Quantum-Mechanical Evolution

In this paper, as in [13], we have concentrated on algebraic aspects and its consequences

for the spectra. We now briefly discuss the quantum-mechanical time evolution. The Hamil-

tonian of unbroken superconformal quantum mechanics, H Eq. (22), is the translation
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FIG. 4. Radial excitations and transformations by elements of the superconformal algebra for a

baryon-meson system with a given f − 1
2 = LB ≥ 0.

operator for the time variable t

i
d

dt
|φ〉 = H |φ〉. (B9)

The quantum-mechanical evolution of the operator (37)

G = 2H + 2w2K + 2λ (fI−B), (B10)

follows from the action of the generators H and K on the state |φ〉. We have (See Appendix

C in Ref. [21]),

e−iH ε|φ(t)〉 = |φ(t)〉+
d

dt
|φ(t)〉ε+O(ε2), (B11)

e−iK ε|φ(t)〉 = |φ(t)〉+
d

dt
|φ(t)〉ε t2 +O(ε2). (B12)

There follows

G |φ(τ)〉 =

(
i
d

dτ
+ 2λ (fI−B)

)
|φ(τ)〉, (B13)
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where the new evolution parameter τ is related to t in (B9) by

dτ =
dt

2(1 + λt2)
, (B14)

as in dAFF [8]. From the eigenvalue equation G |φE〉 = E |φE〉 follows the stationary state

solution

|φE(τ)〉 = |φE(0)〉e−i((EI−2λ (fI−B))τ . (B15)

2. Operators in Matrix Form

It is sometimes convenient to work with a special matrix representation of the super-

conformal algebra. For convenience we give here an explicit realization in the Schrödinger

picture. Define

q = − d

dx
+
f

x
, q† =

d

dx
+
f

x
. (B16)

Then we can write the spinor operators Q and S as

Q =

 0 q

0 0

 , Q† =

 0 0

q† 0

 , (B17)

and

S =

 0 x

0 0

 , S† =

 0 0

x 0

 . (B18)

The Hamiltonian H = 1
2
{Q,Q†} in matrix form is

2H =

 q q† 0

0 q† q

 =

 − d2

dx2 + f(f+1)
x2 0

0 − d2

dx2 + f(f−1)
x2

 . (B19)

The Hamiltonian G = {Rw, R
†
w} is

G =

 − d2

dx2 + w2 x2 + 2w f − w +
4(f+ 1

2
)2−1

4x2 0

0 − d2

dx2 + w2 x2 + 2w f + w +
4(f− 1

2
)2−1

4x2

 , (B20)

where

Rw =

 0 − d
dx

+ f
x

+ w x

0 0

 , (B21)
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and

R†w =

 0 0

d
dx

+ f
x

+ w x 0

 . (B22)

The operator Lw (B5) is

Lw = H +
1

2

(
w2 x2 − d

dx
x− x d

dx

)
I, (B23)

and its adjoint

L†w = H +
1

2

(
w2 x2 +

d

dx
x+ x

d

dx

)
I. (B24)

Finally, the orbital raising operator (B8) is

Λw =

 − d
dx

+ f+1
x

+ w x2 0

0 − d
dx

+ f
x

+ w x2

 . (B25)

In this matrix form the upper component of the state |φ〉 is the meson, the lower one the

baryon

|φ〉 =

 φM

φB

 . (B26)

Thus the effective baryon number operator NB = 1
2
(1− [ψ†, ψ]) is in matrix form:

NB =

 0 0

0 1

 . (27)

It is easy to check that the state containing the pion, that is the eigenstate of (39) with

f = −1
2
, namely

φπ =
1

N

√
x e−wx

2/2, (28)

has no supersymmetric partner, since

R†w |φ〉 =

 0

(q† + w x)φπ

 =

 0

0

 . (29)

Likewise, one checks that the state containing the ρ-meson, where f = 0, with the wave

function

φρ =
1

N
xe−wx

2/2, (30)
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has formally a superpartner, but with negative angular momentum LB = −1. Indeed

R†w |φ〉 =

 0

(q† + w x)φρ

 =

 0

φρ

 . (31)
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