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Abstract

Self-seeding is a promising approach to significantly narrow the self-amplified
spontaneous emission bandwidth of X-ray free-electron lasers (FELs) and hence
to produce nearly transform-limited pulses. We study the radiation propagation
through a grating monochromator installed at the LCLS. The monochromator de-
sign is based on a toroidal VLS grating working at a fixed incidence angle mounting
without an entrance slit. It covers the spectral range from 500eV to 1000eV. The op-
tical system was studied using a wave optics method to evaluate the performance
of the self-seeding scheme. Our wave optics analysis takes into account the finite
size of the coherent source, third-order aberrations and height error of the opti-
cal elements. Two propagation approaches are studied with time-dependent FEL
simulations. In addition, the pulse-front tilt phenomenon effect is illustrated.

1 Introduction

Self-seeding is a promising approach to significantly narrow the self-amplified
spontaneous emission (SASE) bandwidth and to produce nearly transform-
limited pulses [1]-[10]. Considerable effort has been invested in theoretical
investigation and R&D at the LCLS leading to the implementation of a hard
X-ray self-seeding (HXRSS) setup that relies on a diamond monochroma-
tor in the transmission geometry. Following the successful demonstration
of the HXRSS at the LCLS [11], soft X-ray self-seeding (SXRSS) based on a
grating monochromator has been designed, installed and commissioned at
the LCLS [12]-[18].
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Fig. 1. The compact soft x-ray self-seeding system, located in U9. The grating is
a toroidal VLS grating, M1 is a rotating plane mirror, M2 a tangential cylindrical
mirror, and M3 a plane mirror used to steer the beam. [14]

In general, a self-seeding setup consists of two undulators separated by
a photon monochromator and an electron bypass, normally a four-dipole
chicane (see Fig. 1). Both undulators are resonant at the same radiation
wavelength. The SASE radiation generated by the first undulator (SASE
undulator) passes through the narrow-band monochromator. A monochro-
matic pulse is created, which is used as a coherent seed in the second
undulator (seeded undulator). Chromatic dispersion effects in the bypass
chicane smear out the microbunching in the electron bunch produced by
SASE lasing in the SASE undulator. The electrons and the monochromatized
photon beam are recombined at the entrance of the seeded undulator, and
the radiation is amplified by the electron bunch until saturation is reached.
The required seed power at the beginning of the seeded undulator must
dominate over the shot noise power within the gain bandpass, which is at
the order of hundreds of Watts to one kilowatt in the soft X-ray range.

2 the LCLS soft X-ray self-seeding setup layout

The overall self-seeding setup consists of three parts: the SASE undulator,
the self-seeding grating monochromator and the output seeded undulator
in which the monochromatic seed signal is being amplified (Fig. 2).
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Fig. 2. Simulation of a radiation transport through the monochromator is an essen-
tial part of start-to-end simulations of the SXRSS setup performance

The LCLS SXRSS monochromator was introduced in [14], and consists of a
toroidal variable-line-spacing (VLS) grating, a steering plane mirror, a slit,
a spherical mirror and another plane mirror (Fig. 1).

The toroidal VLS grating is illuminated by a SASE FEL radiation produced
in the SASE undulator with the source position inside undulator sections
U7 or U8 (depending on the photon energy). The transverse coherence of
a SASE FEL allows one to avoid installation of an entrance slit. The plane
mirror M1 is used to steer a certain wavelength of an angularly dispersed
radiation to the slit. The spherical mirror M2 re-images the radiation from the
slit position to the re-imaging point at the entrance of the seeded undulator.
The plane mirror M3 reflects the radiation to the seeded undulator, allowing
two additional degrees of freedom for an overlap of the electron beam and
the monochromatic radiation.

3 Optics modeling

Propagation of the LCLS photon beam is carried out through every optical
component sequentially, including drift spaces in between. The simulation
is based on a single frequency beam propagation method, where a Fresnel
propagator is used to simulate drift spaces (e.g.[19]) and a phase shifter
method is used for optical elements [20]. The phase-shifter model is used
to simulate a focusing effect of the toroidal grating, M2 mirror and contri-
bution of height errors of an every optical component’s surface. This model
introduces a phase shift to the radiation ∆Φ(x, y). This shift is dependent
on a transverse position at the radiation distribution and changes only the
phase of the reflected beam but not its amplitude. It allows one to change
the wavefront profile, and therefore, the field behavior after propagation. In
practice,∆Φ represents the deformation of the wavefront in the propagation
direction.
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Table 1
Parameters for the x-ray optical elements [14]
1 Distance to grating.
2 Principal ray hit point.

Element Parameter
Value at photon energy Required

precision Unit
5000 eV 1000 eV

G Line density (k) 1123 0.2% l/mm

G Linear coeff (n1) 1.6 1% l/mm2

G Quad coeff (n2) 0.002 100% l/mm3

G Groove profile Blased 1.2◦ - -

G Tangential radius 195 1% m

G Sagittal radius 0.18 5% m

G Diffraction order +1 -

G Incident angle 1 - deg

G Exit angle 4.39 3.18 - deg

Source distance 1 2972 4157 - mm

Source size 30.6 24.7 - µm

Image distance 1 1346.7 1348 - mm

Image size 3 2.4 - µm

S Slit location 1 1350 1 mm

S Slit width variable - -

M2 Location 1 1530 - mm

M2 Incident angle 0.859 - deg

M2 Tangential radius 23.2 - m

Optical delay 797.9 662.8 - fs

3.1 Free space propagation

Let us consider the electric field in a space-time domain E⃗(t, x, y) expressed
in Cartesian coordinate system which is exported from the FEL simulation
code GENESIS [21]. Applying temporal and frequency Fourier transforms

one obtains the electric field in inverse space-frequency domain - ⃗̂E(ω, kx, ky).
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⃗̄E(ω, x, y) =

∞∫
−∞

E⃗(t, x, y) exp[iωt]dt ,

E⃗(t, x, y) =
1

2π

∞∫
−∞

⃗̄E(ω, x, y) exp[−iωt]dω . (1)

Similarly, the 2D spatial Fourier transform of ⃗̄E(ω, x, y), with respect to the
two transverse coordinates x and y can be written as

⃗̂E(ω, kx, ky) =

∞∫
−∞

dx

∞∫
−∞

dy ⃗̄E(ω, x, y) exp[ikxx + ikyy] , (2)

so that

⃗̄E(ω, x, y) =
1

4π2

∞∫
−∞

dkx

∞∫
−∞

dky
⃗̂E(ω, kx, ky) exp[−ikxx − ikyy] . (3)

One can calculate the radiation distribution after free space propagation
over a distance z using a spatial-frequency response function in the paraxial
approximation:

H(ω, kx, ky, z) ≃ exp[ik0z] exp
[
− iz

2k0
(k2

x + k2
y)
]

⃗̂E(ω, kx, ky, z) = ⃗̂E(ω, kx, ky, 0)·H(ω, kx, ky, z). (4)

3.2 Grating modeling

We model the toroidal VLS grating as a sum of independent contributions
of a sagittal focusing element, a tangential focusing element, aberrations,
a surface height error and a wavelength-dependent tilt, responsible for
angular dispersion. Also, asymmetry of incidence and diffraction angles has
to be accounted for. Since angles of incidence and diffraction from a grating
are not equal, the radiation pulse is resized transversely in the dispersive
dimension by the grating asymmetry parameter b = sinθi/ sinθd (see Fig.
3)
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Fig. 4. Schematic diagram of a VLS grating element. The VLS grating (a) is repre-
sented by a contribution of a planar grating with fixed line spacing and a thin lens
(b).

As we mentioned before, the radiation distribution that is modified by an
optical component is modeled by a phase-shifter in the following way:

⃗̄E(ω, x, y) = ⃗̄E0(ω, x, y) exp
[
i∆Φ(x, y, ...)

]
. (5)

Here the phase shift ∆Φ is determined by various parameters, depending
on the effect we want to model.

For example, a lens introduces a quadratic phase shift:

∆Φ(x, y) = −k
(

fxx2 + fyy2

2

)
. (6)

Here the shift in both transverse dimensions x and y is introduced, repre-
senting focusing with different focal distances fx and fy.

Tangential and sagittal curvatures of a toroidal grating act as independent
cylindrical lenses with the following curvature-determined focal lengths:
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f curv
tang =

Rtang

1/θd + θi/θ2
d

,

f curv
sag =

Rsag

θi + θd
. (7)

Here Rtang and Rsag are tangential and sagittal radii of curvature,θi andθd are
incidence and diffraction angles respectively. Eq. 7 shows that focal lengths
are wavelength-dependent, since θd = arccos(cosθi−λD0), according to the
grating equation.

Beside toroidal curvature, the grating has a variable line spacing with the
following line density: D = D0 + D1l + D2l2 [lines/mm], where l is a length
along the grating. While the D0 coefficient defines the dispersive properties
of the grating, coefficients D1 and D2 are responsible of VLS focusing (see
Fig. 4) and aberration compensation correspondingly. They are optimized to
eliminate wavelength dependence of an image position at a slit and the coma
aberration effect. It is worth mentioning that an effective source position of
radiation at the end of SASE undulator is wavelength-dependent.

The VLS focusing contribution may be modeled via introduction of another
focusing element in a tangential plane [22] with the following focal length
[23]:

f vls
tang =

sin2 θd

D1λ
. (8)

The resulting focal lengths of the grating and corresponding phase shift can
be expressed as

ftang =
1

1/ f vls
tang + 1/ f curv

tang

,

fsag = f curv
sag ,

∆Φ(ω, x, y) = −k
(

ftangx2 + fsagy2

2

)
. (9)

The toroidal reflecting surfaces introduce aberrations. The two most im-
portant contributions are determined by twofold astigmatism and coma
aberrations with C12 and C30 coefficients correspondingly [23],[24].

C12 = −
1
2

(
−sinθi cosθi

Rsagz1
+

cosθi

z2
1

+
sinθd cosθd

Rsagz2
− cosθd

z2
2

)
,
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C30 =

(
sin2 θi

z1
− sinθi

Rtang

)
cosθi

2z1
−

(
sin2 θd

z2
− sinθd

Rtang

)
cosθd

2z2
. (10)

Here z1 and z2 are the distances from an optical element [grating] to an
object and an image correspondingly. The quadratic VLS coefficient D2 in-
troduces the phase shift, which is proportional to x3, and therefore, is used
to compensate the effect of C30 aberration term. The latter may be rewritten
in order to contain another summand:

C′30 =
λnD2

3
+ C30

=
λnD2

3
+

(
sin2 θi

z1
− sinθi

Rtang

)
cosθi

2z1
−

(
sin2 θd

z2
− sinθd

Rtang

)
cosθd

2z2
. (11)

Here n is a diffraction order which is equal to unity in our case. Aberrations
are eliminated when C′30 = 0 and C12 = 0 criteria are fulfilled.

The resulting phase shift caused by aberrations is given by

∆Φ(ω, x, y) = k
(

C′30x3

θ3
d

+
C12xy2

θd

)
. (12)

In order to simulate time-dependent phenomena of the grating’s resolving
power one needs to take into account grating dispersion. We propose to
introduce a wavefront tilt, according to an angular dispersion of the grating.
Each wavelength is reflected from the grating at a different angle. Having an
ensemble of wavelengths we can choose a principle ray wavelength λ that
will propagate downstream with no wavefront tilt. Each other wavelength
will propagate from the grating at a certain angle from the principle ray,
determined by grating angular dispersion, e.g. λ0 + ∆λwill be tilted by:

∆θ =
∆λD0

θd
, (13)

where θd = arccos(cosθi − λD0).

In this case a linear phase tilt should be applied with respect to the principal
ray frequency ω0:

∆Φ(ω0,∆ω, x, y) = −2πx∆θ
λ0

=
2πx∆ωD0

ω0θd
. (14)
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Finally, the cumulative effect of the grating modeling may be written as

⃗̄E(ω, x, y) = ⃗̄E0(ω, x, y) exp [i∆Φ] ,

∆Φ = k
(
−

ftangx2 − fsagy2

2
+

C′30x3

θ3
d

+
C12xy2

θd
+

2πx∆ωD0

kωθd

)
. (15)

3.3 Focusing with M2 mirror

In this case the simulation is similar to the grating, but D0, D1 and D2 VLS
coefficients are equal to zero,θi = θd, and no field resizing should be applied.

The total phase shift by M2 mirror is given by the following:

⃗̄E(ω, x, y) = ⃗̄E0(ω, x, y) exp [i∆Φ] ,

∆Φ = k
(
−

ftangx2

2
+

C30x3

θ3
d

+
C12xy2

θd

)
,

ftang =
Rtangθi

2
,

C12 = −
cosθi

2

[
sinθi

Rsag

(
− 1

z1
+

1
z2

)
+

1
z2

1

− 1
z2

2

]
,

C30 = −
sinθi cosθi

2

[
sinθi

(
1
z2

1

− 1
z2

2

)
− 1

Rtang

( 1
z1
− 1

z2

)]
. (16)

Here θi is M2 incidence angle, z1 and z2 are distances from M2 to an object at
the slit and to an image at the re-imaging point inside the seeded undulator
section, respectively.

3.4 Mirror surface height errors simulation

We also use the phase-shifter model to simulate the effect of imperfections
of optical surfaces [25] (see Fig. 5). The height error δh on an optical surface
will perturb the radiation wavefront with a phase shift ∆Φ in the following
way:

∆Φ =
4πδh
λ

sinθ , (17)
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Fig. 5. Thin-shifter-like effect of surface height errors for a small mean square of
surface displacement, concept adapted from [25].

where θ is the radiation’s angle of incidence with respect to the surface. In
the case of a grating, the phase shift can be expressed in terms of incidence
and diffraction angles:

∆Φ = 2π(sinθi + sinθd)
δh
λ
. (18)

4 Simulation details and approaches

We use the GENESIS code to obtain an electric field distribution in space
and time at the end of the SASE undulator. Then we apply a temporal
Fourier transform (Eq. 1) and propagate the transverse distributions for
every calculated discrete frequency. Finally, the inverse temporal Fourier
transform is performed to go back into space-time domain.

Let us consider a transverse radiation distribution at the end of the SASE
undulator at a frequency ωi. To simulate the transverse distribution of this
beam at the grating position, we apply the Fresnel propagator from Eq. (4)
with z equal to a distance between the end of the undulator and the beam’s
footprint at the grating. The phase shifter, described in Eq. (15) and the
height error phase shifter (Eq. 18) are used to simulate focusing of the beam
by the toroidal VLS grating with a certain height error profile. The phase-
shifter includes both aberrations, height error effect and the beam tilt. The
tilt is introduced according to a difference ∆ω between the frequency being
currently propagated and the frequency that is chosen to be a principle ray
of the dispersed radiation (Eq. 14).

In our case, the principle ray direction is assumed to pass through an optical
center of all monochromator components. Physically it is done via M1 pitch
angle optimization 2 . Transverse beam deflections from the grating to the
M1 mirror and deflections by both M1 and M3 mirrors are not included in the

2 Effect of transverse displacement of optical center as well positioning errors of
any optical component may be studied separately
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Fig. 6. Results from electron beam start-to-end simulations at the entrance of SASE
undulator. From left to right: electron beam current, energy and energy spread,
emittance along the beam.

simulations, which is fine since plane mirrors do not contribute changes to
the transverse field distribution. We model height error effects by applying
phase shifters at the position of every optical component, taking into account
the incident angles of the radiation.

After the grating, the beam is propagated to the M1 mirror and, as discussed
above, the height error - related phase shifter is applied. Then after prop-
agation to the slit one may choose either to model its presence with given
width by applying a transparency mask to the field distribution, or to ignore
the slit within the algorithm, effectively modeling slit-less monochromator
performance. After modeling M2 (refocusing) and M3 (flat) mirrors and
including intermediate drift spaces one obtains the radiation distribution
at the frequency ωi at the entrance of the seeded undulator. This distribu-
tion may be used as an input radiation field for the following GENESIS
application.

Below we present two approaches for an FEL pulse propagation through the
monochromator. Both of them are based on the single frequency beam prop-
agation method, described above. Start-to-end simulated electron beams
were used. Its parameters at the entrance of the SASE undualator are pre-
sented at the Fig. 6.

4.1 Direct propagation approach

In this straightforward approach the SASE pulse at the end of SASE un-
dulator is decomposed into monochromatic beams using temporal Fourier
transform (Eq. 1). As it has already been mentioned at the beginning of
Section 4, every beam is propagated independently through the monochro-
mator so that every beam obtains a certain tilt with respect to the principal
ray at the grating. At the entrance to the seeded undulator those propagated
beams are transformed back to the time domain. This dispersed 3D SASE ra-
diation distribution is used as a seed for a time dependent FEL simulations
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Fig. 9. Radiation distribution immediately after the grating in frequency domain.
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Fig. 10. Radiation distribution at the entrance of seeded undulator in frequency
domain.

i.e. directly as in real setup without extra approximations.

An example of a propagation algorithm for a pulse at 1000 eV central photon
energy is given below. First, the pulse is obtained at the end of SASE undu-
lator in time domain (see Fig. 7). Afterwards, it is transformed to frequency
domain (Fig. 8). Then the monochromatic beams are propagated down-
stream to the grating (Fig. 9). At the grating frequency-dependent phase
shifters are applied for simulating focusing and height error (Eqs. 15, 18).
Then the field is propagated to the mirror M1, where the height error phase
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Fig. 11. Radiation distribution at the entrance of seeded undulator in time domain.

shifter is applied (Eq. 17), to the mirror M2 (Eqs. 16, 17), M3 (Eq. 17), and then
to seeded undulator entrance. In figure 10 we can see the spatial dispersion
of our radiation: beams at different wavelengths have different transverse
offsets. Note that due to the spatial dispersion the spectrum is imprinted into
the transverse profile of the radiation (second row, first and second figures
from the left). Due to the limited resolving power of the monochromator
individual spikes are not resolved. After the inverse transformation of the
radiation into the time domain we can see all 3 spatial projections of the
spatially dispersed pulse, that, at this point is being overlapped with the
electron beam (Fig. 11). In our case the transverse size of the electron beam
is typically around 25µm and is much smaller than the transverse size of
the spatially dispersed radiation in the horizontal dimension. Since the ra-
diation will continue to diverge when propagated downstream the seeded
undulator, due to angular dispersion, only a relatively small fraction of the
dispersed beam will interact with the electron beam. Therefore, although
an entire spectrum was used in Figures 9-11 to illustrate the process, dur-
ing practical simulations we can use fractional spectrum to save computing
time.

4.2 Phenomenological propagation approach

This method is very similar to the one used in the hard X-ray self-seeding
(HXRSS) simulations (e.g. [8]-[10]).

In this approach, we first simulate the FEL with GENESIS code to obtain a
radiation distribution at the end of the SASE undulator, then apply a tem-
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Electron beam

Fig. 12. Physical slit (left figure) blocks undesired wavelengths, passing through
only certain bandwidth. It is easily controlled and may be moved out.
Since radiation amplification in an undulator takes place via interaction with ac-
celerated electrons, only a radiation overlapped over the electron beam will be
amplified. It can be expressed as a virtual slit (right figure). This process is barely
controlled and cannot be ”turned off”
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Fig. 13. 1000eV FEL pulse at the end of the SASE undulator in time domain (a)
was transformed to frequency domain (b). Spectrum was filtered (d) after being
multiplied by the monochromator instrumental function (Fig. 15-f). Afterwards it
was transformed back to time domain (c), representing effective power distribution
at the entrance of the seeded undulator.

poral Fourier transform which switches from time to frequency domain (see
Figs. 13,14). Afterwards, the obtained radiation spectrum is multiplied by
a monochromator instrumental function that characterizes the monochro-
mator performance based on both monochromator geometry and FEL am-
plification in the seeded undulator downstream the monochromator. In this
way the FEL spectrum is filtered (only a certain spectral bandwidth defined
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Fig. 14. 500eV FEL pulse at the end of the SASE undulator in time domain (a)
was transformed to frequency domain (b). Spectrum was filtered (d) after being
multiplied by the monochromator instrumental function (Fig. 15-d). Afterwards it
was transformed back to time domain (c), representing effective power distribution
at the entrance of the seeded undulator.

by the transmittance function passes through the monochromator, while
other frequencies are effectively blocked). After applying an inverse tempo-
ral Fourier transform, one obtains the FEL radiation in the time domain that
can be used as a seed for the next undulator section in GENESIS simulations.

In the simulations of the current monochromator design, an effect of two slits
needs to be taken into account (see Fig. 12). The first slit is physical, which
makes it possible to calculate its effect on the monochromator instrumental
function analytically. Another slit is a virtual one: the electron beam being
placed in the spatially dispersed radiation acts as a slit. The latter case
can be barely analyzed analytically since the FEL process is involved in
the amplification. This instrumental function calculation has to be done
numerically.

In the HXRSS case, the monochromator instrumental function is a trans-
mittance function of the diamond crystal itself at a given geometry. This
function can be either calculated or measured. In the SXRSS case in order
to obtain an effective transmission function one can make use of a beam
propagation method. In the phenomenological approach we use a response

16



−2 −1 0 1 2

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
bs

[T
]

FWHM−1 = 6475 

−2 −1 0 1 2

x 10
−4

−3

−2

−1

0

1

2

3

A
ng

[T
],[

ra
d]

∆λ/λ

(a) 500eV, U7 source

−2 −1 0 1 2

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
bs

[T
]

FWHM−1 = 5396 

−2 −1 0 1 2

x 10
−4

−3

−2

−1

0

1

2

3

A
ng

[T
],[

ra
d]

∆λ/λ

(b) 700eV, U7 source

−2 −1 0 1 2

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
bs

[T
]

FWHM−1 = 6789 

−2 −1 0 1 2

x 10
−4

−3

−2

−1

0

1

2

3

A
ng

[T
],[

ra
d]

∆λ/λ

(c) 1000eV, U7 source

−2 −1 0 1 2

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
bs

[T
]

FWHM−1 = 8212 

−2 −1 0 1 2

x 10
−4

−3

−2

−1

0

1

2

3
A

ng
[T

],[
ra

d]

∆λ/λ

(d) 500eV, U8 source

−2 −1 0 1 2

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
bs

[T
]

FWHM−1 = 8513 

−2 −1 0 1 2

x 10
−4

−3

−2

−1

0

1

2

3

A
ng

[T
],[

ra
d]

∆λ/λ

(e) 700eV, U8 source

−2 −1 0 1 2

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

A
bs

[T
]

FWHM−1 = 5535 

−2 −1 0 1 2

x 10
−4

−3

−2

−1

0

1

2

3

A
ng

[T
],[

ra
d]

∆λ/λ

(f) 1000eV, U8 source

Fig. 15. Monochromator instrumental functions for different photon energies and
source positions (undulator U8 “in”, leading to source position in this undulator,
or undulator U8 “out”, resulting in the source within undulator U7). Physical slit is
not inserted. Inverse Full width at half maximum can be interpreted as an effective
resolving power of the monochromator.

of FEL power amplification of the seed pulse within the seeded undulator
section (in other words - input coupling factor - ICF) from the spatial disper-
sion effect. Since different frequencies are spatially separated at the entrance
of the seeded undulator, some of them will be overlapped with the electron
beam and some will not. In this way one can measure the mismatching
of the radiation and the electron beam as a function of the wavelength. It
allows one to obtain an effective monochromator transmission function.

We calculated the instrumental function of the monochromator in the fol-
lowing way. First, a single wavelength λ0 (or frequency ω0) of a radiation
distribution at the end of the SASE undulator was simulated with the GENE-
SIS code in the steady-state mode. This radiation can be propagated through
all of the optical components of the monochromator to the entrance of the
seeded undulator, used as an input for the GENESIS code that simulates the
seeded undulator. This field is amplified within the seeded undulator in a
linear mode for a fixed distance. At the end the obtained amplified power is
recorded. This procedure was repeated for other frequencies with different
wavefront tilts introduced at the grating (Eq. 14).

This allows one to simulate an angular dispersion during the radiation
propagation with different wavelengths through the monochromator. At
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the entrance of the seeded undulator the radiation distributions with differ-
ent ∆λ with respect to the principal ray will obtain different offsets in the
dispersive direction: the result of the spatial dispersion of the monochroma-
tor. These radiation distributions can be used as an input radiation field for
the GENESIS simulation within the seeded undulator. Due to the transverse
mismatching between the electron beam and the radiation at different wave-
lengths, the amplification process will depend on the particular wavelength
offset ∆λ from the principal ray wavelength λ0. If the undulator length is
properly chosen to satisfy the FEL amplification in the linear mode, one may
measure the amplified power as a function of ∆λ. It effectively represents
how different frequencies are amplified within the seeded undulator after
the propagation through the monochromator. In order to obtain the effec-
tive instrumental function of the monochromator, the power distribution
must be properly normalized. Since the radiation propagated through the
monochromator is not only spatially dispersed but also undergoes focusing
as well as an aberration and mirror surface error effects, the amplified power
must be normalized by the power obtained with one to one imaging of the
radiation at the end of the SASE undulator to the entrance of the seeded
undulator. Also the normalized power dependence should be multiplied
by the monochromator transmittance for a given wavelength, calculated by
[16]. In this way instrumental functions for different wavelengths and ge-
ometries of the LCLS self-seeding monochromator were obtained (see Fig.
15). If multiplied by the radiation distribution in the frequency domain be-
fore the monochromator, it gives an effective radiation distribution after the
monochromator at the entrance of the seeded undulator. Nevertheless, in
order to maintain causality of the transported radiation in the time domain,
a phase information was introduced into the monochromator instrumental
function. The phases were obtained with Kramers-Kronig relations. (this
approach was also used for the HXRSS setup simulation in e.g. [8],[9]). It is
worth mentioning that unlike the HXRSS monochromator simulations, the
causality effect is not critical for the SXRSS and is used rather for purity of
the simulation.

What is important is the fact that those instrumental functions are effective
ones and are based on: the source position from which the radiation prop-
agates to the monochromator, the optical elements properties, the distance
to seeded undulator, the FEL amplifier properties, etc. The instrumental
function curve shows only the spectral bandwidth that will be amplified
downstream of the undulator, but not the bandwidth that is actually trans-
mitted through the monochromator: while the slit is fully opened, the elec-
tron beam filters out a certain spectral bandwidth to be amplified further
(Fig. 12). In fact, without the exit slit the entire radiation spectrum passes
through the monochromator.

Consequently, this approach allows one to calculate the transmittance func-
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tion of the monochromator for given parameters of its operation. Once it
was done, every propagated pulse is just transformed to the frequency
domain, multiplied by the transmittance function of the monochromator,
transformed back to the time domain and amplified further in the seeded
undulator.

5 Comparison of approaches

Both the direct and the phenomenological approaches used to simulate
the monochromator performance show similar results when comparing the
radiation after amplification in the seeded undulator. In Figures 16 and 17
one may see that despite an initial difference in the power and the structure
of spectra, the results show a very good correspondence to each other after
amplification in the seeded undulator. The spectrum is shifted due to the
electron energy chirp evolution, induced by wakefields.

The phenomenological approach gives an effective radiation distribution
that will be amplified in the seeded undulator. It is much faster than the di-
rect one in terms of the computational time and is more applicable for batch
processing of numerous FEL shots with once calculated single monochro-
mator transmittance function. This method uses extra assumptions, since
steady-state FEL simulation is used to obtain the transmittance function.
Also this method is not applicable if one wants to perform simulations with a
different monochromator or amplification parameters, since the monochro-
mator transmittance function depends not only on the monochromator set-
up but also on gain lengths in the SASE and in the seeded undulator. There-
fore one must keep in mind that a simulated FEL gain length during the
transmittance function calculation should be similar to the one at which this
transmittance function would be used for the pulse monochromatization
via the phenomenological approach. Therefore one needs to re-simulate the
transmission function for different setups of FEL.

Unlike the phenomenological method, the direct approach needs signifi-
cantly more computational power and time to simulate the single SASE
radiation pulse propagation through the monochromator. It does not need
a preliminary measurement of the transmittance function, since dispersion
of the radiation is simulated for every run. Also this method is more univer-
sal. It gives a possibility of reusing simulated, monochromatized radiation
for simulating the effect of different configurations of the seeded undulator.
Since the radiation after monochromator is divergent and transversely large,
it becomes important to control the interactions between the propagated ra-
diation and the transverse mesh borders of an FEL simulation software. If
non-absorbing boundary conditions are used (like in the GENESIS code),
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Fig. 16. Power of the radiation in seeded undulator. The radiation was propagated
through seeded undulator with the direct (solid line) and the phenomenological
(dashed line) approaches. Photon energy is 1000eV.
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Fig. 17. Spectra of the radiation at seeded undulator entrance (left figure) and
exit (right figure). The radiation was propagated through seeded undulator with
the direct (solid line) and the phenomenological (dashed line) approaches. Photon
energy is 1000eV.

then after propagation downstream the seeded undulator, the radiation will
be eventually ”reflected” from the borders before the central part starts be-
ing amplified.The direct method allows one to obtain the “real” propagation
approach pulse properties after the monochromatization, that makes it very
useful for in-depth research of a monochromator performance. It may be
used to cross-check the phenomenological approach simulations.
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6 Discussion and conclusions

This article describes methods to simulate propagation of the radiation
through the optical system of the Soft X-ray Self-Seeding Monochromator.
The propagated field is used as a seed for GENESIS simulations downstream
the monochromator allowing one to investigate the FEL beamline perfor-
mance after the monochromator installation. The monochromator’s optical
elements are represented as transverse phase shifters, allowing to take into
account curvatures, positions and height errors of mirrors and aberrations
introduced by them. The propagation of the radiation between optical el-
ements is done with a Fresnel propagator. The monochromator radiation
transport simulation allows one to study the monochromator performance
in the beamline, such as effective resolving power of the monochromator
without the exit slit, the input coupling factor, or effectiveness of the taper-
ing.

Based on simulations, we found that resolving power of the monochromator
operating without the exit slit varies from 5400 to 8500, that is close to
resolving power with the 3µm exit slit inserted [14]. Resolving power along
with input coupling factor are affected by the choice of the source position in
the SASE undulator. We have found that the source position in the undulator
U8 (when the undulator U8 is active) is optimal for seeding in 700eV photon
energy region. Simulations with the source position in the undulator U8
showed a better resolving power than that the undulator U8 is not active.
We found that surface height errors of installed optics have no significant
effect on the monochromator performance. A Pulse Front Tilt (PFT) effect
was simulated separately from others (see Appendix). It showed that a PFT
after the monochromatization is minimized when the radiation source is
inside undulator U8.
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A Pulse Front Tilt

The grating in the SXRSS monochromator introduces an angular dispersion
of the radiation. It yields to a pulse-front tilt (PFT) effect, which becomes
important when dealing with ultrashort pulses. The geometrical interpreta-
tion of the PFT is that due to different incidence and reflection angles, pulse
front immediately after the grating should be tilted in order to keep an opti-
cal path difference along the reflection area the same (AD=BC on Fig. A.1).
Since SASE FEL pulse consists of numerous longitudinal modes, they may
be geometrically interpreted as sequential pulses, and each of them will be
tilted after the grating. When operated without the exit slit, the pulse-front
tilt may affect an input coupling factor of the FEL at the entrance of the
seeded undulator. The pulse propagation approach allows us to simulate
the SASE pulse front tilt effect in the SXRSS monochromator. The propaga-
tion algorithm simulates an effect of the PFT on the input coupling factor
automatically.

In Figure A.2 the 1000 eV SASE pulse (subfigure - a) is propagated after the
grating (b) and through the slit position (c-e). We can see, that the PFT is
present in the time domain when multiple angularly dispersed frequencies
overlap in the frequency domain. At the slit position the PFT is absent.
In the frequency domain wavelengths are focused and well-resolved. Out
of the slit position numerous wavelengths overlap again, resulting in the
PFT in the time domain. Situation will be similar at the entrance to the
seeded undulator, but due to an image magnification and the higher angular
dispersion, this effect will differ from the PFT around the slit position. The
design of the SXRSS monochromator implies re-imaging of the radiation
at the slit position to the entrance of the seeded undulator via mirror M2
with the magnification factor 10. Source point position at the end of the
SASE undulator defines focusing parameters of the optical system of the
monochromator. It affects the size and the position of the waist around the
slit area, leading to changes in the structure of the re-imaged radiation at the
entrance of the seeded undulator. It is shown in Figure A.3 that the optimal
source position is located in the section 8 of the SASE undulator. It allows
one to decrease the effect of the PFT.
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Fig. A.2. Frequency (first row) and time (second row) domains of the vertical dis-
persive projection of 1000eV radiation pulse propagated after the grating through
the slit position.
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Fig. A.3. Frequency (first row) and time domains (second row) of propagated
radiation pulse through the monochromator. The direct approach with a limited
spectral bandwidth was used for propagation. The radiation source position was
simulated in undulator 8 (figs. a-b) and in undulator 7 (figs. c-d). In order to illustrate
further evolution of the pulse, it was additionally propagated 6m downstream
seeded undulator (figs. b,d). The radiation energy is 500eV. At higher energies this
effect is smaller.
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