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Abstract:

We present a new framework for computing resummed and matched distributions

in processes with many hard QCD jets. The intricate color structure of soft gluon

emission at large angles renders resummed calculations highly non-trivial in this case.

We automate all ingredients necessary for the color evolution of the soft function at

next-to-leading-logarithmic accuracy, namely the selection of the color bases and the

projections of color operators and Born amplitudes onto those bases. Explicit results

for all QCD processes with up to 2 → 5 partons are given. We also devise a new

tree-level matching scheme for resummed calculations which exploits a quasi-local

subtraction based on the Catani–Seymour dipole formalism. We implement both

resummation and matching in the Sherpa event generator. As a proof of concept,

we compute the resummed and matched transverse-thrust distribution for hadronic

collisions.
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1. Introduction

Jets play a central role in the physics program of the CERN Large Hadron Collider

(LHC). The typical minimum value for jet transverse momenta considered in LHC

analyses is of the order of 20 GeV, which is more than two orders of magnitude smaller

than the center-of-mass energy, resulting in a huge phase space for jet production.

Events with a high jet multiplicity are therefore copiously produced at the LHC [1].

Moreover, typical signatures of new-physics models include cascade decays of

new heavy states producing relatively hard quarks and gluons, which seed hard jets.

Accurate theoretical estimates of the related QCD multi-jet backgrounds are there-

fore essential. This has triggered intense activity in the QCD community, resulting
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in more and more accurate calculations of cross sections and differential distributions

for multi-jet final states.

Leading order (LO) perturbative QCD calculations for multi-jet processes can au-

tomatically be performed for large multiplicities [2, 3]. Next-to-leading order (NLO)

corrections have also reached a high level of automation [4], and fully differential

multi-jet cross sections are now available for pure QCD processes and electroweak

(W±, Z and Higgs) boson production in association with up to five jets [5].

Monte Carlo parton showers [6], which describe the all-order evolution of QCD

partons fully exclusively, have been extended beyond the strict collinear limit [7] and

even beyond the 1/NC approximation [8]. They can be merged with LO predictions

for multi-jet events [9] and matched to NLO calculations [10, 11] for over a decade.

More recently, methods for combining next-to-leading order matched predictions of

varying jet multiplicity have been devised [12], as well as matching methods at next-

to-next-to leading order (NNLO) accuracy [13]. Dedicated Monte Carlo programs

aimed at better describing jet production in the high-energy limit have also been

developed [14].

Thus, the past years have brought substantial theoretical progress in multi-jet

physics, both from the viewpoint of fixed-order calculations and parton showers, as

well as the matching and merging of the two approaches. Another important aspect

of QCD phenomenology is the all-order resummation of particular classes of observ-

ables or processes, beyond the leading-logarithmic (LL) accuracy, which is typical

for parton showers. Event shapes in electron-positron, electron-proton and hadron-

hadron collisions have been studied for a long time (see for instance [15, 16] and

references therein) and a general framework for resumming event shapes at next-to-

leading logarithmic (NLL) accuracy was developed in Refs. [17]. Very high logarith-

mic accuracy (N3LL) was achieved using Soft Collinear Effective Theory (SCET) for

particular event shapes in e+e− collisions [18, 19]. Inter-jet radiation and in partic-

ular its response to the presence of a jet veto has also received a lot of attention

both from the theoretical [20, 21, 22] and experimental [23] communities, primar-

ily in the context of Higgs-boson studies [24]. All-order analytical calculations have

been performed recently for an increasing number of jet-substructure observables, in-

cluding jet masses [25], other jet shapes [26], sub-jet multiplicity [27] and grooming

algorithms [28]. Recently, there has also been substantial progress towards achieving

NNLL accuracy in threshold resummation for dijet production [29].

However, to our knowledge, all phenomenological studies that used all-order

resummed results have been restricted to cases with four or less hard colored partons,

i.e. 2→ 2 QCD scattering in hadron-hadron collisions [30, 31, 32] 1. The reason for

this deficiency in comparison to the enormous progress in fixed-order calculations

is purely technical. While logarithmic terms associated to collinear emissions have

1Refs. [21] considered the resummation of 2→ 3 scattering processes, in the limit where one of

the final-state partons was a soft gluon.
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a simple color structure, i.e. the Casimir operator of the jet under consideration,

the color structure of soft-gluon emissions at large angles is more complex and,

in particular, has a non-trivial matrix structure for n ≥ 4 partons. Nevertheless,

resummed calculations can in principle be written for an arbitrary number of hard

colored legs, using, for instance, the formalism of Refs. [30, 33, 34, 35]. In order

to perform an actual calculation, one then needs to define a suitable color basis for

each partonic subprocess, and consequently find the matrix representation of all color

insertions. The dimensionality of color bases rapidly increases with the number of

legs. Algorithms to define them have been discussed in the literature, e.g. [36, 37,

38, 39]. However, when making use of a non-orthogonal basis, the efficient inversion

of the matrix representing the color metric can pose a severe problem. In addition,

the underlying Born matrix elements for the hard process must be decomposed in

the chosen basis. One would clearly like to automate all these steps.

The main purpose of this study is to overcome these technical difficulties and

provide a tool to perform soft-gluon resummation at NLL accuracy for processes

with, in principle, arbitrarily many hard legs. In practice we have considered all

contributions for up to 2 → 5 processes. As detailed in Sec. 2, we achieve this

by writing the resummed exponent in a suitable color basis and by decomposing the

Born amplitudes using modified color-dressed recursive relations [40], as implemented

in the Comix matrix-element generator [3], that is part of the Sherpa framework

[41].

In this paper, we also address the issue of matching the resummation to fixed-

order calculations. In Sec. 3 we develop an automated LO matching scheme which

makes use of modified dipole subtraction [34]. It circumvents the explicit expansion

of the resummation formulae to a large extent and provides a quasi-local cancellation

of the logarithmic contributions. We use the resummation of the transverse thrust

in hadronic collisions as a first example to study the performance of our method. We

finally summarize our work and indicate future directions in Sec. 4.

2. The soft function and its anomalous dimension

The main aim of this work is to define and implement NLL resummation for processes

with an arbitrary number of hard partons. Despite the computational difficulties

arising from the non-trivial color structure in soft-gluon radiation, one can formally

write all-order resummed expressions in terms of abstract color operators [30, 33, 34,

35], which are then valid for an arbitrary number of hard legs.

The quantity we are interested in is the NLL “soft function” [30, 31]

S(ξ) =
〈m0|e−

ξ
2
Γ†e−

ξ
2
Γ|m0〉

〈m0|m0〉
. (2.1)
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In the above equation, |m0〉 denotes a vector in color space representing the Born

amplitude, such that the color-summed squared matrix element is |M0|2 = 〈m0|m0〉.
Therefore, Eq. (2.1) describes the soft gluon evolution of the Born amplitude from

the hard scale of the process down to the low scale, set by the observable under

consideration, thus resumming to all orders the logarithmic contributions encoded in

the evolution variable ξ. Note that the soft function defined here and used through-

out this paper does not contain any collinear logarithms and the evolution variable

ξ, the precise functional form of which may depend on the observable at hand, is

single-logarithmic. This is in contrast to alternative definitions also common in the

literature. Moreover, to NLL considered here, the soft function depends on the strong

coupling only through the variable ξ.

The soft function in Eq. (2.1) is defined in terms of the central object in our

study: the soft anomalous dimension Γ. Although much of the computational tech-

nology developed here can be applied to a variety of observables, in order to keep

the presentation simple, we focus our discussion on global event shapes 2. For this

class of observable, Γ can be written as

Γ = −2
∑
i<j

Ti ·Tj ln
Qij

Q12

+ iπ
∑

i,j=II,FF

Ti ·Tj . (2.2)

The first sum runs over all possible colored dipoles, with Qij the respective invariant

mass, i.e.

Q2
ij = 2 pi · pj. (2.3)

The second sum in Eq. (2.2) is over the Coulomb (or Glauber) contributions between

final–final (FF) and initial–initial (II) parton pairs. Note that the non-commutativity

of Γ and Γ† prevents us from recombining the exponentials in Eq. (2.1) and leads to

a physical effects from the Coulomb phase.

In order to make contact with the existing literature, we can evaluate Eq. (2.2)

for the special case of 2→ 2 scattering of massless partons. In this case, Q12 = Q34 =√
s, Q13 = Q24 =

√−t and Q14 = Q23 =
√−u, and the soft anomalous dimension

becomes (see e.g. [17])

Γ = − (T1 ·T3 + T2 ·T4)T − (T1 ·T4 + T2 ·T3)U, (2.4)

where we have employed color conservation, i.e.(
4∑
i=1

Ti

)
|m0〉 = 0 , (2.5)

2A general framework for resumming such observables has been developed in the context of the

program Caesar [17]. Within this method, observables defined on Born configurations with an

arbitrary number of hard partons can in principle be considered. More details will be given in

Sec. 3.1 and App. B.
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introduced the compact notation

T = ln
−t
s

+ iπ and U = ln
−u
s

+ iπ, (2.6)

and dropped all contributions from abelian phases because they do not contribute

to any cross sections.

Aiming for an automated evaluation of Eq. (2.1) for arbitrary processes, there

are essentially three problems which need to be addressed:

• the color-basis definition and computation of the metric,

• the computation of the color operators Ti ·Tj, in the considered basis,

• the decomposition of the amplitude |m0〉 in the considered basis.

The construction and implementation of an algorithm addressing all three items

represents the core of this paper. This problem is closely related to the color decom-

position of QCD amplitudes [42], which is typically written in the form

M0(1, α1; . . . ;n, αn) =
∑
i

C(i)(α1, . . . , αn)m
(i)
0 (1, . . . , n) . (2.7)

Here,M0 is the full amplitude for a set of external particles 1 . . . n with color assign-

ments α1 . . . αn. The C(i) are color coefficients, and the m
(i)
0 are color-ordered partial

amplitudes. The index i labels the color orderings contributing to the color assign-

ment. While the number of orderings and the related color coefficients change with

the color basis [43, 44], the partial amplitudes are unique, gauge-invariant objects

depending only on the particle momenta. They are given by sums of planar diagrams

computed in the large-NC limit [45]. One may consider Eq. (2.7) the projection of

the Born amplitude onto a given color-basis element, M0(α) = 〈cα|m0〉. This will

be discussed in more detail in the following.

2.1 Non-orthogonal color bases

We first define our notation for color bases. As we are going to work with bases which

are not necessarily orthogonal (for a discussion about this topic see also Refs. [46, 47,

48]), we start by defining basis vectors |cα〉 and introduce the (non-diagonal) color

metric, and its inverse

〈cα|cβ〉 = cαβ 6= δαβ cαβ = (cαβ)−1 . (2.8)

Note that cαγc
γβ = δ β

α by construction. The basis vectors |cα〉 span a complete (pos-

sibly over-complete) set of elements which we leave undetermined for the moment.

We will adopt the convention of referring to cαβ as the inverse metric.

Let us consider a general tensor Hβγ expressed in the non-orthogonal c-basis.

Color invariants are computed by contracting with the metric, and we define in
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particular the color trace as Tr(cH) = cαβH
αβ. Indices between the c-basis and

its dual are raised and lowered with the metric. Tensors transforming with mixed

indices are interpreted as H β
α ≡ Hαγc

γβ.

The soft function from Eq. (2.1) written in matrix notation reads

S(ξ) =
Tr
(
He−

ξ
2

Γ†c e−
ξ
2

Γ
)

Tr (cH)
=

cαβH
γσG†γρcρβcαδGδσ
cαβHαβ

, (2.9)

where cαβH
αβ = 〈m0|m0〉 now represents the color-summed Born matrix element

squared. The matrix G is the exponential of the soft anomalous dimension matrix,

which due to the non-orthogonal nature of the c-basis, takes the form

Gαβ(ξ) = cαγ exp

(
−ξ

2
Γγβ

)
= cαγ exp

(
−ξ

2
cγδ Γδβ

)
. (2.10)

A significant amount of recent work has focused on improving the basis construction,

with certain advantages and disadvantages for each approach. In [37], a complete

trace basis was discussed which followed from combining the connected fundamental

representation color tensors appearing in the tree-level hard matrix element with the

disconnected color structure required by soft-gluon exchange. The construction of

this basis for an arbitrary process was automated in [38]. In [39] a general orthonor-

mal basis was constructed, which was shown to be minimal in elements for a given

process.

In this work we follow a different approach. Instead of constructing new op-

timized color bases, we rely on existing ones and circumvent the problem of over-

completeness in an automated fashion by extending the dimensionality of color space.

This method, and the alternative approach of dimensional reduction, will be dis-

cussed in more detail in Sec. 2.2. In order to select the color bases to start with, we

use the following guiding principles:

1. Minimal partial-amplitude count: The components M(α) = 〈cα|m0〉
should depend on as few partial amplitudes as possible.

2. Physical color states: The basis vectors should represent physical color

states. This disqualifies bases containing singlet gluons, for example.

3. Minimality of the basis: Although we will also use over-complete bases, we

require the dimension of the basis to be as low as possible.

The trace basis [42] for processes with quarks and the adjoint basis [43] for processes

with only gluons satisfy our guiding principles, and we choose to implement them.

However, subtleties arise because these bases can be over-complete. In this respect,

we note that exponentiation via Eq. (2.10) requires the computation of the inverse

color metric cαβ. Thus, cαβ must be non-singular for general NC . At NC = 3 it
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may be singular if the corresponding metric cαβ contains representations with weight

proportional to NC−3. In this case the inversion may be computed with NC = 3 + ε

colors. More on this issue appears in Sec. 2.2.

Processes including quarks

The complete basis for processes including quarks follows from color connecting all

same flavor quark lines while attaching gluons in the form of fundamental-representation

matrices. For example, in the case of a single quark pair the decomposition at tree-

level is [42]

M0(1, i1; 2, a2; . . . ;n, jn) =
∑

σ∈P (n−2)

(T aσ2 . . . T aσn−1 )jni1 m0(1, σ2, . . . , σn−1, n) .

(2.11)

The sum runs over all (n− 2)! permutations of the particle labels 2 . . . n− 1, which

represent the gluons. Decompositions for processes with multiple quark lines are

qualitatively similar and can be found in the literature. In the general case, the

decomposition includes disconnected quark lines, arising from soft gluon exchange,

and disconnected gluon lines, which appear for processes with 2 or more gluons.

Similar terms appear at higher loops in fixed-order calculations.

An important simplification is that any basis with the same number of qq̄ pairs

(taking flavor labels as all incoming) and gluons is the same, modulo crossings. This

suggests that for a given set of particle flavors, the resummation may be carried out

for a fixed flavor ordering. In practice we implement this by always computing Γ in

the same flavor arrangement {q, q̄, g} so that the first sum in Eq. (2.2) is always in

order.

We keep track of the map to the physical process by labeling incoming and

outgoing for the purpose of assigning the Coulomb phase. This means that the

matrices Ti · Tj only need to be computed once for all processes involving the same

number of quarks and gluons.

Purely gluonic processes

There are multiple options of dealing with purely gluonic processes. The first and

oldest of them is the trace basis, described in Ref. [42]. The color decomposition of

tree-level amplitudes reads

M0(1, a1; . . . ;n, an) =
∑

σ∈P (n−1)

Tr(T a1T aσ2 . . . T aσn )m0(1, σ2, . . . , σn) . (2.12)

The sum runs over all (n− 1)! permutations of the particle labels 2 . . . n. In the con-

text of resummation, we must add the non-vanishing color disconnected components

containing multiple gluon traces, which also appear at higher loops in fixed-order

calculations.

– 7 –



A subtlety arises due to the reflection symmetry of the partial amplitudes,

m0(1, 2, 3, . . . , n) = m0(1, n, . . . , 3, 2), which holds for the corresponding soft gluon

evolved amplitudes as well. The basis elements corresponding to permutation 123 . . . n

and n . . . 321 can be combined due to this symmetry, so that the number of connected

basis elements for general NC is reduced by a factor two.

The adjoint (f -) basis [43] corresponds to the remaining basis vectors after ap-

plying the Kleiss-Kuijf relations [49]. Equation (2.12) reduces to

M0(1, a1; . . . ;n, an) =
∑

σ∈P (n−2)

(F aσ2 . . . F aσn−1 )a1anm0(1, σ2, . . . , σn−1, n) , (2.13)

where the sum runs over only (n− 2)! permutations, corresponding to the new basis

elements. As with the trace basis, we add the disconnected components, which

starting at 6 gluons may also feature 4 gluons connected via adjoint tensors.

2.2 Elimination of NC = 3 pathologies

Although advantageous from many points of view, both the trace and adjoint bases

for high-multiplicity processes turn out to be over-complete. As a consequence, the

matrices representing the corresponding color metric, defined as in Eq. (2.8), have

null eigenvalues at NC = 3. However, the fact that the inverse metric at NC = 3 is

often singular is an artefact of calculating cαβ and Γ separately, since maintaining

the full NC dependence the resulting S-function is always finite. Keeping the NC

dependence explicit becomes computationally impractical for large multiplicity. Here

we outline two strategies to overcome these limitations.

Dimensional Reduction

The simplest solution is to reduce the size of the color basis, in particular, if we bear

in mind the freedom to reparameterize the basis elements with no tree-level Born

contribution. These components only enter S through contractions with the inverse

metric and can therefore be reshuffled for convenience.

More precisely, for a basis with m Born proportional and n −m non-Born ele-

ments {c0, · · · , cm−1, cm, cm+1, · · · , cn−1, cn}, we examine the situation where there

is a single zero eigenvalue at NC = 3 in the color metric. In other words, the basis

decomposes into n−1 non-vanishing irreducible representations. A simple procedure

for reducing the color space then corresponds to the new basis {c0, · · · , cm−1, cm +

cn, cm+1 + cn, · · · , cn−1 + cn}, where we normalise new elements accordingly.

While for simpler processes this procedure is straight-forward (see section A.2),

for the general case it is hard to automate, and therefore we choose a different

approach.

Numerical Inversion with NC = 3 + ε

We adopt a solution which avoids adjusting the dimensionality of the basis, and

therefore requires no a priori group theory knowledge on the color decomposition of
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c 1 = δ
jq̄′
iq δ

jq̄
iq′

c 2 = δ
jq̄
iq δ

jq̄′
iq′

↔

↔ m0(q, q̄
′, q′, q̄) ↔

− 1
NC

m0(q, q̄
′, q′, q̄) ↔ − 1

NC

iq′jq̄

iq jq̄′

jq̄

iq

iq′

jq̄′

q̄

q q̄′

q′

q′

q̄′q

q̄

Figure 1: Sketch of color basis vectors and their corresponding projections of Born matrix

elements for qq̄ → q′q̄′ scattering. All flavors in the figure are taken as outgoing.

a given process. This is the simplest solution practically, though there is clearly an

efficiency loss due to carrying through non-contributing color directions.

We state the necessary claims here while proofs may be found in App. A.1.

First, we note that the metric is always invertible for NC = 3 + ε with ε > 0. We

can separate the singular from the regular part of the inverse color metric as

cαβ3+ε = cαβR +
1

ε
c̃αβ . (2.14)

The singular part of the inverse metric is in the null-space of all color products

evaluated at NC = 3

c̃αβ(Ti ·Tj)βγ = 0αγ , (2.15)

which guarantees that

S(ξ)NC=3+ε = S(ξ)NC=3 +O(ε). (2.16)

We find that the error introduced in the resummation is O(ε) which may be taken

sufficiently (arbitrarily) small in practice (theory).

2.3 Computation of the hard matrix

A key ingredient for the computation of the soft function Eq. (2.9) is the hard

matrix, which is formed by projections of the Born amplitudes onto color basis

vectors, Hαβ = 〈m0|cα〉〈cβ|m0〉. Consider, for instance, the trivial case of qq̄ → q′q̄′

scattering, where q and q′ represent two different quark flavors. The Born matrix

element factorizes into a purely kinematical part, which stems from the s-channel

diagram squared, and color coefficients defining the actual matrix structure. This is

shown in Fig. 1. However, in any non-trivial case, multiple diagrams appear, which
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contribute differently to the different matrix elements, such that the hard matrix has

a non-trivial dependence on the Born kinematics. In particular, same-flavor quark

processes like qq̄ → qq̄ scattering have partial amplitudes where both s- and the

t-channel diagrams contribute because of the 1/NC suppressed term in the Fierz

identity. This is sketched in Fig. 2. Automating the computation of Hαβ requires an

algorithm that allows us to easily access these partial amplitudes.

We solve this problem with the help of Comix [3], a matrix-element generator

that computes multi-parton amplitudes using color-dressed recursive relations [40].

Comix is part of the Sherpa framework [41]. As Comix allows us to define a

color configuration in the large-NC limit, it is trivial to obtain color-ordered partial

amplitudes. However, these are not necessarily sufficient to compute the entries of

the hard matrix directly.

Take for example qq̄ → qq̄ scattering, as depicted in Fig. 2. The two amplitudes

needed for the hard matrix are shown schematically on the first and the second

line. To compute them individually, we can use a colorful matrix element that is

projected onto the correct set of diagrams by selecting external colors appropriately.

Using the color-dressed Feynman rules from [40], the amplitudes on the right-hand

side, including their prefactors, are generated by choosing the colors on the left-hand

side. If the number of colors is fixed to three, this leads to problems for amplitudes

with more than three fundamental color indices, as non-planar diagrams start to

appear. These are removed by working at NC → ∞. Taking this limit, however,

would eliminate the second diagram on the first line and the first diagram on the

second line, because the gluon propagator does not have a 1/NC contribution. The

problem is solved by keeping this term when taking the limit. This modification is

implemented at the vertex level by changing the color-dressed Feynman rules such

that U(1) gluons couple to quark lines also in the large-NC limit, while evaluating

the corresponding 1/NC term in the Fierz identity with NC = 3.

We note that it is possible to add the relevant one-loop partial amplitudes and

extend this algorithm beyond the tree level. This will provide the hard matrix one

order higher, which is needed in order to achieve higher logarithmic accuracy in the

resummation.

2.4 Validation against multi-parton matrix elements

In order to check the construction of the color metric for the employed bases and the

correctness of the corresponding decomposition of the hard matrix for multi-parton

amplitudes, we compare our results against exact real-emission matrix elements con-

sidering soft but non-collinear kinematics for the emitted gluon. Starting from an

n-parton state with momenta p1, . . . , pn we assume the emitted gluon to carry addi-

tional momentum ps, with |ps| = ks. We choose a particular kinematic configuration,
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− 1
NC

− 1
NC

Figure 2: Sketch of color basis vectors and their corresponding projections of Born matrix

elements for qq̄ → qq̄ scattering. In comparison to Fig. 1, there is both an s- and a t-channel

diagram, both of which contribute to each projection with different weight.

where the final-state momenta resemble a circle in the transverse plane, i.e.,

p1 = E(1, 0, 0, 1) ,

p2 = E(1, 0, 0,−1) ,

p3 = En(1, cos(φn3 + φH), sin(φn3 + φH), 0) ,

p4 = En(1, cos(φn4 + φH), sin(φn4 + φH), 0) ,

...

pn = En(1, cos(φnn + φH), sin(φnn + φH), 0) ,

ps = ks(1, cosφs, sinφs, 0) , (2.17)

with En = 2E/(n − 2) and φnm = π(2m − 3)/(n − 2). The momenta p1 to pn can

then be used directly to evaluate the n-parton amplitude. For the computation of the

(n+ 1)-parton process we assume the recoil of the emitted soft-gluon to be absorbed

by the dipole spanned by partons 3 and 4. The momenta of partons 3 and 4 that

enter the (n+ 1)-parton amplitude are then given by

p′3 = p3 − ps +
p3 · ps

p4 · (p3 − ps)
p4 ,

p′4 =

(
1− p3 · ps

p4 · (p3 − ps)

)
p4 . (2.18)

We define with Rs the inverse ratio between an n + 1-parton matrix element

squared and its “sum-over-dipoles” approximation

Rs =
αS

π
Tr

[
Hn

∑
i<j

Ti ·Tj
pi · pj

pi · ps pj · ps

]
1

Tr (cHn+1)
. (2.19)
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Figure 3: (Left) Ratio of the sum-over-dipole dressed 4-parton approximation to the exact

5-parton matrix elements for different partonic subprocesses, cf. Eq. (2.20). (Middle) Rs
ratio for sum-over-dipole dressed 5-parton over full 6-parton configurations. (Right) Same

but for 6/7-parton matrix elements.

The QCD coupling αS is assumed fixed here. Factorization of QCD matrix elements

implies that in the limit of soft-gluon kinematics, i.e., λs = ks/(2E)→ 0, we have

lim
λs→0

Rs = 1. (2.20)

This result is in fact independent of the underlying Born kinematics, and in particular

independent of the angle φH through which we rotate our hard-parton configuration,

Eq. (2.17). Depending on φH , the value of Rs for finite λs may be larger or smaller

than one. Taking the limit in (2.20), we provide a strong consistency check on the

elements of Γ and Hn for the n-parton process as well as c and Hn+1 for the n + 1

parton configuration. This applies to elements which have a non-vanishing hard

contribution.

In order to expose this property of the full matrix element, we sample over φH
in discrete steps assuring that the momentum ps does not get collinear to any other

parton. This is sufficiently satisfied by requiring that φH is not an integer multiple

of φs. In practice we take φs = π/7, and sample φH = Nπ/10 over N = 0, . . . , 9.

In Fig. 3 we display the results of our checks for soft-gluon emission off 4- (left),

5-parton (middle) and 6-parton (right) amplitudes. The last case provides a non-

trivial check also on the 7-parton color metric and hard matrix, entering through the

denominator of Eq. (2.20). For completeness we collect in App. A.3 the properties

of the color bases used for the various processes. By rotating the respective Born
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kinematics on the circle in the transverse plane, we can verify that the individual co-

efficients of each dipole are exactly matched in the full matrix element as λs → 0. For

a specific phase-space point these coefficients could be individually very small thus

not providing a sufficient test. The results show a strong dependence on the under-

lying kinematic configuration in addition to the considered parton flavors. However,

for sufficiently small λs in all cases Rs approaches unity, proving correctness of the

ingredients for the soft function S.

2.5 Soft evolution of multi-parton squared amplitudes

Having proven correctness of our color-metric evaluation and the corresponding hard-

matrix decomposition, we shall now study the full soft function S(ξ) given in Eq. (2.9)

for multi-parton processes. In particular we probe the dependence on the evolution

variable ξ and compare to the limiting case of NC → ∞, that closely resembles the

approximation used in parton-shower simulations. While the NC =∞ anomalous di-

mension is computed explicitly in the trace basis, it amounts to only a non-vanishing

contribution to Ti ·Tj for basis elements which have partons i and j color adjacent.

We begin by computing S(ξ) for several multiplicities at benchmark kinematics,

that lie on a circle in the transverse plane at z = 0. For the 2 → n processes we

parameterize the momenta as

p1 = E(1, 0, 0, 1) ,

p2 = E(1, 0, 0,−1) ,

p3 = En(1, cosφn3, sinφn3, 0) ,

p4 = En(1, cosφn4, sinφn4, 0) ,

...

pn = En(1, cosφnn, sinφnn, 0) , (2.21)

where again En = 2E/(n − 2) and φnm = π(2m − 3)/(n − 2). The soft function

S depends on the kinematics merely through ratios of momentum invariants (cusp

angles), such that when considering fixed αS the direct dependence on En vanishes.

In Fig. 4 and Fig. 5 we present results for the ξ-dependence of the soft function

for various parton channels, both for NC = 3 (solid curves) and for the limit NC →∞
(dashed curves). Depicted is the variation of lnS(ξ) with ξ, where we scaled each

curve such that it intersects with the ordinate at one. We observe a non-trivial ξ

dependence for all processes when considering the full-color treatment. For the given

phase-space configurations the full result shows a stronger variation with ξ than the

large-NC estimate. This originates from taking into account all off-diagonal elements

in the soft anomalous dimension. In particular for processes involving gluons the limit

NC →∞ approximates the full result poorly.

Let us discuss the general behaviour of our results in the large-NC case. In this

case, all non-diagonal entries of the soft anomalous dimension vanish and we can
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Figure 4: Dependence of the soft function S on the evolution variable ξ for 2 → 2 (left)

and 2 → 3 (right) parton configurations. For all processes parton momenta on a circle in

the transverse plane at z = 0 are considered.
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Figure 5: Dependence of the soft function S on the evolution variable ξ for 2 → 4 (left)

and 2 → 5 (right) parton configurations. For all processes parton momenta on a circle in

the transverse plane at z = 0 are considered.

simply write

1

S ′(0)

d logS(ξ)

dξ
=

( ∑n
i=1 hii∑n

i=1 λi hii

)∑n
i=1 hiiλi exp(λiξ)∑n
i=1 hii exp(λiξ)

(at large -NC) (2.22)
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Figure 6: Soft function for 2 → 3 (left), 2 → 4 (middle) and 2 → 5 (right) parton

configurations, for kinematics with all final-state momenta in the plane of the beam.

for an n-dimensional color space where λi and hii are the diagonal entries of Γαβ
and Hαβ respectively. Both λi and hii are positive because they correspond to non-

interfering squared amplitudes. Consequently, Eq. (2.22) is a monotonically increas-

ing function ξ, for all underlying Born configurations. However, at finite NC , the

full matrix structure persists and the behaviour is not neccesarily monotonic due to

off-diagonal interfering contributions.

To also check kinematic configurations with particles at non-zero rapidity, we

considered the above kinematics but rotated by an angle π/2 about the y-axis. This

results in momenta that span a circle in the y − z plane at x = 0. The correspond-

ing results can be found in Fig. 6. Again, while the behaviour for NC → ∞ are

necessarily monotonically increasing functions of ξ this is not true for finite NC , due

to non-vanishing interference effects of different color flows. Accordingly, the large-

NC approximation can in general also result in an overestimate of the soft function.

To properly account for the highly non-trivial dependence on the parton kinematics

and the evolution variable the soft function needs to be evaluated with its full color

dependence, i.e. NC = 3. However, to fully quantify the importance of finite-NC

effects not just the soft-function contribution but the full physical observable needs

to be considered.

3. Towards phenomenology

In the first part of this paper, we have presented a new method to deal with the
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soft evolution of processes with many colored legs that provides a high degree of

automation. Moreover, we have realized an implementation of this method that uses

color-partial amplitudes extracted from the matrix-element generator Comix and

evolves them according to the soft anomalous dimension Eq. (2.2), thus obtaining an

efficient way of evaluating the soft function given in Eq. (2.1).

The aim of this second part is to create a framework in which the soft function

S in Eq. (2.1) can be used for phenomenological studies. Let us generically call v

an observable that measures the “distance” from the lowest-order kinematics. In the

context of jet studies, v can be thought of as an observable describing internal jet

properties, e.g. masses, angularities, energy correlation functions) or as an observ-

able measuring the radiation outside the leading jets, e.g. event shapes or inter-jet

radiation. When v is small, logarithms L = ln 1
v

are large and resummation becomes

a more efficient organization of the perturbative expansion than fixed-order pertur-

bation theory. Furthermore, we have to consistently match the two approaches to

obtain reliable predictions for the entire range of the observable v:

dσmatched

dv
=
dσresummed

dv
+

(
dσfixed-order

dv
− dσexpanded

dv

)
. (3.1)

The first term in the expression above is computed to some logarithmic accuracy,

typically next-to-leading log (NLL) but not infrequently to NNLL, while the second

one is computed at a given order in the strong coupling (state of the art is typically

NLO). The last term represents the expansion of the resummed distribution to NLO

and avoids double counting. The last two terms are affected by large logarithms

and are in fact separately divergent in the limit v → 0. However, their combination

yields a finite remainder, called the matching term. Although conceptually trivial,

computing the matching term is often numerically inefficient because it involves

the separate evaluation of fixed-order contribution and expanded resummation in

regions of phase space corresponding to soft and/or collinear emissions. It would be

preferable to generate the finite remainder directly.

3.1 Resummed distributions

Resummed calculations are usually performed for the so-called cumulative distribu-

tion, i.e. the integral of the differential distribution up to a certain value v of the

observable under consideration:

dΣ(v)

dB =
1

σ

∫ v

0

d2σ

dBdv′dv
′

=
∑

partonic
configurations

δ

dσ
(δ)
0

dB eLg
(δ)
1 (αsL)+g

(δ,B)
2 (αsL)+... [1 +O(αS)] , (3.2)
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where dB indicates that the expression above is fully differential in the Born kine-

matics. Here we focus our attention on the NLL approximation of ln Σ, i.e. we

consider the functions g
(δ)
1 and g

(δ,B)
2 in Eq. (3.2), while dropping the non-logarithmic

term in square brackets. The inclusion of this constant contribution is necessary in

order to achieve what often is referred to as NLL′ accuracy. We note that to this

logarithmic accuracy such contribution, although flavor-sensitive, can be averaged

over the different color flows. Furthermore, we note that this constant term can be

extracted from NLO calculations as implemented, for instance, with the Powheg

method [11], which has been automated in the Sherpa framework in Ref. [50] 3.

For our discussion, we follow the formalism developed in the context of the program

Caesar [17], which allows one to resum global event shapes in a semi-automated

way. With a couple of generalizations, the Caesar framework is sufficient for our

purposes. Furthermore, we will also briefly discuss some differences in the structure

of the resummation that arise when dealing with non-global observables [51] at the

end of this section.

We consider processes which at Born level feature n hard massless partons (legs)

and m color singlets (e.g. photons, Higgs or electroweak bosons) and we denote the

set of Born momenta with {p}. Following Refs. [17] we consider positive-definite

observables V that measure the difference in the energy-momentum flow of an event

with respect to the Born configuration, where V ({p}) = 0. For a single emission with

momentum k, which is soft and collinear to leg l, the observable V is parametrized

as follows 4

V ({p̃}; k) = dl

(
k

(l)
t

Q

)a

e−blη
(l)

gl
(
φ(l)
)
, (3.3)

where k
(l)
t , η(l) and φ(l) denote transverse momentum, rapidity and azimuth of the

emission, all measured with respect to parton l. Q is the hard scale of the process

which we set equal to the partonic centre of mass energy, i.e. Q2 = s. It is then

possible to write the resummed exponent in Eq. (3.2) in terms of the coefficients a,

bl, dl and gl(φ) that specify the behavior of the observable in the presence of a soft

and collinear emission.

In particular, while the LL function g
(δ)
1 is diagonal in color, one of the contri-

butions that enter the NLL function g
(δ,B)
2 is precisely the soft function, which, as

discussed in Sec. 2, has a matrix structure in color space, with complexity that in-

creases with the number of hard partons. Explicit formulae are collected in App. B.

The results of Sec. 2 provide an automated way of computing these contributions,

thus extending the applicability of the Caesar framework to processes with an (in

principle) arbitrary large number of hard partonic legs.
3We acknowledge discussions with Gavin Salam, Mrinal Dasgupta and Emanuele Re over this

point.
4In principle we should consider the set of momenta {p̃} after recoil, but this effect is beyond

the NLL accuracy aimed for here [17].
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We conclude this discussion with a few remarks on non-global observables [51].

Non-global logarithms arise for those observables that have sharp geometrical bound-

aries in phase space. They originate in wide-angle soft gluons that lie outside the

region where the observable is measured, re-emitting softer radiation back into that

region. The Caesar framework presented above is not sufficient to deal with this

case and new ingredients need to be introduced. Most noticeably, the NLL function

g
(δ,B)
2 receives a new contribution coming from correlated gluon emission 5. Because

of their soft and large-angle nature, non-global logarithms have a complicated color

structure. However, for phenomenological purposes, their resummation can be per-

formed in the large-NC limit [51, 53, 54], thus trivializing the color structure again.

Recent studies suggest a way of performing this resummation at finite NC [55]. We

believe that the methodology for performing all-order calculations with many hard

legs can also prove useful in the application of those methods to LHC phenomenology.

However, we leave this investigation for future work. Finally, we point out that while

the color structure of the soft anomalous dimension Γ for non-global observables is

formally the same as in Eq. (2.2), the coefficients of the Ti · Tj are observable-

dependent, because of non-trivial limits for the azimuth and rapidity integrals.

3.2 Automated matching

In order to avoid double counting when matching a resummed calculation to a fixed-

order one, we need to consider the expansion of the resummation. In this paper, we

are concerned with matching to tree-level matrix elements, thus we have to consider

the expansion of the NLL resummed distribution to O (αS)

d

dL

dΣ(δ)

dB =
2αS

π

d

dL

[
G12

2
L2 +G11L

]
+O

(
α2

S

)
, (3.4)

with αS = αS(µ2
R) and L = ln (1/v).

If the resummation is performed within the Caesar formalism, which is sum-

marized for convenience in App. B, one is able to expressed the coefficients G12 and

G11 in terms of the coefficients that parametrize the observable in Eq. (3.3). An

explicit calculation leads to

G12 =−
n∑
l=1

Cl
a(a+ bl)

G11 =−
[

n∑
l=1

Cl

(
Bl

a+ bl
+

1

a(a+ bl)

(
ln d̄l − bl ln

2El
Q

)
+

1

a
ln
Q12

Q

)

+
1

a

Re[Γαβ]Hαβ

cαβHαβ
+

ninitial∑
l=1

∫ 1

xl

dz
z
P

(0)
lk

(
xl
z

)
q(k)(z, µ2

F )

2(a+ bl)q(l)(xl, µ2
F )

]
. (3.5)

5We should mention that the particular choice of the algorithm used to define jets can influence

the resummation structure at the level of g
(δ,B)
2 . This discussion refers to a jet algorithm, like for

instance anti-kt [52], which in the soft limit behaves as a rigid cone.
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Our aim is to compute G12 and the first term in G11 by integrating collinear splitting

functions in a Monte-Carlo approach over suitably defined regions of phase space.

This procedure is similar to next-to-leading order subtraction techniques. It allows

to combine the matching terms with real-emission matrix elements point-by-point

in the real-emission phase space, and provides therefore a quasi-local cancellation

of large logarithms in the matching6. We use an existing implementation of the

Catani–Seymour dipole-subtraction method in Sherpa [56] as the basis for our

implementation. The remaining terms proportional to Cl in G11 are generated by

using the color-correlated Born amplitudes only and multiplying with the analytic

expression for log d̄l− bl ln(2El/Q) (or log(Q12/Q)) and the relevant prefactors. The

generation of the second line in Eq. (3.5) is described in detail below.

The dipole-subtraction method of Ref. [34] is based on the soft and collinear

factorization properties of tree-level matrix elements. In the collinear limit we can

write

|M0(1, . . . , i, . . . , j, . . . , n)|2 i,j→collinear−→
8πµ2εαs

2pipj
〈m0(1, . . . , ij, . . . , n)| P̂ij,i(z, kT , ε) |m0(1, . . . , ij, . . . , n)〉 .

(3.6)

The splitting operators P̂ij,i describe the branching ij → i, j as a function of the

light-cone momentum fraction z = npi/n(pi + pj), with n an auxiliary vector, and

the transverse momentum k2
T = 2pipj z(1− z). The splitting operators depend non-

trivially on the helicity of the combined parton, ij, but they have a trivial color

structure. In the soft limit, the matrix element factorizes as

|M0(1, . . . , j, . . . , n)|2 j→soft−→ −
∑
i,k 6=i

8πµ2εαs
pipj

× 〈m0(1, . . . , i, . . . , k, . . . , n)|Ti ·Tk Qik

Qij +Qkj

|m0(1, . . . , i, . . . , k, . . . , n)〉 .
(3.7)

The color insertion operators Ti ·Tk are the same as in Eq. (2.2). The full insertion

operator has a trivial helicity dependence. Ref. [34] combines the two above equations

into a single factorization formula, which holds both in the soft and in the collinear

region. The full matrix element is then approximated by a sum of dipole terms,

which are defined as

Dij,k(1, . . . , n) = − 1

2pipj
(3.8)

× 〈m0(1, . . . , ij, . . . , k, . . . , n)|Ti ·Tk

T2
ij

V̂ij,k(z, kT , ε) |m0(1, . . . , ij, . . . , k, . . . , n)〉 .

6The cancellation is not necessarily local because the parametrization of the observable in terms

of kinematical variables may differ from the actual real-emission kinematics.
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The insertion operators V̂ij,k(z, kT , ε) are based on the collinear splitting operators

P̂ij,i(z, kT , ε), and modified such that Qik/(Qij +Qkj) is recovered in the soft limit.

This formula is exploited for matching in the following way:

1. The color insertion operators are identical to the ones in the anomalous dimen-

sion Γ. Upon replacing V̂ij,k(z, kT , ε) by 2 logQ(ij)k/Q12, and rescaling by 1/a,

we obtain the term proportional to Re[Γαβ]Hαβ/cαβH
αβ in Eq. (3.5). This is

the only term with a non-trivial color structure.

2. The dipole splitting operators V̂ij,k(z, kT , ε) cancel the singularities in the real-

emission matrix element that we match to, in particular in the collinear limit,

where Eq. (3.8) reduces to Eq. (3.6). Upon replacing V̂ij,k by P̂ij,i, restricting

doubly logarithmic terms to the appropriate region of phase space, and rescaling

by 1/(a+ bl), we obtain G12 and the term proportional to Bl in G11
7.

The factorization of the one-emission phase space is derived in Ref. [34] in terms of

variables that represent scaled invariant masses and light-cone momentum fractions.

Based on these quantities we define two new variables, v and z, as

v =



yij,k FF dipoles

1− xij,a
1− xB

FI dipoles

ui IF dipoles

vi
1− xB

II dipoles

, z =



z̃j or z̃i FF dipoles

z̃j or z̃i FI dipoles

1− xik,a
1− xB

IF dipoles

1− xi,ab
1− xB

II dipoles

. (3.9)

In this context, xB is the Bjørken-x of the Born process, pertaining to the initial-state

leg for which the dipole is computed. The terms involving xB are included to obtain

the correct integration range as compared to the resummation, which is performed

on Born kinematics, while Eq. (3.8) is computed for real-emission kinematics.

We restrict the phase space for the double-logarithmic term in soft-enhanced

splitting operators to the region za > v (for terms singular as z → 0). This corre-

sponds to the requirement that the gluon rapidity in the rest frame of the radiating

dipole be predominantly positive, and it generates the correct logarithmic dependence

of G11 in Eq. (3.5) [17]. More importantly it ensures that the soft-collinear singu-

larity structure of the real-emission matrix element is mapped out by the matching

terms locally in the real-emission phase space.

Matching terms originating in dipoles with initial-state emitter or spectator are

scaled by a ratio of parton densities, which accounts for the fact that the resum-

mation starts from Born kinematics, while the dipole terms in Eq. (3.8) have real-

emission kinematics. This modification induces a single-logarithmic dependence on

7For details on the definition of the integration region leading to G11, see Ref. [17].
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the observable, which is compensated by the explicit collinear counterterms in the

expansion, i.e. the last term in Eq. (3.5). This term is computed independently.

Figures 7 and 8 show in red the O(αs) expansion of the resummation, Eq. (3.5).

We plot the result as a function of ln v, using two observable types of different

behavior with respect to the Caesar coefficients a and bl (a = bl = 1 for thrust

variables, on the left, while a = 2, bl = 0 for jet rates, on the right. In both cases

dl = gl(φ) = 1). The leading double logarithm appears as a straight line, while

the sub-leading single logarithms appear as a constant offset. The collinear mass-

factorization counterterms (the last term in the square bracket of Eq. (3.5)) are

shown in magenta, and the leading-order matching terms are displayed in blue. The

sum of all the above is given in black. This sum is to be compared to a direct

leading-order calculation, which is shown in black dashed. The difference between

the two predictions should be of purely statistical nature, which is verified in the

bottom panel of each plot by testing the relative size of the deviation, normalized to

the Monte-Carlo uncertainty.

3.3 A proof of concept: transverse thrust

In order to demonstrate the completeness of our framework, we compute the re-

summed and matched distribution for a specific observable. We concentrate on the

hadron-collider variant of the thrust observable, i.e. transverse thrust T⊥. This

global event-shape observable is defined as

T⊥ = max
~n⊥

∑
i |~p⊥i · ~n⊥|∑

i p⊥i
, (3.10)

where the sum runs over all final-state particles, with ~p⊥i the particle’s momentum

transverse to the beam direction, and p⊥i = |~p⊥i|. The maximimal T⊥ is found

by variation of the transverse unit vector ~n⊥. Transverse thrust has been studied

by the Tevatron experiments [57, 58] and, more recently, also by the ATLAS [59]

and CMS [60] collaborations. Perturbative calculations for this distribution exist

at NLO [61] and also at the resummed level in the Caesar framework [17]. In

particular, the event shape that vanishes at Born level is τ⊥ = 1 − T⊥. Details

of the resummation for a generic global event shapes are given in App. B. The

response of the observable in the presence of soft / collinear emissions (see Eq. (3.3))

is parametrized by the coefficients given in Table 1. Because the underlying Born

processes is a 2→ 2 QCD scattering, the color structure is non-trivial, hence we are

able to put at work our construction of the soft function. In Figs. 9 and 10, we plot the

transverse thrust distribution for pp collisions at 8 TeV. We apply asymmetric cuts on

the two leading jets, i.e. p⊥1 > 100 GeV, p⊥2 > 80 GeV and we set µR = µF = HT/2,

with HT =
∑

i p⊥i.

In particular, the plot in Fig. 9 is analogous to the ones already shown in Sec. 3.2

and it provides yet another check of our matching procedure: the sum of the explicit
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leg l al bl dl gl(φ)

1 1 0 1/ sin θ 1− | cosφ|
2 1 0 1/ sin θ 1− | cosφ|
3 1 1 1/ sin2 θ sin2 φ

4 1 1 1/ sin2 θ sin2 φ

Table 1: Coefficients of the Caesar formula that specify the NLL resummation of trans-

verse thrust [17]. They correspond to the choice for the hard scale Q =
√
s; θ being the

scattering angle in the partonic centre of mass frame, and φ denoting the azimuth.

expansion of the resummation (red), the collinear counterterm (magenta) and the

LO matching term (blue) is plotted in solid black and it has to be compared to the

LO calculation (dotted black). The bottom panel shows that the difference between

the two is zero, within the Monte Carlo uncertainty.

Finally, in Fig. 10 we plot the resummed and matched distribution for transverse

thrust (black curve). For comparison, we also show the resummation on its own

(red curve). We show two possible choices for the hard scale: Q =
√
s (on the

left) and Q = HT/2 (on the right). The latter, more natural in hadron-hadron

collisions, corresponds to a rescaling of the resummation coefficients in Table 1,

namely dl → dl (HT/2/
√
s)
a
.The key feature of this plot is that the soft function

and matching are computed in a fully automated way at run-time, leading to NLL

resummed and matched distributions with a similar level of automation as Monte

Carlo event generators.

4. Conclusions and Outlook

Multi-jet physics is central in the physics program of the LHC. In this paper, we

have overcome the two main technical difficulties that prevented NLL resummed

calculations to be performed in processes with high jet multiplicity.

The first issue was related to the color structure of soft emissions at wide angle,

i.e. away from the jets, the complexity of which rapidly increases with the number

of hard jets. We have solved this problem by constructing and implementing a

framework in which the NLL soft function is computed in an highly automated way.

The algorithm constructs an appropriate color basis for the partonic process at hand,

and evaluates color operators and the decomposition of Born amplitudes in this basis.

It makes use of the matrix-element generator Comix to access the color-ordered

partial amplitudes that are needed for the evaluation of the soft function. Using this

framework, we have obtained and validated results for the soft function for all QCD

processes with up to five hard jets in the final state, i.e. 2→ 5 QCD amplitudes, and

we have studied the validity of the widely used large NC approximation. We have
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found that the impact of finite-NC corrections is significant, especially for processes

with many gluons.

We have tackled the second problem of matching resummed predictions to fixed-

order calculations. In the traditional way of addressing this problem, one matches

the resummed distribution of a given observable v to the one obtained at fixed-order

(typically NLO). The main drawback of this approach is that the fixed-order result

and the expanded resummed result have to be computed independently in extreme

regions of phase space, i.e. at very small v, where numerical cancellation is hard

to achieve. We improve upon this situation by introducing a quasi-local matching

scheme at leading order, which generates the finite remainder directly. As a proof of

concept, we computed within our framework the NLL transverse-thrust distribution

matched to LO. Although in this study we have mainly concentrated on global event

shapes, our framework can be easily extended to the case of non-global observables.

We see this rather technical paper as the first necessary step in a rich program

aimed at the phenomenological applications of resummed perturbation theory in

multi-jet physics. Moreover, because we implement resummed calculations in the

Sherpa framework, we have the possibility of making precise comparisons between

analytic resummation and Monte-Carlo parton showers. This will provide insights

on the benefits and limitations of both approaches and perhaps even indicate ways

to improve the formal accuracy of the parton shower.
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Figure 7: Test of the quasi-local matching procedure for hard processes with external

quarks. Thrust (left panels) and leading jet rate (right panels) are compared between

leading order and the first-order expanded resummed and matched prediction for e+e− →
qq̄ (top), e+q → e+q (middle) and qq̄ → e+e− (bottom), all mediated by photon and

Z-boson exchange.
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Figure 8: Test of the quasi-local matching procedure for hard processes with external

gluons. Thrust (left panels) and leading jet rate (right panels) are compared between

leading order and the first-order expanded resummed and matched prediction for τ+τ− →
gg (top), τ+g → τ+g (middle) and gg → τ+τ− (bottom), all mediated by Higgs-boson

exchange.
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Figure 10: The transverse-thrust distribution for pp collisions at 8 TeV, with asymmetric

cuts p⊥1 > 100 GeV, p⊥2 > 80 GeV.
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A. Over-complete color bases

Color bases constructed from irreducible QCD representations do not meet our re-

quirement 1 of the list in Sec. 2.1. Although we do not automate the construction

of orthonormal bases this for work, we do employ their generic properties in several

arguments throughout this section. For a complete approach to their construction

see [39].

We define an orthogonal basis element eα so that

〈eβ|eα〉 = eβα = λαδβα , (no sum on α) (A.1)

where λα is the weight of the representation. For a given physical process, the

dimensionality of the orthogonal e-basis may differ from the c-basis, in which case

the indices in Eq. (2.8) versus Eq. (A.1) also differ. Starting with the metric eαβ, we

define the (possibly non-square) transformation to the c-basis via

R :→ R α′

α eα′β′(R
T )β

′

β = cαβ Rα
α′e

α′β′(RT ) β
β′ = cαβ. (A.2)

As both cαβ and cαβ are symmetric, their (independent) eigenvectors correspond to

the row elements of R providing a straight-forward construction.

A.1 General proofs for the NC = 3 + ε expansion

Lemma 1

Assuming NC = 3 + ε, with ε > 0 and ε� 1, we can cleanly separate the finite part

of the inverse metric from the divergent one, i.e.

cαβ|NC=3+ε =
1

ε
c̃αβ + cαβR |NC=3 +O(ε), (A.3)

where cαβR and c̃αβ are regular at NC = 3.

Proof

For general NC , the metric can be brought to diagonal form where the λα are poly-

nomial in NC corresponding to the weights of irreducible representations, which in

the limit ε→ 0 are either O(1) or O(ε). In the latter case, let us parameterize such

eigenvalues as λ0 = κε where κ is a constant8.

The inverse of the orthogonal metric is a matrix with diagonal entries 1/λα. We

construct the tensor c̃αβ by rotating only the 1/λ0 components back to the c-basis.

Defining α′0 as the indices running over the vanishing weights we have

c̃αβ = κRα
α′0
δα
′
0β
′ (
RT
) β

β′
. (A.4)

8The case λα|NC=3 = O(ε2) is in principle possible and it would lead to an O( 1
ε2 ) term in

Eq. (A.3). However, this situation has not been encountered for any of the color-flow bases consid-

ered in this study.
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Lemma 2

All color products Ti · Tj belong to the null space of the singular part of the inverse

metric, i.e.

c̃αβ(Ti · Tj)βγ = 0αγ . (A.5)

Corollary

An interesting, and computationally advantageous, consequence of the above Lemma

is that in order to obtain

S(ξ)NC=3+ε = S(ξ)NC=3 +O(ε) . (A.6)

we only have to evaluate the color metric and its inverse with NC = 3 + ε, while

computing all color producs Ti · Tj at NC = 3. Therefore, the inversion of the

metric at NC = 3 + ε (with ε small) provides a valid alternative to dimensional

reduction for computing the soft function9.

Proof

Rotating c̃ αβ to the e-basis we define an element

〈eα| = 〈cα′|Rα′

α , (A.7)

so that for every 0 eigenvalue of cαβ there is a corresponding element 〈eα0| in the

orthogonal basis which satisfies

〈eα0|eβ〉 = 0 ∀β . (A.8)

Since Ti ·Tj|eβ〉 is a coefficient times an element of the orthogonal basis, we conclude

that (Ti · Tj)α0β = 0. Repeating the argument and noting that cαβ is symmetric,

we conclude that the corresponding rows and columns of (Ti · Tj) are zero. In the

e-basis we clearly have

δαα0〈eα0|Ti ·Tj |eγ〉 ⇒ c̃αβ(Ti ·Tj)βγ = 0αγ , (A.9)

which gives the desired result.

In order to demonstrate the corollary we evaluate all color products at NC = 3+ε

and we then write the soft anomalous dimension Eq. (2.2) at small ε as

Γαβ|NC=3+ε = Γαβ|NC=3 + ε Γ̃αβ|NC=3 . (A.10)

9A difficulty arises in our method for the case of 6 gluon soft evolution in the trace basis.

The problem is linked to the fact that 9 of the vanishing NC = 3 eigenvalues are negative for

3 < NC . 3.32. Therefore, an inversion algorithm for NC = 3+ε dependent on positive definiteness

of the (symmetric) metric is incompatible. However, this problem is avoided by choosing the f -

basis, which is positive definite for all processes considered thus far, or inverting using a (much

slower) more generic algorithm. A similar problem arises in the standard basis for qq → qqggg.
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The first term contributing to the soft function S which involves the inverse metric

comes from expanding the exponential to second order

S(ξ) ∼ ξ2

2!

[
Γβα + ε Γ̃βα

] [
cαγR +

1

ε
c̃αγ
] [

Γγα′ + ε Γ̃γα′
]
. (A.11)

Using (A.5) on all the color products that enter the definition of Γ, one finds no finite

terms originating from the interference of the 1/ε pole of the inverse metric and the

O(ε) contribution to the anomalous dimensions. Furthermore, this holds for higher

terms in the expansion of the exponential. Therefore, all the color products necessary

to construct the soft anomalous dimension can be safely computed at NC = 3, while

it is still necessary to compute the metric and its inverse at NC = 3 + ε

Finally, we note that using NC = 3 + ε to invert the metric involves a large

cancellation among the entries of cαβ. However, the convergence is better than

expected since the coefficients of 1/ε are roughly proportional to the number of

corresponding 0-representations, which is smaller than the total number of irreducible

representations for a given process.

A.2 A concrete example: gg → gg

We list here several different manifestations of the 4-gluon basis as specific examples

for our more general discussion in the text.

Trace basis

Let us consider the trace basis for this process:

c1 = Kc(ta1ta2ta3ta4 + ta1ta4ta3ta2), c4= Kdδa1a2δa3a4 ,

c2 = Kc(ta1ta2ta4ta3 + ta1ta3ta4ta2), c5= Kdδa1a3δa2a4 ,

c3 = Kc(ta1ta3ta2ta4 + ta1ta4ta2ta3), c6= Kdδa1a4δa2a3 , (A.12)

where tai are the color generators in the fundamental representation and a trace over

their fundamental-representation indices is implicit. Note that Kc = NC(16N6
C −

3N4
C + 16N2

C − 6)−
1
2 and Kd = (N2

C − 1)−1, so that the basis is normalized. The

tree-level partial amplitude coefficients corresponding to these color basis elements

are

c1 → m0(1, 2, 3, 4), c2 → m0(1, 2, 4, 3), c3 → m0(1, 4, 2, 3), c4 = c5 = c6 = 0.

(A.13)

Dimensionally reduced trace basis

The basis in Eq. (A.12) is over-complete and consequently the color metric is not

invertible for NC = 3. However, if we consider a reduced basis, obtained by taking

c′1 = c1, c′2= c2, c′3 = c3, c′4=
K ′d
Kd

(c4 + c6), c′5 =
K ′d
Kd

(c5 + c6),

(A.14)
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where K ′d = 1/
√

2N2
C(N2

C − 1), the metric is then invertible for NC = 3, the con-

nected components remain synced with the hard matrix (A.13), and the resulting

S(NC = 3) is unchanged.

Adjoint basis

We can now write the 5-dimensional f -basis

c1 = Kaf
a1a4e1f e1a3a2 , c2 = Kaf

a1a3e1f e1a4a2 ,

c3 = Kdδa1a4δa2a3 , c4 = Kdδa1a2δa3a4 , c5 = Kdδa1a3δa2a4 , (A.15)

where Ka = (4N2
C(N2

C − 1))−
1
2 and Kd = (N2

C − 1)−1. We can make connection to

the trace basis by repeated application of the fundamental Lie algebra to see that

c1 = Ka [(ta1ta2ta4ta3 + ta1ta3ta4ta2)− (ta1ta2ta3ta4 + ta1ta4ta3ta2)] ,

c2 = Ka [(ta1ta2ta3ta4 + ta1ta4ta3ta2)− (ta1ta4ta2ta3 + ta1ta3ta2ta4)] . (A.16)

in terms of fundamental representation generators. The hard coefficients are the

same partial ordered amplitudes though we now have multi-peripheral labelling

c1 → m0(1, 3, 4, 2), c2 → m0(1, 4, 3, 2), c3 = c4 = c5 = 0. (A.17)

The evaluation of S(ξ) in the adjoint basis is equivalent to the trace basis at NC = 3.

Inversion with NC = 3 + ε

We consider here the trace basis for NC = 3 + ε. We note that there are no addi-

tional null eigenvalues for NC 6= 3. We then take the ε → 0 limit and expand the

matrix representing the color metric in terms of its regular and singular pieces, as in

Eq. (A.3). The residue of the 1/ε pole is

c̃αβ =

 K3×3(23
27

) K3×3(
√

92
243

)

K3×3(
√

92
243

) K3×3(4
9
)

 , (A.18)

where K3×3(a) is a 3 × 3 matrix with each element equal to a. The matrix in

Eq. (A.18) is precisely the trace-basis form for the inverse eigenvalue λ0 ∼ 1/ε of

the NC = 3 0-representation in the orthogonal basis. One can verify that the matrix

(Ti · Tj)αβ at NC = 3 for all i and j is in the null space of c̃αβ. This a concrete

manifestation of the behavior expected from the discussion in App. A.1.

A.3 Bases properties for multi-parton processes

In Tables 2 and 3 we summarize the main properties of the multi-parton processes

considered in Sec. 2.
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Sub-process gggg qq̄gg qq̄qq̄ ggggg qq̄ggg qq̄qq̄g

Dim. basis 5 3 2 16 10 4

Dim. Born 2 2 2 6 6 4

zero eigenvalues 0 0 0 0 0 0

Table 2: Summary of basis properties for all 4- and 5-parton processes. Pure gluon

processes are listed in the adjoint f -basis.

Sub-process 6g qq̄4g qq̄qq̄gg qqqqq̄q 7g qq̄5g qq̄qq̄3g qq̄qq̄qq̄g

Dim. basis 79 46 14 6 421 252 62 18

Dim. Born 24 24 12 6 120 120 48 18

zero eigenvalues 5 6 1 0 70 75 12 1

Table 3: Summary of basis properties for all 6- and 7-parton processes. Pure gluon

processes are listed in the adjoint f -basis.

B. The Caesar framework

Caesar [17] is a computer program that allows one to perform the resummation

of a large class of observables, namely global event shapes, to NLL accuracy. In

this appendix we recap, without re-deriving them, the expressions of the leading

and next-to-leading function g
(δ)
1 and g

(δ,B)
2 in Eq. (3.2) as obtained in the Caesar

framework. The LL function reads

g
(δ)
1 (αSL) =

−
n∑
l=1

Cl
2πβ0λbl

[
(a− 2λ) ln

(
1− 2λ

a

)
− (a+ bl − 2λ) ln

(
1− 2λ

a+ bl

)]
,

(B.1)

where λ = αSβ0L, αS = αS(µ2
R) and β0 is the one-loop coefficient of the QCD β-

function, β(αS) = −αS (αSβ0 + α2
S β1 + . . . ), with

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
. (B.2)

The result in Eq. (B.1) consists of a sum over all the hard partons and the dependence

on the color is trivial and only enters through the Casimir of each leg l, (CF for a

quark leg, CA for a gluon leg). Note also that a1 = a2 = · · · = an = a > 0.
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The result for the NLL function g
(δ,B)
2 has a richer structure:

g
(δ,B)
2 (αSL) = −

n∑
l=1

Cl

[
r

(2)
l

bl
+Bl T

(
L

a+ bl

)]
+ ∂L

[
Lg

(δ)
1 (αSL)

](
ln d̄l − bl ln

2El
Q

)

+

ninitial∑
l=1

ln
q(l)(xl, µ

2
F e
− 2L
a+bl )

q(l)(xl, µ2
F )

+ lnF
(
∂LLg

(δ)
1 (αSL)

)
− T (L/a)

n∑
l=1

Cl ln
Q12

Q
+ lnS (T (L/a)) . (B.3)

The first term in the square brackets in Eq. (B.3) contains the two-loop contributions

to the DGLAP splitting function in the soft limit and to the QCD β-function, as

well as the dependence on the renormalization scale µR:

r
(2)
l =

(
K

4π2β2
0

− 1

2πβ0

ln
µ2
R

Q2

)[
(a+ bl) ln

(
1− 2λ

a+ bl

)
− a ln

(
1− 2λ

a

)]
+

β1

2πβ3
0

[
a

2
ln2

(
1− 2λ

a

)
− a+ bl

2
ln2

(
1− 2λ

a+ bl

)
+ a ln

(
1− 2λ

a

)
−(a+ bl) ln

(
1− 2λ

a+ bl

)]
, with K = CA

(
67

18
− π2

6

)
− 5

9
nf . (B.4)

The second term in the square brackets instead captures hard collinear emissions to

a quark leg (Bq = −3
4
) or to a gluon leg (Bg = −πβ0); we have introduced

T (L) =
1

πβ0

ln
1

1− 2αsβ0L
(B.5)

The last term of the first line of Eq. (B.3) contains

ln d̄l = ln dl +

∫ 2π

0

dφ

2π
ln gl(φ), (B.6)

while El is the energy of leg l. We note that the contribution in this round brackets

is actually frame-independent. We move then to the second line of Eq. (B.3) and the

first term we encounter is the one that depends on the PDFs (µF is the factorization

scale). This contribution comes about because we veto emissions collinear to the

incoming legs which would contribute to the event shape more than a quantity v.

There is then a term (F) describing the effect of multiple emissions. The calculation

of this term is highly non-trivial for generic observables and indeed this is one of the

central aspects of the analysis of Refs. [17]. However, at NLL, multiple emissions

have a color structure identical to g
(δ)
1 , thus this term is trivial from the point of view

of our current analysis. For additive observables, like, for instance, transverse thrust

considered in Sec. 3.3, this multiple-emission contribution has a rather simple form

F(L) =
e
γE∂L

(
Lg

(δ)
1 (αSL)

)
Γ
(

1− ∂L
(
Lg

(δ)
1 (αSL)

)) . (B.7)
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Finally, in the last line we encounter the contributions due to soft radiation at large

angle, which we can, for convenience, divide into a diagonal contribution and one

with a non-trivial matrix structure.

Thus, all the terms but the last one in the Caesar master formula Eq. (B.3)

are diagonal in color and therefore apply to processes with an arbitrary number of

hard legs. The results of Sec. 2 provide an automated way of computing the only

contribution at NLL with a non-trivial color structure, namely the soft function S,

which captures the effect of soft gluon emitted at wide angles.
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T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and

J. Winter, Event generation with Sherpa 1.1, JHEP 02 (2009) 007,

[arXiv:0811.4622].

[42] M. L. Mangano and S. J. Parke, Multiparton amplitudes in gauge theories, Phys.

Rept. 200 (1991) 301–367, [hep-th/0509223].

[43] V. del Duca, A. Frizzo, and F. Maltoni, Factorization of tree QCD amplitudes in the

high-energy limit and in the collinear limit, Nucl. Phys. B568 (2000) 211–262,

[hep-ph/9909464]; V. Del Duca, L. J. Dixon, and F. Maltoni, New color

decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000)

51–70, [hep-ph/9910563].

[44] F. Maltoni, K. Paul, T. Stelzer, and S. Willenbrock, Color-flow decomposition of

QCD amplitudes, Phys. Rev. D67 (2003) 014026, [hep-ph/0209271].

[45] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl.Phys. B72

(1974) 461.

– 38 –

http://arxiv.org/abs/hep-ph/9602277
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/0807.0555
http://arxiv.org/abs/0906.1121
http://arxiv.org/abs/1211.2099
http://arxiv.org/abs/1207.0609
http://arxiv.org/abs/hep-ph/0607057
http://arxiv.org/abs/hep-ph/0311263
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/hep-th/0509223
http://arxiv.org/abs/hep-ph/9909464
http://arxiv.org/abs/hep-ph/9910563
http://arxiv.org/abs/hep-ph/0209271


[46] A. Schofield and M. H. Seymour, Jet vetoing and Herwig++, JHEP 01 (2011) 078,

[arXiv:1103.4811].

[47] S. Plätzer, Summing Large-N Towers in Colour Flow Evolution, Eur.Phys.J. C74

(2014) 2907, [arXiv:1312.2448].

[48] A. Schofield, Simulation of colour evolution in qcd scattering processes, . PhD Thesis

University of Manchester .

[49] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron

colliders, Nucl. Phys. B312 (1989) 616.
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