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Abstract 

 

This paper presents the approximate analytical solutions to the longitudinal space charge (LSC) impedances of a 

round beam with uniform transverse distribution and sinusoidal line density modulations under two boundary 

conditions: (a) between parallel plates (b) inside a rectangular chamber, respectively. When the ratio of beam diameter 

to chamber height is small, the image charge fields of the round beam can be approximated by those of a line charge, 

the approximate analytical LSC impedances can be obtained by image method. The derived theoretical LSC 

impedances are valid at any perturbation wavelength and are consistent well with the numerical simulation results in a 

large range of ratios of beam diameters to chamber heights. 

 

PACS: 29.20.db; 29.27.Bd; 41.20.Cv; 41.75.-i. 

Keywords: space charge fields and potentials; round beam; line charge; parallel plates; rectangular chamber; 

longitudinal space charge impedances. 

1.  Introduction  

The longitudinal space charge (LSC) effect plays an important role in the microwave instability of low 

energy beam with high intensity near or above transition [1-3]. It is also one of the important reasons 

causing the micro-bunching instability for free-electron lasers (FELs) [4]. An accurate calculation of the 

LSC fields and impedances is helpful to explain the beam behavior and predict the growth rates of the 

beam instability. Both the direct self-fields and the image charge fields due to the conducting chamber wall 

should be taken into account in the calculation of the LSC fields and impedances. The image charges may 

reduce the LSC fields inside the beam and the associated LSC impedances compared with a beam in free 

space, this is just the so-called shielding effect of the vacuum chamber. Various space charge field models 

have been investigated in existing literatures. For example, a round beam in free space [5-8], a round beam 

inside a round chamber [3, 6, 7, 9, 10], a round beam inside an elliptic chamber [11], a uniformly charged 

line between two parallel plates [12], a uniformly charged round beam between two parallel plates [13], a 

uniformly charged round beam inside a rectangular chamber [14], a rectangular beam inside a rectangular 

chamber [15-17], a rectangular beam between two parallel plates [17, 18], etc.  

Some popular methods are used to calculate the analytical LSC fields (a) Faraday’s law and rectangular 

integration loop [14, 19]. This method is only valid when the perturbation wavelengths  of the longitudinal 

charge density are much longer than the transverse chamber dimensions (long-wavelength limits). When 

the charge density modulation wavelengths are small, the electric fields at the off-axis field points have 

both normal and skew components with respect to the beam axis, the three-dimensional (3D) effects of the 

electric fields become important making this method invalid. (b) Direct integration methods. Usually the 

direct integration methods are only applicable to the field models with simple charge distributions in free 

space. Some literatures use this method to calculate the LSC fields assuming the gradient of the charge 

density d/dz is independent of the longitudinal coordinate z and is put outside of the integral over z (e.g., 

Refs. [18, 19]). In fact, this assumption is invalid for a beam with short-wavelength density modulations 

(e.g., (z) = kcos(kz),where k=2/). Thus the results are only valid in the long-wavelength limits too. (c) 

Separation of variables. In some special cases, the exact analytical 3D space charge fields of a beam with 

sinusoidal longitudinal charge density modulations can be solved by the method of separation of variables, 

such as a round beam in free space and inside a round chamber [3, 5, 9], a rectangular beam inside a 
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rectangular chamber [17], etc. The space charge fields solved by this method are exact and valid in the 

whole spectrum of perturbation wavelengths. But this method is critical to the configurations of the cross-

sectional geometry of the beam-chamber system, hence it is not applicable to all the field models. (d) Image 

method. According to the superposition theorem of the electric fields, the space charge field of a beam is 

equal to the sum of the direct self-field in free space (open boundary) and its image field. If these fields can 

be calculated separately, it is easy to obtain the total LSC field and impedance. 

In many accelerators, the cross-sections of the beam and vacuum chamber are approximately round and 

rectangular, respectively. Usually the rectangular vacuum chamber has a large aspect ratio, hence it can 

also be approximated by a pair of infinitely large parallel plates. For example, this assumption is used in the 

3D particle-in-cell (PIC) simulation code CYCO [20]. In order to study the microwave and micro-bunching 

instability conveniently, beam physicists are interested in obtaining analytical expressions for the LSC 

impedances of a round beam inside a straight rectangular chamber or between parallel plates. In addition, it 

is highly desirable that the analytical expressions are accurate enough at any perturbation wavelengths. 

Though there are some existing literatures discussing the longitudinal coupling impedances of rectangular 

chambers and parallel plates, these models either are only valid in the long-wavelength limits [14], or are 

not for a round beam model (e.g., single particle [21], line charge [22], vertical ribbon beam [23], etc), or 

use numerical methods (e.g., Refs. [24-25], etc). To our knowledge, at present, there are no analytical 

expressions available in modern publications for the LSC impedances of a round beam inside a straight 

rectangular chamber or between parallel plates which are valid at any perturbation wavelengths.  

This paper provides approximate analytical LSC fields and impedances of an infinitely long, straight and 

round beam with uniform transverse density between parallel plates and inside a rectangular chamber. The 

solutions are valid at any perturbation wavelengths. We know, if a round beam has longitudinal charge 

density modulations, its 3D space charge fields inside a rectangular chamber or between parallel plates 

cannot be solved directly and exactly by the separation of variables technique. Since the transverse 

dimensions of almost all the beam chambers are much larger than the transverse beam size, the image 

charge fields of a round beam can be approximated by those of a line charge. Then the approximate LSC 

fields and impedances of the two models in discussion can be calculated by image methods. Firstly, using 

the method of separation of variables, the LSC fields of a line charge with density modulations between 

two parallel plates and inside a rectangular chamber can be solved, respectively. Secondly, the space charge 

fields of a line charge and a round beam with longitudinal charge density modulations in free space are also 

calculated, respectively. Finally, the LSC fields and impedances of the round beam between parallel plates 

and inside the rectangular chamber can be approximated by the superposition theorem of the electric fields, 

respectively.  

    This paper is organized as follows. Section 2 provides the analytical solutions to the LSC fields of four 

component field models that are necessary for the derivations of the LSC impedances in discussion. Section 

3 derives the analytical LSC impedances of a round beam between parallel plates and inside a rectangular 

chamber. Section 4 compares the theoretical and simulated LSC impedances with predictions of other 

existing impedance models in both the short-wavelength and long-wavelength limits. 

 2.  Space charge field models 

In order to obtain the approximate analytical LSC impedances of a round beam with planar and 

rectangular boundary conditions, first, we need to know the LSC fields Ez of the following four component 

field models: (a) A round beam in free space, Ez,round,fs. (b) A line charge in free space, Ez,line,fs. (c) A line 

charge between two parallel plates, Ez,line,pp. (d) A line charge inside a rectangular chamber Ez,line,rect. For a 

round beam between a pair of parallel plates, when the separation between the plates is much larger than 

the beam diameter, its image LSC fields can be approximated by those of a line charge between the parallel 

plates as image

pplinez

image

pproundz EE ,,,,  fslinezpplinez EE ,,,,  , its total LSC fields are approximately equal to 

image

pproundzfsroundzpproundz EEE ,,,,,,  image

pplinezfsroundz EE ,,,, 
fslinezpplinezfsroundz EEE ,,,,,,  ; similarly, for a 

round beam inside a rectangular chamber, when the full chamber height is much larger than the beam 

diameter, its image LSC fields 
image

rectroundzE ,,  and total LSC fields 
rectroundzE ,,

 can be approximated as 
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image

rectroundzE ,, fslinezrectlinez EE ,,,,  and rectroundzE ,, fslinezrectlinezfsroundz EEE ,,,,,,   respectively. Next, we 

will derive the LSC fields of the four component field models listed in (a)-(d). 

2.1. A round beam in free space 

In the lab frame, assume there is an infinitely long, transversely uniform round beam of radius r0 with 

sinusoidal line density  and beam intensity modulations I of  

)],(exp[),( tkzitz k   and   )],(exp[),( tkziItzI k 
  

                       (1) 

respectively, where k and Ik are the amplitudes, Ik=kβc, β is the relativistic speed of the beam, c is the 

speed of light, ω is the angular frequency of the perturbations, k is the wavenumber of the line charge 

density modulations. According to Ref. [5], its LSC fields in the lab frame are 

)].()(1[
),(1

),,( 001222

00

,, rkIrkK
z

tz

kr
tzrE fsroundz 







                           (2) 

where 0 = 8.8510
-12

 F m
-1

 is the permittivity in free space, 𝑘̅ = 𝑘/𝛾,  is the relativistic factor, I0(x) and 

K1(x) are the modified Bessel functions of the first and second kinds, respectively. 

2.2. A line charge in free space 

In the lab frame, assume there is an infinitely long line charge in free space with sinusoidal line charge 

density and beam intensity modulations described in Eq. (1). First we can calculate its potentials and fields 

in the rest frame of the beam, and then convert them into the lab frame by Lorentz transformation. In the 

rest frame of the beam, the line charge density is 

                                                              ),cos()( zkz k


                                                              
(3) 

where the parameters with primes in this paper stand for those in the rest frame. The electrostatic potentials 

can be calculated easily in cylindrical coordinate system by direct integration as  
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, rkK
z

zd

rzz

zk
zr k

fsline
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
 



 
                        (4) 

The LSC fields in the rest frame are 
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1
),( 0
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,, rkK
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zrE fslinez





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
                                                (5) 

In the lab frame, according to the theory of relativity, we have 

                                                                        ,zz EE 
                                                                              

(6)
 

                                                                        ,rr 
                                                                                  

(7)
 

                                                               
),( ctzz  

                                                                           
(8) 

                                                                     
/kk  ,                                                                          (9)  

                                                                      ,k
k

k 
                                                                           

(10) 
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If we choose exponential representation as used in Eq. (1), then Eq. (11) can also be expressed as  

                                                                  .
),(1)(

2 z
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zd

zd











                                                     (12) 

From Eqs. (5)-(12), the LSC fields in the lab frame become 

                                                      ).(
),(

2

1
),,( 02
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tz
tzrE fslinez




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
                              (13) 

2.3. A line charge between two parallel plates  

The schematic view of an infinitely long line charge between two infinitely large, perfectly conducting 

parallel plates is shown in Fig. 1. Its sinusoidal line charge density and beam intensity modulations are 

described by Eq. (1). Assume the two plates are separated by a distance H, the line charge is parallel to the 

plates and its distance to the lower plate is , the potentials on the two plates are all 0. Though Ref. [22] 

provided solutions to the LSC fields and impedances of a line charge between parallel plates and inside a 

rectangular chamber, the field potential is solved by 2D Green function neglecting the 3D effects caused by 

the line density modulations. Hence the results are only valid in the long-wavelength limits. Ref. [26] 

solved the 2D electrostatic potentials of a uniform line charge between two parallel plates using the method 

of separation of variables. We can use the same method and similar procedures to solve the 3D fields of our 

model. We choose the Cartesian coordinate xoy with o as the origin. Assume in the rest frame of the beam, 

the basic harmonic component of the space charge potential can be written in the form  

                    
),cos()()(),,(, zkyYxXzyxppline


                                        (14)        

 

Fig. 1. A line charge with sinusoidal density modulations between parallel plates.  

which satisfies the Laplace equation 
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Plugging Eq. (14) into Eq. (15) resulting in  
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Considering the boundary conditions line,pp(y

=0)=line,pp(y


=H)=line,pp(x


=)=0, we can choose 

 
，22
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Y                                              (17) 

where  > 0. Then the solutions to Eq. (17) can be written as 

,)(
2222

21

xkxk eAeAxX
  

                                                (18) 

).cos()sin()( 21 yByByY  
                                                 (19) 

The boundary conditions ppline, (y

=0)= ppline, (y


=H)=0 give 2B =0,=n/H, then Y(y


)sin(n y


/H). 

Because at x

=0, there is a line charge which produces singularity, we should calculate the electrostatic 

potentials 


,, ppline  for x

 > 0 and 


,, ppline for x


 < 0 separately. In Eq. (18), when x

 +, 


,, ppline 0, 

then the coefficient 

1A =0; when x


 -, 


,, ppline 0, then the coefficient 


2A =0. The solutions of X 

can be written as  

                              
xkeAxX





22

)( 

.                                                        (20) 

where ‘+ ’and ‘–’ stand for  x>0 and x<0, respectively. 

The potentials including all harmonic components can be expressed as 

                                           ),cos()sin(
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where 


nC  and -nC are the coefficients to be determined by the boundary conditions for x>0 and x<0, 

respectively. At x

=0, y

, 


,, ppline = 


,, ppline which gives 

nC = 


nC = nC . If the line charge is 

rewritten in the form of surface charge density 

 
),()(  yz 

                                                        (22)       

where (x) is the Dirac Delta function, then on the plane x

 =0, the boundary condition D2n


– D1n


 =  gives 
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 Eqs. (21) and (23) yield 
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Multiplying the two sides of Eq. (24) by sin(ny

/H) and integrating y


 from 0 to H gives the coefficient nC  
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Then the potentials in Eq. (21) can be expressed as 
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Let’s consider a special case of =1=h=H/2, i.e., the line charge is on the median plane of the two 

plates as shown in Fig. 1. If we choose a new coordinate system x1o1y1 with O1 as the origin (see Fig. 1), 

according to x'=x1', y'=y1'+h, the potentials in the rest frame of the beam become 
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If we use cylindrical coordinate system, x1'=r'cos('), y1'=r'sin('), Eq. (27) becomes 

)].)sin((
2

sin[)
2

sin(

2

1

2

)(
),,(

|)cos(|
2

1
2

2
0

,

2
2

hr
h

n
e

n

h

n
k

h

z
zr

r
h

n
k

n

ppline 


























 








 (28)     

Using the Lorentz transformation of Eqs. (6)-(12), and '=, the LSC fields in the lab frame become 
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2.4. A line charge inside a rectangular chamber 

In the lab frame, assume there is an infinitely long line charge inside a rectangular chamber, the 

sinusoidal line charge density and beam intensity modulations are described in Eq. (1). The full chamber 

width and height are W=2w and H=2h, respectively. Ref. [17] derived the potentials of an infinitely long 

beam with rectangular cross-section and uniform transverse charge density inside a rectangular chamber. 

The full beam width and height are 2a and 2b, respectively. In the rest frame of beam, in the charge-free 

region inside the chamber (b  |y

|  h), the potentials are  
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Using the Lorentz transformation of x

=x, y


=y, and Eqs. (6), (8)-(12), the LSC fields in the lab frame 

become 
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where ./ 2222222  kkvv nnnn   

3.  LSC impedances of a round beam between parallel plates and inside a 

rectangular chamber 

There exist several different definitions for the longitudinal impedances [7, 22, 27, etc]. For example, in 

Ref. [27], if a beam has sinusoidal current as 

)],(exp[),( tksiItsI k                                                         (34) 

where s is the path length traveled by a particle with respect to a fixed position of accelerator ring, for an 

accelerator section with length L, the longitudinal wake field potential V(s, t) (it is equal to the integrated 

longitudinal electric field, or energy loss of a unit charge over the accelerator section) is 

),(),(),( ||

0 ZtsItsV                                                        (35) 

where )(||

0 Z is the longitudinal impedance for m=0 mode at frequency . For the space charge effects in 

an accelerator ring, set L=2R, where R is the average ring radius, )(||

0 Z  can be calculated from Fourier 

transform of the longitudinal wake function W0

() as 

,)()( 0

/||

0 




  



  We

c

d
Z ci

                                                 (36) 

where =s-s

 is the distance between the field point s and source point s


. Specifically, W0


()=0 for  >0.  

For the convenience of instability analysis for a given perturbation wavenumber k, some beam physicists 

prefer to express the LSC impedances directly as a function of k instead of  (for example, Refs. [2, 4, 6, 7, 
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8, 17, 22]). If we choose the bunch center as reference point for the longitudinal coordinate, Eqs. (34) and 

(35) can be rewritten as function of z instead of s, this parameter replacement should not affect the 

expression of LSC impedance which is a property in frequency domain. For a given beam current as 

described in Eq. (1), if we know the induced LSC field Ez(z, t) and LSC wake potential V(z, t), we can 

calculate LSC impedance as a function of k conveniently by Eq. (35) without resorting to the LSC wake 

function and its Fourier transform in Eq. (36) (see Ref. [17]). According to Eqs. (1) and (35), the average 

longitudinal wake potential (or energy loss per turn of a unit charge) in a circular accelerator due to the 

LSC fields is  

                         )],(exp[)(),(V ||

00 tkziIkZCEtz kz                                     (37)      

where <Ez> is the LSC fields averaged over the cross-section of the beam and can be calculated using the 

formula 

.),(
1

),(
0

0

2

02

0


r

rdrrfd
r

rf 





                                                 (38) 

(a) For a round beam midway between parallel plates, the average LSC impedance can be calculated by 

Eqs. (2), (13), (29), and (37) with  pproundzz EE ,, fslinezpplinezfsroundz EEE ,,,,,,  as 

 

，]
)(2

1)[()(
2

)(
0

01

01

0

00

,

00||

,,0
rk

rkI
rkK

r

CZ
ik

h

CZ
ikZ pplineppround 





                                        (39) 

where 

.)])sin((
2

sin[)
2

sin(

2
1

1
)(

1

|)cos(|
2

1

2
,

2





























n

rk
hk

n

ppline hr
h

n
e

n

hk

n
k 









          (40) 

(b) For a round beam inside and coaxial with a rectangular chamber, the average LSC impedance can be 

calculated by Eqs. (2), (13), (33), and (37) with 
fslinezrectlinezfsroundzrectroundzz EEEEE ,,,,,,,,  as  

 

，]
)(2

1)[()(
2

)(
0

01

01

0

00

,

00||

,,0
rk

rkI
rkK

r

CZ
ik

w

CZ
ikZ rectlinerectround 





                          (41) 

where                               

                      

 





.1

, .|)])sin(|(sinh[)])cos((sin[
)cosh(

)sin(
)(

n

nn

nn

n
rectline rhvwr

hv

wk
k 




         (42) 

In the derivations of Eqs. (39) and (41), two identities of integrals ∫ 𝑥𝐾0(𝑥)𝑑𝑥 = 1 − 𝜉𝐾1(𝜉)
𝜉

0
 and 

∫ 𝑥𝐼0(𝑥)𝑑𝑥 = 𝜉𝐾1(𝜉)
𝜉

0
 are used. Note the first terms on the right hand side of Eqs. (39) and (41) are 

contributed from the average LSC fields of a line charge midway between parallel plates and inside a 

rectangular chamber, respectively; the second terms are contributed from the differences of the average 

LSC fields within beam radius r0 between a round beam and a line charge in free space. Eqs. (40) and (42) 

can be evaluated by truncating the infinite series to a finite number of terms, as long as the sum converges 

well.  

4.  Case study and comparisons of LSC impedances 
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In this section, we will calculate the approximate LSC impedances of SIR beam using the formulae 

derived for the two field models in Section 3. For the purpose of comparisons, first we would like to 

summarize some LSC impedance formulae which are often used in modern beam physics literatures. 

4.1. LSC impedance models for a round beam 

4.1.1. A round beam inside a round chamber 

For a round beam with radius r0 and uniform transverse distribution centered inside a round chamber 

with inner chamber wall radius rw, the LSC impedance is 

.})]()()()([
)(

1{
2

)( 010001

0

1

2

0

0||

,,0 rkIrkKrkIrkK
rkI

f

rk

RZ
ikZ ww

w

roundround 


          (43) 

where 𝑓1 = 𝑘̅𝑟0 for on-axis impedance [6, 7] and 𝑓1 = 2𝐼1(𝑘̅𝑟0) for the average one [17], respectively. The 

identity of  < 𝐼0(𝑘̅𝑟) >= 2𝐼1(𝑘̅𝑟0)/𝑘̅𝑟0 is used for the case of average impedance. 

(a) In the long-wavelength limits 

The total LSC impedance of a uniform disk beam with radius r0 inside a round chamber with radius rw in 

the long-wavelength limits is [7, 27] 

),ln()(
0

2
0||,

,,0
r

r
f

RZk
ikZ wLW

roundround 


                                   (44) 

where 𝑓2 = 1/2 for the on-axis impedance and 𝑓2 = 1/4 for the average one, respectively. 

 (b) In the short-wavelength limits 

If rw>>r0, the image charge effects of the chamber wall can be neglected in the short-wavelength limits, 

the LSC impedance of a round beam is approximately equal to that in free space. Refs. [4, 5] give the on-

axis LSC impedance of a round beam in the short-wavelength limits as 

   )].(1[
2

)()( 0102

0

0||,

,,0

,||,

,,0 rkKrk
rk

RZ
ikZkZ axis

fsround

SWaxis

roundround 


                      (45) 

The LSC impedances in Eq. (45) are derived from the on-axis LSC fields of the 1D space charge field 

model. While Ref. [7] pointed out that the 1D field model does not hold any more for <4r0/ or 

kr0/ >0.5. In addition, the off-axis LSC fields always decrease from the beam axis r=0 to the beam edge 

r=r0. Ref. [28] studied these 3D space charge effects analytically and made a conclusion that, if the LSC 

fields were averaged over the beam cross-section, the 1D and 3D field models predict almost the identical 

LSC fields. The average LSC impedance is given in Refs. [6, 8] as 

                                       )].()(21[
2

)( 01012

0

0||

,,0 rkKrkI
rk

RZ
ikZ fsround 


                                    (46) 

4.1.2. A round beam inside a rectangular chamber in the long-wavelength limits 

Let’s assume an infinitely long, transversely uniform round beam with radius r0 is inside and coaxial 

with a rectangular chamber. The full chamber width and height are W=2w and H=2h, respectively. Then 

according to Eq. (23) of Ref. [14], the LSC impedance of an accelerator ring in the long-wavelength limits 

is: 

            )]},
2

tanh(
4

ln[{)(
0

3
0||,

,,0
h

w

r

h
f

RZk
ikZ LW

rectround




                                   (47) 

where 𝑓3 = 1/2 for the on-axis impedance and 𝑓3 = 1/4 for the average one, respectively. 
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4.1.3. A round beam between parallel plates in the long-wavelength limits 

In the limiting case of W, the rectangular chamber becomes a pair of parallel plates, according to Eq. 

(47), Eqs. (A6) and (A7) in Appendix of Ref. [13], its LSC impedance becomes 

                                                 ],
4

ln[)(
0

4
0||,

,,0 ）（
r

h
f

RZk
ikZ LW

ppround


                                                (48) 

where 𝑓4 = 1/2 for the on-axis impedance and 𝑓4 = 1/4 for the average one, respectively. 

4.2. LSC impedance models for a rectangular beam 

Ref. [17] derived the average LSC impedances of a rectangular beam between parallel plates and inside 

a rectangular chamber, respectively. Please refer to Ref. [17] for the detailed formulae. 

4.3. Case study and comparisons of LSC impedances 

As a case study, we can calculate the LSC impedances of a coasting H2
+
 ion beam in the Small 

Isochronous Ring (SIR) at Michigan State University (MSU) [2, 20]. The ring circumference is C0= 6.58 m, 

the kinetic energy of the beam is Ek=20 keV (0.0046,  1), the beam radius is variable. The half width 

and half height of the rectangular vacuum chamber are w = 5.7 cm and h =2.4 cm, respectively. Since 

w>>h, the rectangular chamber can also be simplified as a pair of infinitely large horizontal parallel plates. 

The LSC impedances are calculated by both the theoretical and numerical methods. A general-purpose 

simulation code developed by us [17] based on the Finite Element Method (FEM) is used in the numerical 

simulations.  

 

 

Fig. 2. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=0.5 cm 

under different boundary conditions and in different wavelength limits.  is the perturbation wavelength, 

⌊𝑍0,𝑠𝑐
||

⌋ is the modulus of LSC impedance. In the legend, ‘Free space’, ‘Round chamber’, and ‘Parallel 

plates’ are boundary conditions; ‘LW limits’ stands for the long-wavelength limits; ‘(approximation)’ and 

‘(simulation)’ stand for the theoretical approximation and simulation (FEM) methods, respectively. 
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Fig. 3. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=1.0 cm 

under different boundary conditions and in different wavelength limits. 

 

Fig. 4. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=1.5 cm 

under different boundary conditions and in different wavelength limits.  

 

 

Fig. 5. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=2.0 cm 

under different boundary conditions and in different wavelength limits.  
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    Figs. 2-5 show the simulated (blue dashes) and theoretically approximated (Eqs. (39) and (40), red 

circles) average LSC impedances of a round SIR beam with radii r0 =0.5 cm, 1.0 cm, 1.5 cm and 2.0 cm 

midway between the parallel plates with h=2.4 cm. For the purpose of comparisons, the theoretical 

average LSC impedances of the round beam predicted by three existing models are also plotted. (a) In free 

space (Eq. (46), black lines with circles). (b) Inside a round chamber with rw=h=2.4 cm, in the long-

wavelength limits (Eq. (44), green lines). (c) Between parallel plates with h=2.4 cm, in the long-

wavelength limits (Eq. (48), magenta lines). For a small beam size, for instance r0<1.0 cm, the theoretical 

approximations are consistent well with the simulations in all the wavelengths. A small discrepancy 

appears for large beam size case when the image charge effect becomes large, for instance r0=2.0 cm. The 

long-wavelength model with a round chamber gives smaller impedance as expected because of the larger 

shielding effect compared with a pairs of parallel plates. The difference of the impedance between a round 

chamber and a pairs of parallel plates becomes larger when the beam size increases.  

    Figs. 6-9 show the simulated (blue dashes) and theoretically approximated (Eqs. (41) and (42), red circles)  

average LSC impedances of a round SIR beam with radii r0 =0.5 cm, 1.0 cm, 1.5 cm and 2.0 cm inside and 

coaxial with a rectangular chamber with w=5.7 cm, h=2.4 cm. For the purpose of comparisons, the 

theoretical average LSC impedances predicted by three existing models are also plotted. (a) In free space 

(Eq. (46), black lines with circles). (b) Inside a round chamber with rw=h=2.4 cm, in the long-wavelength 

limits (Eq. (44), green lines). (c) Inside a rectangular chamber with w=5.7 cm, h=2.4 cm, in the long-

wavelength limits (Eq. (47), magenta lines). 

Figs. 2-9 show that, for both the parallel plates and rectangular chamber models, the simulated (blue 

dashes) and theoretical (red circles) average LSC impedances match quite well for the cases r0 = 0.5 cm, 

1.0 cm and 1.5 cm (r0/h0.21, 0.42, and 0.63). For the case of r0=2.0 cm (r0/h  0.83), the relative errors 

between the theoretical and simulated peak LSC impedances are about 3.8% and 4.0% for the parallel 

plates and rectangular chamber models, respectively. This shows the line charge approximation in 

calculation of the image fields of a round beam is valid. Only at r0 = 2.0 cm may this assumption 

underestimate the shielding effects of the image fields resulting in overestimation of the LSC impedances 

to some small noticeable extents. When the transverse beam dimension approaches the chamber height, the 

line charge assumption for the image charge fields of a round beam may induce bigger but still acceptable 

errors. For the wavelengths in the range of 0<5 cm, the theoretical (red circles) and simulated (blue 

dashes) average LSC impedance curves overlap the impedance curves for a beam in free space (black lines 

with circles) predicted by Eq. (46). It denotes that the shielding effects due to the image charges are on a 

negligible level, it is valid to calculate the average LSC impedances by Eq. (46) directly for the parallel 

plates and rectangular chamber models. For >5 cm, the average LSC impedances predicted by the model 

of a round beam in free space (black lines with circles) gradually deviate from and are larger than the 

theoretical (red circles) and simulated (blue dashes) LSC impedances of the two models discussed in this 

paper. This is caused by the neglect of the important shielding effects of beam chambers at large 

wavelengths. When  approaches 35 cm, the theoretical (red circles) and simulated (blue dashes) average 

LSC impedance curves approach the magenta curves predicted by Eq. (48) in Figs. 2-5 and Eq. (47) in Figs. 

6-9 in the long-wavelength limits, respectively. These comparison results indicate the derived average LSC 

impedance formulae Eqs. (39)-(42) are consistent well with the simulations and the existing LSC 

impedance models in both the short-wavelength and long-wavelength limits. In the long-wavelength limits, 

for r0<<h, the average LSC impedances of the round chamber model (green lines) are consistent with the 

ones predicted by the parallel plates and rectangular models (see the red circles and blue dashes in Fig. 2 

and Fig. 6); while as r0 increases and approaches h, the round chamber model (green lines) predicts smaller 

LSC impedances gradually than the parallel plates and rectangular chamber models (red circles and blue 

dashes) at large wavelengths (see Figs. 3-5 and Figs. 7-9). This result indicates, at large perturbation 

wavelengths, the round chamber model has larger shielding effects on the LSC fields than the models with 

planar and rectangular boundaries, and the shielding effects of the round chamber become more significant 

when r0/h1. 
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Fig. 6. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=0.5 cm 

under different boundary conditions and in different wavelength limits. In the legend, ‘Free space’, ‘Round 

chamber’, and ‘Rect. chamber’ are boundary conditions, where ‘Rect.’ is the abbreviation for ‘Rectangular’; 

The other symbols and abbreviations are the same as those in Fig. 2. 

 

 

Fig. 7. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=1.0 cm 

under different boundary conditions and in different wavelength limits.  
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Fig. 8. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0=1.5 cm 

under different boundary conditions and in different wavelength limits.  

 

Fig. 9. Comparisons of the average LSC impedances of a round SIR beam with beam radius r0 =2.0 cm 

under different boundary conditions and in different wavelength limits.  

Fig. 10 shows the average LSC impedances of a SIR beam with beam radii r0=0.5 cm and 2.0 cm 

midway between a pair of parallel plates with h=2.4 cm. The theoretical impedances are calculated by both 

the round beam model using Eq. (39) and square beam model (a=b=r0) [17], respectively. For a round 

beam, the square beam model with length of side a=b=r0 may underestimate the average LSC impedances 

compared with the round beam model with radius r0. 
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Fig. 10. Comparisons of the average LSC impedances between the round beam and square beam for a 

parallel plate field model. For a round beam, r0 is the beam radius; for a square beam, r0 is the half length 

of the side. The square beam model underestimates the LSC impedances. 

 

Fig. 11. Comparisons of the average LSC impedances of a round beam between parallel plates and a round 

beam inside a round chamber. The round chamber model underestimates the LSC impedances at larger. 

Fig. 11 shows the average LSC impedances of a round SIR beam with beam radii r0 =0.5 cm and 2.0 cm 

midway between a pair of parallel plates with h=2.4 cm and inside a round chamber with rw=h=2.4 cm. 

The theoretical impedances of the parallel plates model and round chamber model are calculated by Eq. (39) 

and Eq. (43), respectively. For a round beam with fixed radius and energy, the round chamber model may 

underestimate the average LSC impedances compared with the parallel plates model with radius h=rw. This 

difference is caused by the stronger shielding effects of the image fields produced by the round chamber 

compared with the parallel. Some literatures use the round chamber model to approximate the LSC field 

and impedance of a round beam between parallel plates or inside a rectangular chamber (e.g., Ref. (3)). Fig. 

11 clearly indicates that this approximation only holds when  is small, where the shielding effect is 

negligible. For a 20 keV SIR beam with r0 =0.5 cm inside a rectangular chamber with w=5.7 cm and h=2.4 

cm, the round chamber approximation for the LSC impedance is only accurate for  5 cm. For > 5 cm, 

the round chamber approximation will induce larger errors. 

In summary, Figs. 2-11 show, for a typical SIR beam with 20 keV, r0 =0.5 cm inside a rectangular 

chamber, when  5 cm, the image charge effects are negligible. In this case, for simplicity, we can use the 

LSC impedance formula for a beam in free space (Eq. (46)) to calculate the LSC impedance with a good 

accuracy; For 35 cm, we can use the impedance formulae in the long-wavelength limits Eq. (47) for a 
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rectangular chamber model or Eq. (48) for a parallel plates model to estimate the LSC impedance. While 

for 5 cm<<35 cm, none of the existing models and formulae can be used to evaluate the LSC impedance 

accurately. In this case, we have to use the approximate theoretical impedance formulae Eqs. (41) and (42) 

for a rectangular chamber model or Eqs. (39) and (40) for a parallel plates model. This is the merit of the 

approximate analytical LSC impedance formulae derived in this paper. 

5.  Conclusions 

In this paper, we mainly derive the approximate average LSC impedance formulae for a round beam 

under two boundary conditions: (a) Midway between a pair of infinitely large, perfectly conducting parallel 

plates (b) Inside and coaxial with a perfectly conducting rectangular chamber. In most accelerators, since 

w>>r0, h>>r0, the image charge fields of a round beam can be treated as those of a line charge in 

calculation of the LSC fields inside the beam. Consequently, the associated LSC impedances can be 

approximated by means of image methods based on the superposition theorem of the electric fields. The 

approximate theoretical average LSC impedances of the parallel plate model and the rectangular chamber 

model are consistent well with the numerical simulation results in a wide range of the radios of r0/h. In 

addition, the theoretical LSC impedances predicted by the two field models also match well with the 

existing field models in both the short-wavelength (5 cm) and the long-wavelength (35 cm) limits. In 

particular, for 5 cm<<35 cm, the approximate theoretical LSC impedances formulae have better 

accuracies than the existing models and formulae. Hence they are valid at any perturbation wavelengths 

and can be used as general expressions of the average LSC impedances in the future research work on 

space-charge induced instabilities, even for large ratios of r0/h. At last, the image method together with line 

charge approximation employed in this paper can also be used to derive the LSC impedances of field 

models with other cross-sectional geometries. 
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