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Abstract 

 

    This paper studies the space charge impedances of a rectangular beam inside a rectangular chamber, and the limiting 

case, e.g., a rectangular beam between parallel plates, respectively. The charged beam has uniform density in vertical 

direction and arbitrary distribution in horizontal direction. The method of separation of variables is used to calculate the 

space charge potentials, fields, and impedances which are valid in the whole perturbation wavelength spectrum. 

Comparisons between the theoretical calculations and the numerical simulations are also provided and they match quite 

well. It is shown that the rectangular beam shape may help to reduce the longitudinal space charge impedances.   
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1.  Introduction  

In order to study the longitudinal beam instabilities due to the interactions between the perturbed beam 

and the conducting vacuum chamber surrounding it, various space charge field models with different cross-

sections of the beam and chamber have been investigated. Ref. [1] derived the longitudinal space charge 

impedances of a round beam inside a rectangular chamber in the long-wavelength limits. Ref. [2] and Ref. 

[3] studied the longitudinal resistive-wall instability and the space-charge driven microwave instability, 

respectively, using a model consisting of a round beam inside a round vacuum chamber. In the research for 

future linear colliders, some merits of flat (planar or rectangular) electromagnetic structures have been 

found and aroused the interests of beam physicists, such as the reduced space charge forces [4] [5]. Ref. [6] 

explored the properties of a planar beam between a pair of perfectly conducting plates. It concluded that, 

comparing with the conventional axially symmetric configurations, the flat geometries of both the beam 

and the chamber may help to reduce the longitudinal space charge fields. The two-dimensional (2D) 

electrostatic space charge field of a rectangular beam inside a rectangular chamber was solved by Ref. [7] 

using the method of separation of variables. While in this model, the field was induced only by the 

unperturbed (constant) beam intensity without longitudinal modulations. The results are only valid when 

the perturbation wavelengths of the longitudinal charge density are much larger than the transverse 

dimensions of vacuum chamber, hence cannot be used directly in the study of short-wavelength instabilities, 

such as microwave instability and micro-bunching instability. Another model of rectangular beam inside 

rectangular chamber in Ref. [8] assumed the beam perturbation took place in the vertical direction, and 

hence this model was devoted to study the transverse resistive wall instability but not to the longitudinal 

one.    

    This paper introduced a three-dimensional (3D) space charge field model consisting of a rectangular 

beam with sinusoidal longitudinal density modulations inside a rectangular vacuum chamber. The vertical 

charge density is assumed to be uniform, while the horizontal beam distributions are not restricted. By 

applying the Fourier expansion to the horizontal distributions and using the method of separation of 

variables, the space charge potentials and fields within the chamber can be solved analytically in Cartesian 

coordinate system. The results are valid in the whole perturbation wavelength spectrum and can be used to 

study the microwave instability. The longitudinal space charge impedances of this model and its limiting 

case of parallel plate model were derived for the convenience of beam instability analysis. A general-
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purpose simulation code based on the Finite Element Method (FEM) was developed by us. The theoretical 

longitudinal space charge impedances are consistent with the numerical simulation results quite well. The 

effects of the different beam and chamber dimensions on the space charge impedances were investigated.  

    This paper was organized as follows. Section 2 briefly introduced the space charge field model. Section 

3 derived the analytical solutions to the space charge potentials and fields of this model. Section 4 derived 

the longitudinal space charge impedances of a rectangular beam inside a rectangular chamber, and a 

rectangular beam between parallel plates, respectively. Section 5 provided the case studies of the 

longitudinal space charge impedances using both simulation and theoretical methods. The effects of beam 

and chamber dimensions on impedances were explored by the method of scanning.  

 

 2.  Field model of a rectangular beam inside a rectangular chamber 

The geometry of the cross-section of a rectangular beam inside a grounded, perfectly conducting vacuum 

chamber is shown in Fig. 1. The beam and the chamber are coaxial with the center located at (w, 0). The 

full width and height of the inner boundary of the chamber are 2w and 2h, respectively. The full width and 

height of the beam are 2a and 2b, respectively. The horizontal beam dimension 2a is variable and can be as 

wide as the full chamber width 2w.         

 

Fig. 1. A rectangular beam inside a rectangular chamber.  

Assume the vertical particle distribution is uniform in the region of –b  y  –b. For the longitudinal 

charge distributions, since the unperturbed charge density 0 does not affect the longitudinal space charge 

fields, we can only keep the perturbed charge density components.  

In the lab frame, assume the line charge density and beam current have sinusoidal modulations along the 

longitudinal coordinate z, and can be written in the form of propagating waves as           

)],(exp[),( tkzitz k        )].(exp[),( tkziItzI k 
  

                       (1) 

respectively, where k and kI are the amplitudes, cI kk  , β is the relativistic speed of the beam, c is 

the speed of light, ω is the angular frequency of the perturbations, k is the wave number of the line charge 

density modulations.  

In order to calculate the longitudinal space charge fiend inside the beam in the lab frame, first, we can 

calculate the electrostatic potentials and fields in the rest frame of the beam, and then convert them into the 

lab frame by Lorentz transformation.  

In the rest frame, the line charge density of a beam can be simplified as    

                                          
),''cos(')'(' zkz k

                                                      (2)    

 where the symbol prime stands for the rest frame.   

For general purpose, we assume there are no restrictions for the horizontal beam distributions within the 

chamber. If the dependence of the perturbed volume charge density )',','(' zyx  on x’ in the rest frame 

can be described by a function of G(x’), then           
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where G(x’) satisfies the normalization condition of   
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and the volume charge density correlates with the line charge density    
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In order to solve the Poisson equation in the Cartesian coordinate system analytically and conveniently 

using the method of separation of variables, the normalized horizontal distribution function G(x’) can be 

written as a Fourier series. Since the charge must vanish on the chamber side walls at x’ = 0 and x’ = 2w, 

we can expand G(x’) to a sinusoidal series   
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The dimensionless Fourier coefficient gn’   can be calculated by  
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From Eq. (3) and Eq. (6), the volume charge density in the rest frame can be expressed as 
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3.  Calculation of the space charge potentials and fields   

      In Region I (charge region) and Region II (free space region), the electrostatic space charge potentials 

I’ (x’, y’, z’) and II’ (x’, y’, z’) in the rest frame satisfy the Poisson equation and Laplace equation, 

respectively. Then we have 
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where 0 = 8.8510
-12

   F/m is the permittivity in free space.   

    The basic components of the solutions to Eq. (11) and the homogeneous form of Eq. (10) can be written 

as  
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      ).''cos()'()'(' zkyYxXh                                                                   (12) 

    The possible configurations of the solutions to X(x’) and Y(y’) may have the forms of  

)'sin(),'cos(~)'( yxxX nn   or their combinations,                                         (13) 

and 

)''sinh(),''cosh(~)'( yvyvyY nn or their combinations,                                             (14) 

respectively, where                         ,'' 222 kv nn      n=1, 2, 3 ……                                            (15)      

    Considering the boundary conditions (a) ’ = 0, Ey’ = 0 at x’ = 0, 2w; (b) ’ = 0, Ex’ = 0 at y’ =  h, and 

the potential ’(x’, y’, z’) should be even functions of y’, the basic components of solutions to Eq. (11) and 

the homogeneous form of Eq. (10) may have the following forms  

         In region I (charge region):     ),''cos()''cosh()'sin(~', zkyvx nnIh                       (16) 

                In region II (free space region):   ).''cos(|)]'|('sinh[)'sin(~', zkyhvx nnIIh                (17)              

The particular solution to the inhomogeneous Eq. (10) can be written as       
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Plugging Eq. (18) into Eq. (10) and comparing the coefficients of the like terms of the two sides gives the 

coefficients Cn’         
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Then in region I (charge region), the field potentials in the rest frame are  

 .]')''cosh(')['sin()''cos('')',','('
1

,, 





n

nnnnIiIhI CyvAxzkzyx                  (20) 

In region II (free space region), the field potentials in the rest frame are   

                    





1

|)].'|('sinh[)'sin(')''cos()',','('
n

nnnII yhvxBzkzyx                             (21)         

The boundary conditions between Region I and Region II are: at y’ =  b, I’
 
= II’, I’ /y’ = II’/y’. 

Then the coefficients An’ and Bn’ can be determined as           
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Finally, the space charge potentials in the rest frame are 

(a) In region I (charge region),   0  |y’| b, 
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(b) In region II (free space),    b<|y’|h,               
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    For a beam with rectangular cross-section and uniform transverse charge density, the volume charge 

density in the rest frame can be expressed as  
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Comparing Eq. (25) with Eq. (3) gives G(x’) is equal to 1/2a inside the beam and 0 outside of the beam, 

respectively. Then gn’ can be calculated from Eq. (8) as  
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inside the beam and 0 outside of the beam, respectively. 

According to Eq. (23), the longitudinal space charge field inside the beam in the rest frame can be 

calculated as 
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According to the theory of relativity, the relations of parameters between the rest frame and the lab 

frame are  

(a) The longitudinal electric field is invariant, i.e.,  

                                                                        IzIz EE ,, ' ,                                                                   (28) 

(b) The wave number                                     ,/' kk                                                                         (29) 

(c) The coordinates                         ,' xx     ,' yy    ),(' ctzz                                               (30)   

(d) The line charge density amplitude        /' kk  ,                                                                     (31) 
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    If we choose exponential representation as used in Eq. (1), Eq. (33) can also be expressed as  
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where  is the relativistic factor. Then the longitudinal electric field in the lab frame becomes 
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4.  Longitudinal space charge impedances 

    The average longitudinal electric fields over the cross-section of the beam at z and time t are 
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Finally, the average longitudinal space charge fields in the beam region can be expressed as                    

        

,
),(

)(
4

1
),(

2

0

,
z

tz
k

bw
tzE Iz




 


                                                         (41) 

where 

             .)}sinh(
)cosh(

)](cosh[
1{

2
)(

1
2

2









n

n

nn

n

n

n b
hb

bhg
k 






                                        (42)  

The sum of the infinite series in Eq. (42) can be evaluated by truncating it to a finite number of terms, as 

long as the sum converges well. 

    The energy loss per turn of a unit charge in a storage ring due to the longitudinal space charge field is    
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where C0 is the circumference of the storage ring, )(||
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the rectangular beam inside the rectangular chamber. It is easy to get from Eqs. (1)(41) and (43) that the 
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where Z0 = 377 Ω is the impedance of free space, R is the average radius of the storage ring. If the 

impedance is evaluated by the longitudinal space charge fields on the beam axis (w, 0), since in Eq. (35), 

sin(nx) = sin(n/2), cosh(ny) = 1, then (k) in Eq. (42) should be replaced by 
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    For a special case of infinite h, i.e., the rectangular chamber becomes a pair of vertical parallel plates 
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Eqs. (44) (46) give the longitudinal space charge impedances per unit length of a rectangular beam between 

a pair of vertical parallel plates separated by 2w. In Eq. (46), if b is infinite, i.e. a rectangular beam with 

infinite height between two vertical parallel plates, since the last part in the right hand side of Eq. (46) 

becomes zero, then  
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    For a special case of w, i.e., the rectangular chamber becomes a pair of horizontal parallel plates 

separated by 2h, if we make exchanges a↔b, w↔h, it is easy to get its impedances from Eqs. (44)(46) that 
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    Eqs. (48-52) give the longitudinal space charge impedances of a rectangular beam between a pair of 

horizontal parallel plates separated by 2h. In Eq. (49), if a  , i.e. a rectangular beam with infinite width 

between two horizontal parallel plates, since [cosh(vn,hppa)-sinh(vn,hppa)]sinh(vn,hpp a)/vn,hppa  0, then 
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 5.  Case studies of the longitudinal space charge impedances 
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    We developed a simulation code that can solve the Poisson equation numerically based on the Finite 

Element Method (FEM) [9]. The code can be used to calculate the space charge potentials, fields and 

impedances of the beam-chamber system with any configurations of the charge distributions and boundary 

shapes. In the rest frame, assume the harmonic volume charge density can be written as product of the 

transverse and longitudinal components  
''')','(')'(')','(')',','(' zik

k eyxzyxzyx    .                                (54)   

where .1'')','('   dydxyx  Similarly, the potential due to the harmonic charge density is written as  
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The Poisson equation with Eqs. (54) and (55) becomes 
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22222 '/'/' yx    and 0' on the metal boundary. The potentials given by Eq. (56) 

with arbitrary beam and chamber shapes can be solved using FEM. The whole domain is first divided into 

many small element regions (finite element). For each element, the strong form of the Poisson equation Eq. 

(56) can be rewritten as the FEM equation   
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Here N(x’, y’) is called the shape function in FEM, by which the potentials at field point P(x’, y’) within an 

element can be interpolated by the potentials of its neighboring nodes, it is related to the coordinates of the 

field point P(x’, y’) and the nodes of the element region. M is the stiffness matrix with matrix element 

e

jiM , , i and j are the node indices of the finite element, S
e
 is the integration boundary of the finite element, 

qi is the charge at the node i, which is proportional to the harmonic line charge density amplitude k’. The 

’ of Eq. (57) at all nodes satisfying equations Eqs. (57)-(60) and the boundary condition ’ = 0
 
on the 

chamber wall can be solved numerically. Then the total potentials in the rest frame can be calculated from 

Eq. (55), the corresponding longitudinal space charge fields and impedances in the lab frame can be 

calculated using the similar procedures in Sect. 4.  
Now we can use the rectangular beam and chamber model to estimate the longitudinal space charge 

impedances of the coasting H2
+
 beam in the Small Isochronous Ring (SIR) at Michigan State University 

(MSU) [10]. The ring circumference is C0 = 6.58 m, the kinetic energy of the beam is Ek = 20 keV (  

0.0046,   1.0), the cross-section of the vacuum chamber is rectangular with w = 5.7 cm, h =2.4 cm, the 

real beam is approximately round with radius r0 = 0. 5 cm. We can use a square beam model with a = b = 

r0 = 0.5 cm to mimic the round beam. 
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Fig. 2. Comparisons of the on-axis and average longitudinal space charge impedances between the 

theoretical calculations and numerical simulations for a beam model of square cross-section inside 

rectangular chamber with w = 5.7 cm, h =2.4 cm, a = b =  0.5 cm.  

     Fig. 2 shows the comparisons of the on-axis and average longitudinal space charge impedances of SIR 

beam between the theoretical calculations and numerical simulations using a square beam model. We can 

see that the theoretical and simulated impedances match quite well. Note that the impedances evaluated by 

the longitudinal electric fields on the beam axis are higher than those averaged over the beam cross-section, 

the former may overestimate the longitudinal space charge effects. For this reason, we only plot the 

impedances averaged over the beam cross-section in the following figures.       

 

Fig. 3. Comparisons of the longitudinal space charge impedances between the square and round models (w 

= h = rw = 3.0 cm, a = b = r0 = 0.5 cm). 

    Fig. 3 shows the comparisons of the longitudinal space charge impedances between the square and round 

field models. The longitudinal space charge impedances per unit length of a round beam of radius r0 inside 

a round chamber of radius rw can be derived from Ref. [3] as 
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where                              
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/kk  , I0(x), I1(x), K0(x), K1(x) are the modified Bessel functions, and 
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The parameters used in the calculations are w = h = rw = 3.0 cm, a = b = r0 = 0.5 cm. We can observe that 

the model with square beam and chamber shapes has lower longitudinal space charge impedances 

compared with the round one. At large perturbation wavelengths, the impedances of the two field models 

are close to each other.  

  

Fig. 4. Simulated longitudinal space charge impedances of square and round beam models in square 

chamber (w = h =3.0 cm, a = b = r0 = 0.5 cm), respectively. 

    Fig. 4 shows the simulated longitudinal space charge impedances of the square and round H2
+
 beam of 

20 keV inside the same square chamber. The parameters used in the calculations are w = h =3.0 cm, a = b = 

r0 = 0.5 cm. We can observe that the square beam has relatively lower longitudinal space charge 

impedances than the round beam. The difference of impedances is caused by the different beam shapes. For 

a beam with fixed line charge density, the square beam has a larger area of cross-section than the round 

beam inscribing it, hence has smaller volume charge density, lower longitudinal electric fields and 

impedances. At large perturbation wavelengths, the impedances of the two field models are close to each 

other.  

 

 

Fig. 5. Simulated longitudinal space charge impedances of round beam inside square and round chambers 

(w = h = rw = 3.0 cm, r0 = 0.5 cm), respectively. 

    Fig. 5 shows the simulated longitudinal space charge impedances of a round  H2
+
 beam of 20 keV inside 

the round and square chambers, respectively. The parameters used in the calculations are w = h = rw = 3.0 

cm, r0 = 0.5 cm. We can observe that the two curves are close to each other, and the square chamber model 

has relatively higher longitudinal space charge impedances than the round chamber model. The reason for 

this tiny difference is that the four corners of the square chamber are relatively farther away from the beam 

axis compared with a round chamber inscribing the square chamber, thus the shielding effects of the square 

chamber due to image charges are weaker, and therefore the longitudinal space charge fields become 

stronger. At large perturbation wavelengths, the impedances of the two field models are close to each other. 
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Figs. 3-5 show that the lower impedances of the rectangular beam and chamber model in Fig. 3 mainly 

originate from the different beam shapes rather than the chamber shapes.  

 

Fig. 6. Longitudinal space charge impedances of rectangular beam model with different half widths a inside 

rectangular chamber (w = 5.7 cm, h = 2.4 cm, a is variable, b = 0.5 cm). 

Fig. 6 shows the calculated longitudinal space charge impedances of four perturbation wavelengths for a 

20 keV H2
+
 beam model of rectangular cross-section inside the rectangular chamber of SIR. The 

parameters used in the calculations are w = 5.7 cm, h = 2.4 cm, b = 0.5 cm, the half beam width a is 

variable. We can see the longitudinal space charge impedances decrease with beam width 2a for a fixed 

beam height 2b due to dilutions of the volume charge densities. 

 

Fig. 7. Longitudinal space charge impedances of rectangular beam model with different half heights b 

inside rectangular chamber (w = 5.7 cm, h = 2.4 cm, a = 0.5 cm, b is variable). 

    Fig. 7 shows the calculated longitudinal space charge impedances of four perturbation wavelengths for a 

20 keV H2
+
 beam model of rectangular cross-section inside a rectangular chamber of SIR. The parameters 

used in the calculations are w = 5.7 cm, h = 2.4 cm, a = 0.5 cm, the half beam height b is variable. We can 

see the longitudinal space charge impedances decrease with beam height 2b for a fixed beam width 2a due 

to dilutions of the volume charge densities. 
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Fig. 8. Longitudinal space charge impedances of square beam model inside rectangular chamber (w = 5.7 

cm, h is variable, a = b = 0.5 cm). 

Fig. 8 shows the calculated longitudinal space charge impedances of a 20 keV H2
+
 beam model with 

square cross-section inside a rectangular chamber of SIR. The parameters used in the calculations are w = 

5.7 cm, a = b = 0.5 cm, the half chamber height h is variable. For short wavelengths  < 5.0 cm, the 

longitudinal space charge impedances are almost independent of the changes of h. For longer wavelengths 

 > 5.0 cm, when h > 5.0 cm, the impedances are insensitive to the changes of h and are close to the 

limiting case of h =  (vertical parallel plates). 

 

 

Fig. 9. Longitudinal space charge impedances of square beam model inside rectangular chamber (w is 

variable, h = 2.4 cm, a = b = 0.5 cm).  

Fig. 9 shows the calculated longitudinal space charge impedances of a 20 keV H2
+
 beam model of square 

cross-section inside a rectangular chamber of SIR. The parameters used in the calculations are h = 2.4 cm, a 

= b = 0.5 cm, the half chamber width w is variable. For short wavelengths  < 5.0 cm, the longitudinal 

space charge impedances are almost independent of the changes of w. For longer wavelengths  > 5.0 cm, 

when w > 3.0 cm, the impedances are insensitive to the changes of w and are close to the limiting case of w 

=  (horizontal parallel plates). 

 

6.  Conclusions 

    We introduced a 3D space charge field model of rectangular cross-section to calculate the perturbed 

potentials, fields and the associated longitudinal space charge impedances. The calculated longitudinal 
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space charge impedances are consistent with the numerical simulation results. A rectangular beam shape 

with a = b = r0 may help to reduce the longitudinal space charge impedances compared with the 

conventional round beam with radius r0, this result is consistent with Ref. [6] in which a planar geometry 

was investigated. For fixed b(a), when a(b) increases, the longitudinal space charge impedance will 

decrease. The impedances of a rectangular beam inside a pair of infinity large parallel plates are also 

derived in this paper. Theoretical calculations demonstrate that when the transverse chamber dimensions 

are approximately more than 5 times of the transverse beam dimensions, the rectangular chamber of the 

Small Isochronous Ring (SIR) can be approximated by a pair of parallel plates. This validates the 

simplified boundary model of parallel plates used in the Particle-In-Cell simulation code CYCO to simulate 

the rectangular chamber of SIR [10].     

 

Acknowledgements 
    We would like to thank Prof. F. Marti and T. P. Wangler for their helpful guidance and discussions. This 

work was supported by NSF Grant # PHY 0606007.      

References 

[1] K.Y. Ng, Part. Accel. 16 (1984)  63. 

[2] S. Humphries, Jr., Charged Particle Beams, Wiley, New York, 1990, p. 704. 

[3] Y. Bi, T. Zhang, C. Tang, Y. Huang, J. Yang, J. Appl. Phys. 107 (2010) 063304.   

[4] D. Yu, S. Ben-Menahem, P. Wilson, R. Miller, R. Ruth, A. Nassiri, AIP Conference Proceedings, 

Advanced Accelerator Concepts, Fontana, WI, AIP 335, 1994, p. 800.  

[5] J. Rosenzweig, A. Murokh, and C. Pellegrini, Phys. Rev. Lett. 74 (1995) 2467. 

[6] A.V. Smirnov, Nucl. Instr. and Meth. A 450 (2000) 579-582. 

[7] O. Gröbner and K.Hübner, CERN/ISR-TH-VA/75-27 (1975).  

[8] B. Zotter, ISR-TH/68-46 (1968). 

[9] See e.g., J. N. Reddy, An Introduction to the Finite Element Method, 3
rd

 edition, McGraw-Hill Higher 

Education, 2006. 

[10] E. Pozdeyev, Ph.D thesis, Michigan State University (2003).  

http://publish.aps.org/search/field/author/A.%20Murokh
http://publish.aps.org/search/field/author/C.%20Pellegrini



