LOW MASS NEW PHYSICS SEARCH FOR A CP-ODD HIGGS BOSON A^0 DECAYING TO $s\bar{s}$ OR GLUON GLUON AT BABAR

E. GUIDO

on behalf of the BABAR Collaboration

Università degli Studi di Genova, Department of Physics, Via Dodecaneso 33, I-16146 Genova, Italy

We report on the search for the decay $\Upsilon(1S) \to \gamma A^0$, $A^0 \to gg$ or $s\bar{s}$, where A^0 is the pseudoscalar light Higgs boson predicted by the next-to-minimal supersymmetric standard model. A sample of $\sim 18 \times 10^6 \ \Upsilon(1S)$ resonances, produced in the BABAR experiment via $e^+e^- \to \Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$, is used for this search. No significant signal has been found, and upper limits at the 90% of confidence level are set on the product branching fraction of the process.

1 Introduction

The Next to Minimal Supersymmetric Standard Model (NMSSM)¹, one of the several extensions of the Standard Model, predicts a larger Higgs sector, with two charged, three neutral CP-even, and two neutral CP-odd Higgs bosons. In particular, the model includes the possibility that one of the pseudoscalar Higgs bosons, denoted as A^0 hereafter, can be lighter than two bottom quarks², therefore making its production accessible at the B-factories, via the radiative decay of an Υ resonance.

The A^0 is a superposition of a singlet and a non-singlet state, and the value of the branching fraction of the radiative decay $\Upsilon \to \gamma A^0$ actually depends on the non-singlet fraction. The final state to which the A^0 decays depends instead on various parameters, such as $\tan \beta$ and the mass of the CP-odd Higgs boson itself³. In order to be sensitive to as much parameter space as possible, *BABAR* has performed searches for different final states: A^0 decaying into $\mu^+\mu^{-4,5}$, into $\tau^+\tau^{-6,7}$, into invisible states⁸, and into hadrons⁹, without seeing any significant signal.

The search presented here ¹⁰ focuses on the decays $A^0 \to gg$ or $s\bar{s}$. For an A^0 mass smaller than $2m_{\tau}$, the light pseudoscalar Higgs boson is predicted to decay mostly into two gluons if tan β is of order 1, and into $s\bar{s}$ if tan β is of order 10. Despite being motivated by NMSSM, the results of this search can be applied to any CP-odd hadronic resonances produced in the radiative decays of $\Upsilon(1S)$.

2 Experimental technique

This analysis uses the data recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the SLAC National Accelerator Laboratory. The BABAR detector is described in detail elsewhere ^{11,12}. We use ~14 fb⁻¹ of data taken at the $\Upsilon(2S)$ resonance. Tagging the dipion in the $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ transition allows to significantly reduce the otherwise dominant $e^+e^- \to q\bar{q}$ background, where q is a u, d, or s quark. We also use ~ 1.4 fb⁻¹ of data taken 30 MeV below the $\Upsilon(2S)$ resonance as a background estimate. Simulated signal events with various A^0 masses ranging from 0.5 to 9.0 GeV/c² are used in this analysis.

#	Channel	#	Channel
1	$\pi^+\pi^-\pi^0$	14	$K^+K^-\pi^+\pi^-$
2	$\pi^+\pi^-2\pi^0$	15	$K^+K^-\pi^+\pi^-\pi^0$
3	$2\pi^+2\pi^-$	16	$K^{\pm}K^0_S\pi^{\mp}\pi^+\pi^-$
4	$2\pi^+2\pi^-\pi^0$	17	$K^+ \tilde{K^-} \eta$
5	$\pi^+\pi^-\eta$	18	$K^+K^-2\pi^+2\pi^-$
6	$2\pi^{+}2\pi^{-}2\pi^{0}$	19	$K^{\pm}K^{0}_{S}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$
7	$3\pi^+3\pi^-$	20	$K^{+}K^{-}2\pi^{+}2\pi^{-}\pi^{0}$
8	$2\pi^+2\pi^-\eta$	21	$K^{+}K^{-}2\pi^{+}2\pi^{-}2\pi^{0}$
9	$3\pi^+3\pi^-2\pi^0$	22	$K^{\pm}K^{0}_{S}\pi^{\mp}2\pi^{+}2\pi^{-}\pi^{0}$
10	$4\pi^+4\pi^-$	23	$K^{+}K^{-}3\pi^{+}3\pi^{-}$
11	$K^+K^-\pi^0$	24	$2K^+2K^-$
12	$K^{\pm}K^0_S\pi^{\mp}$	25	$p \bar{p} \pi^0$
13	$K^+K^-2\pi^0$	26	$p\bar{p}\pi^{+}\pi^{-}$

Table 1: Decay modes for candidate $A^0 \rightarrow gg$ and $s\bar{s}$ decays, sorted by the total mass of the decay products.

The final states analyzed must contain: two charged tracks as the dipion system candidate, a radiative photon with an energy greater than 200 MeV when calculated in its center-of-mass frame, and a hadronic system. An exclusive reconstruction of $A^0 \rightarrow gg$ is performed, using 26 channels as listed in Table 1, while disregarding two-body decay channels because a CP-odd Higgs boson cannot decay into two pseudoscalar mesons. The $A^0 \rightarrow s\bar{s}$ sample is defined as the subset of the 26 $A^0 \rightarrow gg$ decay channels that include two or four kaons (channels 11-24 in Table 1). Charged kaons, pions, and protons are required to be positively identified.

The A^0 mass resolution is improved by constraining the A^0 candidate and the photon to have an invariant mass equal to the $\Upsilon(1S)$ one, and a decay vertex at the beam spot. The main backgrounds to this search are:

- Υ(1S) → γgg events, with gluons hadronizing to more than one daughter; it is dominant at low masses, *i.e.* between 2 and 4 GeV/c²;
- $\Upsilon(1S) \to ggg$ events, with a π^0 mistaken as a photon; it is dominant at higher masses, *i.e.* between 7 and 9 GeV/c².

This search relies on the hadronization modelling used in simulations; the agreement between data and Monte Carlo samples is checked on $\Upsilon(1S) \rightarrow \gamma gg$ events, resulting in a scaling factor and a global systematic uncertainty of 50% to be applied to the efficiency. This is the dominant contribution to the systematic uncertainties of this analysis.

3 Results

The candidate mass spectrum is shown in Fig. 1. The A^0 would appear as a narrow peak in the distribution. A scan of the mass spectrum has been performed in 10 MeV/c²-steps, from 0.5 to 9 GeV/c², without finding any significant signal through the entire mass range analyzed. Bayesian upper limits at the 90% of confidence level are then set on the product of branching fractions $\mathcal{B}(\Upsilon(1S) \to \gamma A^0) \times \mathcal{B}(A^0 \to gg)$ and $\mathcal{B}(\Upsilon(1S) \to \gamma A^0) \times \mathcal{B}(A^0 \to s\bar{s})$, ranging between 10^{-6} and 10^{-2} , and between 10^{-5} and 10^{-3} for the two final states, respectively, as shown in Fig. 2. As a result, the low mass region for A^0 is excluded, and no evidence either for a light pseudoscalar Higgs boson, or for any narrow hadronic resonance is found through the entire mass spectrum.

Figure 1: A^0 candidate mass spectra after applying all selection criteria. We reconstruct $A^0 \to gg$ using the 26 channels listed in Table 1 and $A^0 \to s\bar{s}$ using the subset of the same 26 channels that includes two or four kaons. The A^0 candidate mass is the invariant mass of the reconstructed hadrons in each channel. The black points with error bars are on-resonance data for $A^0 \to gg$. The red squares with error bars are on-resonance data for $A^0 \to gg$ in off-resonance data normalized to the on-resonance integrated luminosity. The thin magenta histogram is $A^0 \to s\bar{s}$ in off-resonance data normalized to the on-resonance integrated luminosity.

References

- 1. M. Maniatis, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777 [hep-ph]].
- R. Dermisek, J. F. Gunion and B. McElrath, Phys. Rev. D 76 (2007) 051105 [hepph/0612031].
- 3. R. Dermisek and J. F. Gunion, Phys. Rev. D 81 (2010) 075003 [arXiv:1002.1971 [hep-ph]].
- B. Aubert *et al.* [BaBar Collaboration], Phys. Rev. Lett. **103** (2009) 081803 [arXiv:0905.4539 [hep-ex]].
- J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. D 87 (2013) 3, 031102 [arXiv:1210.0287 [hep-ex]].
- B. Aubert *et al.* [BaBar Collaboration], Phys. Rev. Lett. **103** (2009) 181801 [arXiv:0906.2219 [hep-ex]].
- J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. D 88 (2013) 071102 [arXiv:1210.5669 [hep-ex]].
- P. del Amo Sanchez *et al.* [BaBar Collaboration], Phys. Rev. Lett. **107** (2011) 021804 [arXiv:1007.4646 [hep-ex]].
- J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. Lett. **107** (2011) 221803 [arXiv:1108.3549 [hep-ex]].
- J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. D 88 (2013) 3, 031701 [arXiv:1307.5306 [hep-ex]].
- B. Aubert *et al.* [BaBar Collaboration], Nucl. Instrum. Meth. A **479** (2002) 1 [hepex/0105044].
- 12. B. Aubert *et al.* [BaBar Collaboration], Nucl. Instrum. Meth. A **729** (2013) 615 [arXiv:1305.3560 [physics.ins-det]].

Figure 2: The 90% confidence level upper limits (thin solid line) on the product branching fractions $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma A^0) \times \mathcal{B}(A^0 \rightarrow gg)$ (top) and $\mathcal{B}(\Upsilon(1S) \rightarrow \gamma A^0) \times \mathcal{B}(A^0 \rightarrow s\bar{s})$ (bottom). We overlay limits calculated using statistical uncertainties only (thin dashed line). The inner band is the expected region of upper limits in 68% of simulated experiments. The inner band plus the outer band is the expected region of upper limits in 95% of simulated experiments. The bands are calculated using all uncertainties. The thick line in the center of the inner band is the expected upper limits calculated using simulated experiments.