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Abstract

We have applied the nonlinear map method to comprehensively characterize the

chromatic optics in particle accelerators. Our approach is built on the foundation of

symplectic transfer maps of magnetic elements. The chromatic lattice parameters can

be transported from one element to another by the maps. We introduce a Jacobian

operator that provides an intrinsic linkage between the maps and the matrix with

parameter dependence. The link allows us to directly apply the formulation of the linear

optics to compute the chromatic lattice parameters. As an illustration, we analyze an

alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles and derive

analytically their settings for the local chromatic compensation. As a result, the cell

becomes nearly perfect up to the third-order of the momentum deviation.
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1 Introduction

The linear optics in particle accelerators is well established by Courant and
Snyder in the theory of alternating-gradient synchrotron [1]. It was extended
to include the coupling between the horizontal and vertical planes by Edwards
and Teng [2]. For the design of accelerators, Brown developed a first- and
second-order matrix theory [3] that provided a powerful physics engine inside
many codes, such as MAD [4] and ELEGANT [5]. The optics parameters
introduced by Courant and Snyder can be easily computed and manipulated
in these matrix codes. Therefore they are routinely used to design the linear
optics in accelerators.

In chromatic optics, the key question is how the optical parameters de-
pend on the momentum deviation δ. Now, the computer codes can provide
the numerical values for any given δ. This capacity allows us to minimize
the chromatic effects by numerically adjusting the settings of sextupoles.
This kind of optimization is often achieved by running computer codes like
HARMON [6], or SAD [7]. The numerical solutions found by computers are
useful and often adequate. However they hardly provide any insights for the
underlining physics.

The analytical approach is also developed using the perturbation theory.
The first order chromaticity is treated in many textbooks, for example that of
Edwards and Syphers [8]. The higher order effects are analyzed, for instance
in a synchrotron light source with strong sextupoles [9]. A more general
approach based on the differential algebra [10] and nonlinear normal form [11]
can be found in the books of Berz [12] and Forest [13], respectively. In this
paper, we will further extend these developments and apply the map method
with a focus to the analysis and transport of the lattice parameters.

Our work is partially motivated by the need to develop the next genera-
tion storage rings. For high-energy physics, a circular Higgs factory [14] re-
quires an extremely large momentum acceptance to accommodate the beam-
strahlung radiation [15] generated by the colliding electron and positron
beams near 120 Gev. As a synchrotron light source, an ultimate storage
ring [16] reduces the natural emittance down to a few pico-meters and yet
retains a large enough aperture for an efficient injection and good beam life-
time. With these motivations in mind, we will develop a method to analyt-
ically compute these parameters, trying to understand the chromatic effects
better.

In the first part of the paper, we will mostly review the theory of linear
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optics in particle accelerators. In Sec. 2, we will introduce the concept of
transfer maps with examples of a sector bending magnet and a thin-lens
multipoles. Continuing to Sec. 3, we will outline the theory of linear optics
and end with the linear normal form for the coasting beam.

In Sec. 4, the start of the second part, we will derive a transfer map
relative to a dispersive orbit that defines the initial condition in a periodic
beamline. With the periodic map, we will introduce a Jacobian operator to
link the map with the matrix with dependence on δ. Using the matrix, we
will calculate the lattice parameters that characterize the chromatic optics in
accelerators. Given the theory in Sec. 5, we analyze the chromatic optics for
an alternating-gradient cell including sextupoles, octupoles, and decapoles.
Finally, we will finish with some concluding remarks in Sec. 6.

2 Symplectic Maps

It is well known [17, 18] that the dynamics of a charged-particle in accelera-
tors can be described by tracking its canonical coordinates z = (x, px, y, py, δ, ℓ),
where δ = (p− p0)/p0 is the relative momentum deviation and ℓ = vt, v is
the velocity of the particle, and t is the time of flight. For a magnetic element
schematically illustrated in Fig. 1, its transfer map M can be obtained by
solving the Hamilton’s equations.

Figure 1: An element in beamline represented by its transfer map of the
canonical coordinates z = (x, px, y, py, δ, ℓ) from position s1 to s2.

The resulting map is symplectic, because its Jacobian,

J (M) ≡ ∂(M1, ...,M6)

∂(z1, ..., z6)
, (2.1)
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satisfies the symplectic condition,

J (M) · J · J T (M) = J, (2.2)

where J T denotes the transpose of J and the matrix J is given by,

J =


0 1 0 0 0 0

−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (2.3)

There are many known transfer maps [19] for the magnets in accelerators.
For example, the transfer map of a sector bend can be obtained by solving
the Hamiltonian’s equations with,

H =
p2x + p2y
2(1 + δ)

− xδ

ρ
, (2.4)

where ρ is the bending radius. A general Hamiltonian of a sector bend
with the path length s as independent variable can be found in the paper
by Ruth [17]. This simple Hamiltonian can be derived using the paraxial
approximation. The map can be written as,

M1 = x+
L

1 + δ
(px +

θδ

2
),

M2 = px + θδ,

M3 = y +
Lpy
1 + δ

,

M4 = py,

M5 = δ,

M6 = ℓ+ θx+
L

2(1 + δ)2
[p2x + p2y + θ(1 + 2δ)(px +

θδ

3
)], (2.5)

where L is the length and θ = L/ρ the bending angle of the dipole. Another
type of the useful transfer maps is the kick, generated by a Hamiltonain
that depends only on the transverse positions x and y. For a combined thin
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quadrupole, sextupole, octupole, and decapole, the map is given by,

M1 = x,

M2 = px −
x

f
− κ

2
(x2 − y2)− o

6
x(x2 − 3y2)− ξ

24
(x4 − 6x2y2 + y4),

M3 = y,

M4 = py +
y

f
+ κxy +

o

6
y(3x2 − y2) +

ξ

6
xy(x2 − y2),

M5 = δ,

M6 = ℓ, (2.6)

where f is the focusing (in the horizontal plane) length of quadupole and
κ, o, ξ are the integrated strengths of sextupole, octupole, and decapole re-
spectively.

3 Linear optics

The linear optics of a beamline that consists of a sequence of elements is
entirely determined by the R-matrix, which is the linear part of the map and
can be computed as,

R ≡ J (M)|z=0. (3.1)

Clearly from the definition, it is also symplectic. It is obvious that the R-
matrix of the beamline is given by a product of matrices,

R = Rn · ...R2 ·R1, (3.2)

where index 1 is for the first element seen by the charged particle in the
beamline and n for the last. For a periodic system such as a storage ring,
we can analyze the betatron motions by taking out the diagonal 2×2 matrix.
For the horizontal motion, we have

M =

(
R11 R12

R21 R22

)
, (3.3)

or for the vertical motion,

M =

(
R33 R34

R43 R44

)
. (3.4)

It is easy to show that M is a symplectic matrix as well and its determinant
equals one. This leads us to the Courant-Snyder parameters for the linear
optics.
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3.1 Courant-Snyder Parameters

It is well known that the betatron motion at a location s in a circular accel-
erator can be described by the Courant-Snyder parameters: β(s), α(s), and
γ(s) = (1 + α(s)2)/β(s) [1],

M =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
, (3.5)

where µ = 2πν is the phase advance and ν is the betatron tune. Given the
matrix M , we can compute,

β = M12/ sinµ,

α = (M11 −M22)/(2 sinµ),

γ = −M21/ sinµ, (3.6)

with µ = cos−1((M11 + M22)/2). µ is uniquely defined within 0 and 2π
provided β > 0. Moreover, the matrix M can be factorized as

M = U0 ·N · U−1
0 , (3.7)

where N is a rotational matrix,

N(µ) =

(
cosµ sinµ
− sinµ cosµ

)
, (3.8)

and

U0 =

( √
β 0

−α√
β

1√
β

)
, U−1

0 =

(
1√
β

0
α√
β

√
β

)
. (3.9)

U−1
0 defines a transformation to the normalized coordinates and U0 a trans-

formation back. This transformation is not unique. In fact, a general solution
is given by

U = U0 ·N(ψ), (3.10)

where ψ is a phase given by

ψ = tan−1(U12/U11), (3.11)

which can be interpreted as the phase advance of the betatron oscillation.
We can show that the Courant-Snyder parameters are given by,

β = U2
11 + U2

12,

α = −(U11U21 + U12U22)

γ = U2
21 + U2

22, (3.12)
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if the general solution is used.
Once we know the lattice functions β, α, and γ at a location s1, U0(s1)

can be constructed using Eq. (3.9). We can then compute U(s2) by,

U(s2) =M(1→2) · U0(s1), (3.13)

whereM(1→2) is the transfer matrix from s1 to s2. We can verify that U(s2)
−1

is indeed the transformation to the normal coordinates at the location s2 by,

U(s2)
−1 ·M(2→2) · U(s2)

= (M(1→2) · U0(s1))
−1 ·M(2→2) · (M(1→2) · U0(s1))

= U0(s1)
−1 ·M−1

(1→2) ·M(2→2) ·M(1→2) · U0(s1)

= U0(s1)
−1 ·M(1→1) · U0(s1)

= N(µ). (3.14)

To complete the proof, we have to use the fact that µ is an invariant and does
not depend on the location s. Of course, with U(s2) in hand, we can calculate
the lattice functions β(s2), α(s2), and γ(s2) using Eq. (3.12). Then the phase
in Eq. (3.11) gives the betatron phase advance. This procedure provides us
a straightforward way to propagate the Courant-Snyder parameters α, β, γ,
and phase advance ψ through a lattice. Clearly, the method is applicable to
single-pass optics as well, if its initial condition is given.

We should point out that this method of computing the Courant-Snyder
parameters was implemented in code TRACY [20]. Furthermore, if one car-
ries out the procedure explicitly, the final results are identical to those derived
long ago by Brown and Servranckx [21]. The reason we write it in great de-
tail is that it can be easily extended to include the coupling, dispersion, and
later as a function of δ.

3.2 Edwards and Teng coupling parameters

In general, the transverse motion in a circular accelerator can be coupled
between the horizontal and vertical planes, for example by skew quadrupoles
or solenoids. When there is coupling, we have to consider the 4×4 matrix,

T =


R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

 , (3.15)
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as a sub matrix of the R-matrix. It has been shown by Edwards and Teng [2]
that T in a periodic and symplectic system can be decoupled by a similarity
transformation

T = W ·M ·W−1, (3.16)

where T, M, and Z are all 4×4 symplectic matrices. In particular, M is in
a block diagonal form

M =

(
M1 0
0 M2

)
(3.17)

and W is in a “symplectic rotation” form

W =

(
gI W̄
−W gI

)
, (3.18)

where M1,2, I, W , and W̄ are all 2×2 matrices. Here I is the identity
matrix, and W̄ is defined as the symplectic conjugate of matrix W , namely
W̄ = −J2 ·W T · J2, where J2 is the unit symplectic matrix

J2 =

(
0 1
−1 0

)
. (3.19)

Moreover, the four-dimensional symplecticity requires that the sub-matrices
M1,2 are symplectic and g2 = 1− detW .

To find the matrices M1,2 and W , we follow the approach by Edwards
and Teng and first decompose the matrix T in terms of 2×2 matrices,

T =

(
T11 T12

T21 T22,

)
(3.20)

and then solve Eq. (3.16) for the coupling matrix,

W = −(T̄12 +T21)/(gTr(M1 −M2)), (3.21)

with Tr(M1 −M2) = ±
√

Tr2(T11 −T22) + 4 det(T̄12 +T21) and,

g =

√
1

2
(1 +

|Tr(T11 −T22)|
|Tr(M1 −M2)|

). (3.22)

In the derivation, we have repeatedly used an identity, W · W̄ = W̄ ·W =
(detW )I. Having W , we easily find the other two matrices,

M1 = T11 − W̄ ·T21/g,

M2 = T22 +W ·T12/g. (3.23)
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Since M1,2 are symplectic, for each mode, we can use the Courant-Snyder
parameters outlined in the previous section to represent them. Specifically,
β1,2, α1,2, γ1,2 and µ1,2 can be computed using Eq. (3.12) for each mode re-
spectively. For the coupled system, we need the additional four parameters
w1,2,3,4,

W =

(
w1 w2

w3 w4

)
, (3.24)

to describe the coupling matrix W . Hence we have ten independent param-
eters to specify the linearly coupled optics.

The transformation A−1
0 to the normal modes can be easily constructed

by applying what we have learned in the previous section,

T = A0 ·N ·A−1
0 , (3.25)

where

N =

(
N1 0
0 N2

)
(3.26)

and

A0 =

(
gI W̄
−W gI

)
·
(
U01 0
0 U02

)
, (3.27)

U01 and U02 are the matrices constructed with Eq. (3.9) for mode 1 and 2
respectively. It is worth noting that the solution of Eq. (3.25) can be con-
structed [11] numerically using eigen values and eigen vectors of the matrixT.
These two methods yield identical numerical results in our study. However,
this analytical approach allows us to later include the parameter dependence
of δ. Again, A0 is not unique, a general solution is given by,

A =

(
gI W̄
−W gI

)
·
(
U1 0
0 U2

)
. (3.28)

Now there are two phases that can be determined relative to the transforma-
tion in the other position. Here we should note that A is also a symplectic
matrix.

Similar to the non-coupled case in the previous section, we can propagate
the coupled lattice parameters by computing,

A(s2) = T(1→2) ·A0(s1), (3.29)
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where T(1→2) is the 4×4 transport matrix from position s1 to s2. Decompos-
ing A(s2) in terms of 2×2 matrices,

A =

(
A11 A12

A21 A22

)
, (3.30)

and knowing it in the form of Eq. (3.28), we find g =
√
detA11, and

U1 = A11/g, U2 = A22/g,W = −A21 · U−1
1 . (3.31)

Having Ui, we can calculate βi, αi, γi and the betatron phase ψi using Eqs. (3.12)
and (3.11).

We should point out that there are many papers on the topic of coupling.
Among them, Sagan and Rubin wrote the most comprehensive paper [22], in
which the derivation of the results in this section can be found.

3.3 Dispersion

So far, we have discussed the betatron motion of an on-momentum particle.
The question we will address in this section is what if the particle has a
slightly different momentum relative to the designed momentum and how
can we describe its motion. Let’s start with a general form of the R-matrix,

R =


R11 R12 R13 R14 D1 0
R21 R22 R23 R24 D2 0
R31 R32 R33 R34 D3 0
R41 R42 R43 R44 D4 0
0 0 0 0 1 0
E1 E2 E3 E4 R65 1

 , (3.32)

that describes a beamline containing only static magnets. Since the magnetic
field cannot provide any energy to the charged particle, δ never changes in
the static magnets. This leads to five zeros in the fifth row. The other zeros
in the six column can be explained because of no dependency on the time
of flight. The rest of its form is entirely determined by the 6×6 symplectic
condition in Eq. (2.2). Specifically, if we introduce a dispersive vector,

D =


D1

D2

D3

D4

 , (3.33)
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and then the vector,

E =


E1

E2

E3

E4

 , (3.34)

it is given by,
E = TT · J ·D, (3.35)

where T is the matrix we have introduced in Eq. (3.15) of the previous section
and itself has to be 4×4 symplectic. Here the matrix J is given by,

J =


0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

 . (3.36)

In addition to the ten parameters for the coupled betatron motion, we will
have an extra five independent variables: D1,2,3,4 and R65 to describe the
general R-matrix for the static magnetic beamline.

Matrices of the form (3.32) not only preserve itself under the multiplica-
tion, but form a subgroup in the group of 6 by 6 symplectic matrices. It is
useful to point out that if the dispersive vector D is zero so is E.

For a periodic system, we need to find the periodic dispersions, ηx, ηpx , ηy, ηpy
by the condition of the fixed point:

ηx
ηpx
ηy
ηpy
1

 =


R11 R12 R13 R14 D1

R21 R22 R23 R24 D2

R31 R32 R33 R34 D3

R41 R42 R43 R44 D4

0 0 0 0 1

 ·


ηx
ηpx
ηy
ηpy
1

 . (3.37)

It is obvious that the solution is given by,

η = (I−T)−1 ·D, (3.38)

where η is the vector of the periodical dispersion,

η =


ηx
ηpx
ηy
ηpy

 , (3.39)
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and I is the 4×4 identity matrix. Knowing the periodic dispersions, we can
make a similarity transformation,

A−1
η ·R · Aη = Rη =


R11 R12 R13 R14 0 0
R21 R22 R23 R24 0 0
R31 R32 R33 R34 0 0
R41 R42 R43 R44 0 0
0 0 0 0 1 0
0 0 0 0 λ 1

 , (3.40)

to take out the dispersion in the R-matrix. Rη retains symplecticity because
we have used a symplectic matrix,

Aη =


1 0 0 0 ηx 0
0 1 0 0 ηpx 0
0 0 1 0 ηy 0
0 0 0 1 ηpy 0
0 0 0 0 1 0
ηpx −ηx ηpy −ηy 0 1

 , (3.41)

for the transformation. Given the block form of Rη, it is easy to see by
applying Eq. (3.25), we have

Rη = Aw · Aβ · F · A−1
β · A−1

w , (3.42)

where

Aw =


g 0 w4 −w2 0 0
0 g −w3 w1 0 0

−w1 −w2 g 0 0 0
−w3 −w4 0 g 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (3.43)

Aβ =



√
β1 0 0 0 0 0

−α1√
β1

1√
β1

0 0 0 0

0 0
√
β2 0 0 0

0 0 −α2√
β2

1√
β2

0 0

0 0 0 0 1 0
0 0 0 0 0 1

 , (3.44)
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and

F (µ1, µ2, λ) =


cosµ1 sinµ1 0 0 0 0
− sinµ1 cosµ1 0 0 0 0

0 0 cosµ2 sinµ2 0 0
0 0 − sinµ2 cosµ2 0 0
0 0 0 0 1 0
0 0 0 0 λ 1

 . (3.45)

Here F is the normal form of the periodic system and more importantly is
invariant. Furthermore, it has the property of an abelian group,

F (ϕ1, ψ1, λ1) · F (ϕ2, ψ2, λ2) = F (ϕ1 + ϕ2, ψ1 + ψ2, λ1 + λ2). (3.46)

Combining Eqs. (3.40) and (3.42), we have

R = A0 · F · A−1
0 , (3.47)

where
A0 = Aη · Aw · Aβ. (3.48)

Due to the abelian property of F , A0 is far from unique and a more general
transformation matrix is given by,

A = Aη · Aw · Aβ · F (ψ1, ψ2, υ). (3.49)

It is easy to see that the matrix A contains fifteen parameters. They are
the independent parameters we choose to describe the linear optics when the
beamline is entirely constructed from static magnets. We should point out
that this kind of factorization and parameterization was first proposed by
Ohmi, Hirata, and Oide [23]. The main difference is our normal form in the
third dimension is not a rotation since we consider only the optics in a static
magnetic beamline.

Once we have the optics parameters at a position s1, we can easily com-
pute the parameters at another position s2 by propagating,

A(s2) = R(1→2) · A0(s1), (3.50)

where R(1→2) is the R-matrix from s1 to s2. Given the matrix A(s2), we can
obtain the dispersion vector at s2 using Eq. (3.49). The result is,

η =


A15

A25

A35

A45

 . (3.51)
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And β1,2, α1,2, ψ1,2, and w1,2,3,4 can be extracted by applying the procedure
we derived in the previous subsection. Finally, υ can be obtained by using
Eq. (3.49) again once all other parameters are calculated.

4 Chromatic optics

It is well known that the formulation we have reviewed in the previous section
is applicable to the off-momentum particle as well. In this case, the fifteen
parameters, β1,2, α1,2, ψ1,2, ηx,px,y,py , w1,2,3,4 and υ are all functions of δ. In
fact, we know how to compute them numerically based on the linear optics.
In this section, we would like to develop an analytical method to calculate
these functions. Since this is a nonlinear problem, an obvious point is to
start with the transfer map of the beamline,

M = M1 ◦M2... ◦Mn, (4.1)

where Mi is the transfer map of the ith element and index 1 is for the first
element seen by the charged particle and n for the last. Here we have defined
the concatenation of the map by,

M1 ◦M2(z(s1)) ≡ M2(M1(z(s1))), (4.2)

where z is the vector of phase space variables we have introduced in Sect. 2.
Essentially, the concatenation of two maps can be computed by substituting
the first map into the second one. It is easy to show that the concatenation
preserves the symplecticity. This particular order of maps in the beamline
is chosen so that it is consistent with the order of Lie operators. Moreover,
this order actually is consistent with the multiplication of the R-matrix for
the beamline in the previous section.

Given the map M, we introduce an operator,

J [M] ≡ J (M)|x=0,px=0,y=0,py=0,ℓ=0. (4.3)

Here the symbol J (M) represents taking the Jacobian of the map M as
defined in Eq. (2.1). It is obvious that this operation turns the map to
a symplectic matrix R(δ) with δ dependence. Moreover, R(0) is the same
as the R-matrix we have extensively used in the previous section. For this
reason, we consider it as a natural extension of the R-matrix and use it as a
starting point.
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For a periodic system, we need to find the periodic dispersion as a function
of δ and the transfer map relative to the dispersive orbit. This can be achieved
by an iterative loop of index i starting from 0 with M0 = M. For each index
i, we compute,

R(δ) = J [Mi]. (4.4)

Expanding the matrix R(δ) as a power series of δ, we find that the lowest
non-vanishing dispersive elements are given by,

D(i) =


R

(i)
15

R
(i)
25

R
(i)
35

R
(i)
45

 , (4.5)

where the superscript (i) represents the coefficient of the ith power of δ.
Similar to the linear case in the previous section, the periodic dispersion at
this order of δ is given by,

η(i) = (I−T)−1 ·D(i), (4.6)

where the matrices I and T are the same as those in Eq. (3.38). To remove
the ith-order dispersion, we perform,

Mi+1 = Aηi ◦Mi ◦ A−1
ηi
, (4.7)

where we have chosen the map Aηi ,

Aηi1 = x+ η(i)x

δi+1

(i+ 1)
,

Aηi2 = px + η(i)px

δi+1

(i+ 1)
,

Aηi3 = y + η(i)y

δi+1

(i+ 1)
,

Aηi4 = py + η(i)py

δi+1

(i+ 1)
,

Aηi5 = δ,

Aηi6 = ℓ+ (η(i)pxx− η(i)x px + η(i)py y − η(i)y py)δ
i, (4.8)
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so that J [Aηi ] is consistent with Aη in Eq. (3.41). Its inverse, A−1
ηi

can

be obtained by simply changing the sign of η(i)(δ) in Eq. (4.8). It is easy
to see that this map is symplectic. As a result, the map Mi+1 retains its
symplecticity under the similarity transformation. It is worth noting that this
transformation leads to the chromaticity generated by sextupoles through the
dispersions. Here we repeat the process with the next index: i+ 1.

It is easy to check that the first step leads to identical results to those we
have shown in the previous section in the matrix formulation. At the end of
the loop, we have the periodic dispersion vector,

η(δ) =
∞∑
i=0

η(i)δi, (4.9)

and the map,
Mη = Aη ◦M ◦ A−1

η , (4.10)

where the total dispersive map is given by,

Aη = Aη∞ ...Aη1 ◦ Aη0 . (4.11)

Here Mη is the transfer map relative to the dispersive orbit described by
Aη. This transfer map contains the physics of beam dynamics relative to the
closed orbit, including the chromatic optics and the effects of the betatron
resonances. Applying the Jacobian operator on the map,

Rη(δ) = J [Mη], (4.12)

we extract the pure chromatic physics near the vicinity of the orbit but lose
the information of the geometric and geometric-chromatic resonances. Since
the resonances are not a subject in this paper, the loss is acceptable. It is clear
from our construction that Rη(0) equals Rη in Eq. (3.40). It can be shown
that all formulas, used in the linear optics for computing the parameters:
β1,2, α1,2, µ1,2, w1,2,3,4, and λ, retain their functional forms. However now,
they are all a function of δ.

In order to propagate the chromatic optical parameters, we compute a
matrix A0(δ) at position s1 by applying Eq. (3.48) with δ dependence and
then construct a map A0 so that J (A0) = A0(δ). Now the map A(s2) can
be obtained by,

A(s2) = A0(s1) ◦M(1→2), (4.13)
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where M(1→2) is the transfer map from the position s1 to s2. Finally, the
matrix A(δ) at s2 is given by,

A(δ) = J [A(s2)], (4.14)

which can be factorized as in Eq. (3.49). The factorization allows us to
compute all the lattice parameters at position s2.

Again, this simple procedure allows us to propagate the lattice functions
through a beamline. For a periodic system, the initial condition is determined
by the periodic condition. The process of finding the initial condition is
essentially a procedure to derive the transformation to the normal form.
In a single-pass beamline, its initial condition can be constructed as some
initial parameters. As a result, the chromatic lattice parameters down to the
beamline are functions of the initial inputs.

5 Application

In this section, we would like to illustrate how the scheme works using a
periodic alternating-gradient cell as an example. The cell is chosen because
it contains the most essential ingredients in storage rings. For simplicity, we
will use the maps given in Sec. 2.

5.1 Cell with sextupoles

A schematic drawing of the alternating focusing and de-focusing (FODO)
cell is shown in Fig. 2. The quadrupoles and sextupoles are lumped together
as a thin multipole with a sector bending dipole in between. Here f is the
focal length of quadrupoles. Also ϕ is the total bending angle and L the total
length of the cell.

The cell starts at the center of the first focusing (in the horizontal plane)
quadrupole with s = 0 and ends at the middle of the next focusing quadrupole
with s = L. The transfer map of the cell can be computed through the
concatenation of the maps of the elements. Here, we use Mathematica [24]
to perform the calculation. With the map, we start at the first step of
the iteration loop as we outlined in the previous section and find that the
betatrons phase advances in both planes are the same µx = µy = µ and given
by,

sin
µ

2
=

L

4f
, (5.1)
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Figure 2: A periodic focusing and de-focusing cell with dipole, quadrupole,
and sextuploe magnets.

and the beta functions at s = 0,

βx =
L(1 + sin µ

2
)

sinµ
,

βy =
L(1− sin µ

2
)

sinµ
, (5.2)

and the horizontal dispersion,

ηx =
Lϕ(1 + 1

2
sin µ

2
)

4 sin2 µ
2

. (5.3)

αx,y = 0 and ηpx = 0 due to the reflectional symmetry and ηy,py = 0 since the
bending is in the horizontal plane and there are no coupling elements. Our
results here are the same as those in the standard reference [25].

With the zeroth-order dispersion, we proceed to the next iteration by
performing the similarity transformation to the transfer map. Following the
procedure, we find that the phase advances up to the first-order expansion
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of δ are

µx(δ) = µ− tan
µ

2
[2− 1

4 sin µ
2

(
1

2
+

1

sin2 µ
2

)(κf − κd)fLϕ

− 3

8 sin2 µ
2

(κf + κd)fLϕ]δ,

µy(δ) = µ− tan
µ

2
[2− 1

4 sin µ
2

(
1

2
− 1

sin2 µ
2

)(κf − κd)fLϕ

− 1

8 sin2 µ
2

(κf + κd)fLϕ]δ, (5.4)

where κf,d are the integrated strengths of the sextupoles. The linear coef-
ficient of δ dividing by 2π gives us the chromaticity. Clearly, the natural
chromaticities in both planes are the same and given by, ξ0 = − 1

π
tan µ

2
,

which agrees with that in the handbook [25]. Obviously, we can use the two
sextupoles to cancel the natural chromaticities. Solving two linear equations,
we find the sextupole strengths,

κf =
4 sin2 µ

2

fLϕ(1 + 1
2
sin µ

2
)
,

κd =
4 sin2 µ

2

fLϕ(1− 1
2
sin µ

2
)
. (5.5)

Rewriting them in terms of the dispersions, we have that κf = 1/(ηxf), κd =
1/(ηdxf) where η

d
x is the dispersion at the position of the defocusing quadrupole.

Intuitively, we know that they are the correct settings for the local chromatic
compensation. It is obvious that the sextupole at the de-focusing quadrupole
is stronger than the one at the focusing quadrupole.

Now we set the sextupole to the values in Eq. (5.5) and continue to find
the first-order dispersion,

η(1)x (δ) = −fϕ
2
δ,

η(1)px (δ) = 0, (5.6)

with which we proceed to the next iteration by performing another similarity
transformation to the map that we obtained in the previous step. Continuing
with the procedure, we find that the phase advances up to the second-order
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expansion of δ are

µx(δ) = µ−
tan µ

2
(1− 1

2
sin2 µ

2
)

2(1− 1
4
sin2 µ

2
)

δ2,

µy(δ) = µ+
tan µ

2
(1 + 1

2
sin2 µ

2
)

2(1− 1
4
sin2 µ

2
)

δ2. (5.7)

Although the linear parts have been corrected by the sextupoles, there are the
second-order chromatic effects. Correspondingly, we have the beta functions,

βx(δ) = βx[1− δ +
10− 13 sin2 µ

2
− sin3 µ

2
+ 3 sin4 µ

2

2(4− 5 sin2 µ
2
+ sin4 µ

2
)

δ2],

βy(δ) = βy[1− δ +
3(2− 3 sin2 µ

2
− sin3 µ

2
+ sin4 µ

2
)

2(4− 5 sin2 µ
2
+ sin4 µ

2
)

δ2]. (5.8)
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Figure 3: The second-derivative of chromatic beta relative to the ideal beta
as a function of the betatron tune in FODO cell. The horizontal values are
plotted in blue color and the vertical in red.

Using these formulas, we show the second-order chromatic effects in Fig. 3.
From the plots, we see clearly that the beta beatings are rather small when
the phase advances are less than 90 degrees. However, their amplitudes
steeply increase beyond 135 degrees. This sharp increase of chromatic beta
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function is called the chromaticity wall, which may well be the reason why
the high-tune FODO cells were never used in circular accelerators. Theoret-
ically, the cause of the wall is due to the half integer resonance, at which the
denominator of the second-order coefficients is zero.

Moreover, the horizontal dispersion functions are given by,

ηx(δ) = ηx[1−
sin µ

2

2(1 + 1
2
sin µ

2
)
(δ − 3

2
δ2)], (5.9)

and finally, the invariance in the longitudinal plane,

λ(δ) = L(
ϕ

2
)2[(

1

sin2 µ
2

− 1

12
) + (

1

sin2 µ
2

+
1

4
)δ − 3

2
(

1

sin2 µ
2

+
1

3
)δ2]. (5.10)

Here for a ultra-relativistic particle, we have the momentum compaction
factor αp(δ) = λ(δ)/L. Its zeroth-order component agrees with that in the
handbook [25].

In order to compute the lattice functions at the other positions in the
FODO cell, we start with the map A0,

A01 =
√
βx(δ)x+

∫ δ

0

ηx(δ
′)dδ′,

A02 =
1√
βx(δ)

px,

A03 =
√
βy(δ)y,

A04 =
1√
βy(δ)

py,

A05 = δ,

A06 = ℓ− ηx(δ)√
βx(δ)

px. (5.11)

The initial map is so simple because of the symmetry. Substituting it into
the transfer map M0→s, we find the beta functions at the position s,

βx(δ, s) = βx{[1−
4s

L
sin

µ

2
(1−

2s sin µ
2

L(1 + sin µ
2
)
)](1− δ)} . . . ,

βy(δ, s) = βy{[1 +
4s

L
sin

µ

2
(1 +

2s sin µ
2

L(1− sin µ
2
)
)](1− δ)} . . . , (5.12)
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where s is the distance away from the center of the focusing quadrupole. We
have omitted the second-order terms because they are too lengthy to fit into
the page. These formulas are only valid between the focusing and de-focusing
quadrupoles where 0 < s < L/2. The expressions in the other half of the cell
can be obtained by substituting s with L− s in Eq. (5.12).
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Figure 4: The beta function and its second derivative as a function of the
position in the FODO cells with 900 (on left) and 1350 (on right) phase
advances. The horizontal values are plotted in blue color and the vertical in
red. The solid lines represent the beta functions and dashed lines for their
second derivatives.

The beta functions and their second derivative with respect to δ are
shown in Fig. 4 for the FODO cells with 900 and 1350 phase advances.
The figure clearly demonstrates the alternating focusing principle [1] for the
on-momentum particle. However for the off-momentum particles, there are
chromatic beatings that grow larger as the focusing becomes stronger. Based
on these results, we conclude that the chromatic optics in the 900 cell is well
behaved. This may explain why it is one of the mostly widely used cells in
the circular colliders such as LHC.

As one can see from the analysis, the second-order chromatic effects in the
FODO cell becomes asymmetric between the horizontal and vertical planes.
The vertical plane is worse presumably because of the stronger sextupole at
the de-focusing quadupole.

To check the analytical results against numerical computation, we con-
struct a ring that consists of Nc = 101 cells with 900 phase advance per cell
and zero chromaticities. Here we use the cell length L = 15.0 meter and
bending angle ϕ = 2π/Nc. The betatron tunes of the ring are computed
as a function of the momentum deviation δ using LEGO [26]. The results
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are plotted in Fig. 5 against the analytical formula νx,y(δ) = Ncµx,y(δ)/(2π),
where the cell phase advances µx,y(δ) are given in Eq. (5.7). It is clear from
the figure that the agreement is excellent. Essentially, the second-order ex-
pansion in δ gives us a good description of the chromatic optics for the FODO
cells.
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Figure 5: Betatron tunes as a function of the momentum deviation δ in a
storage ring that consists of 900 FODO cells.

5.2 Octupoles and decapoles

Note that the changes in tunes are so small in Fig. (5). It shows that the
traditional chromatic compensation using a pair of sextupoles in a FODO
cell is quite adequate. Nevertheless, we would like to show how to further
improve the chromatic optics by introducing a pair of octupoles and decapoles
at the locations of quadupoles and sextupoles in the FODO cell. Continuing
on to carry out the next two steps in the perturbation of δ, we find that the
second-order coefficients of the phase advances in Eq. (5.7) can be eliminated
by setting the octupole strengths:

of =
8 sin5 µ

2

fL2ϕ2(1 + 1
2
sin µ

2
)3
,

od = −
8 sin5 µ

2

fL2ϕ2(1− 1
2
sin µ

2
)3
, (5.13)
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and then the third-order by the pair of decapoles with their strengths:

ξf =
16 sin6 µ

2
(4− 2 sin µ

2
+ sin2 µ

2
)

fL3ϕ3(1 + 1
2
sin µ

2
)5

,

ξd =
16 sin6 µ

2
(4 + 2 sin µ

2
+ sin2 µ

2
)

fL3ϕ3(1− 1
2
sin µ

2
)5

. (5.14)

Due to the feed-down effects from the high-order dispersions, the interpreta-
tions of the these settings are not as simple as the sextupoles’. In general,
the feed-down makes their strengths weaker as shown in Fig. 6.
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Figure 6: Strengths of octupoles (on left) and decapoles (on right) as a func-
tion of the tune in FODO cells. The horizontal values are plotted in blue
color and the vertical in red.

As a result of the octupole and decapole correctors, the phase advances
up to the fourth-order expansion of δ become

µx(δ) = µ+
tan µ

2
(−352 + 312 sin2 µ

2
+ 60 sin4 µ

2
+ sin6 µ

2
)δ4

12(4− sin2 µ
2
)3

,

µy(δ) = µ+
tan µ

2
(992 + 840 sin2 µ

2
+ 84 sin4 µ

2
+ sin6 µ

2
)δ4

12(4− sin2 µ
2
)3

. (5.15)

These analytical formulae of the tunes are compared in Fig. 7 against the
numerical computation of those in the FOOD ring we have constructed previ-
ously with the settings of octupoles and decapoles respectively in Eqs. (5.13)
and (5.14). Again the agreement is excellent and the tune curves are flattened
up to the fourth-order of δ.
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Figure 7: Betatron tunes as a function of the momentum deviation δ in a
storage ring that consists of 900 FODO cells with the high-order chromatic
correction.

Moreover, the beta functions in the region, 0 < s < L/2, are given by

βx(δ, s) = βx[1−
4s

L
sin

µ

2
(1−

2s sin µ
2

L(1 + sin µ
2
)
)](1− δ + δ2 − δ3),

βy(δ, s) = βy[1 +
4s

L
sin

µ

2
(1 +

2s sin µ
2

L(1− sin µ
2
)
)](1− δ + δ2 − δ3). (5.16)

Here again we do not write the fourth-order terms because of their long
length. Correspondingly, the phase advances up to the third-order can be
written as,

ψx(δ, s) = tan−1[
tan µ

2
(1− sin µ

2
)2s
L

1− 2s
L
sin µ

2

]

ψy(δ, s) = tan−1[
tan µ

2
(1 + sin µ

2
)2s
L

1 + 2s
L
sin µ

2

]. (5.17)

Amazingly, there is no dependence on δ. We should mention that the high-
order terms in dispersion at s = 0 are perturbed a little by the octupoles and
decaples and now is given by,

ηx(δ) =
Lϕ

8 sin2 µ
2

[(2+sin
µ

2
)−sin

µ

2
δ+(1−sin

µ

2
)δ2+

1

3
(5−3 sin

µ

2
)δ3]. (5.18)

The chromatic correction can be carried out to the next order. Since no
one has yet used any multipoles beyond the decapole, we choose to stop here.
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As we have shown in this section, it is better to treat the chromatic optics
as a perturbation theory in the expansion of δ. Moreover, this approach al-
lows us to chromatically match to the other optical modules order-by-order.
Naturally, this kind of expansion can be approximated by the differential
algebra [12]. In fact, the order-by-order calculation of the chromatic op-
tics outlined in this paper is implemented recently in LEGO [26] using the
differential algebra technique.

Though the results of this section are given as Taylor expansions up to
finite order in relative momentum deviation, the usage of Mathematica (in
contrast to the usage of the differential algebra) allows to have coefficients of
these expansions in symbolic form.

6 Conclusion

We need a total of fifteen lattice parameters with dependence on the mo-
mentum deviation δ to characterize the chromatic optics in a beamline that
consists of only the magnetic elements. These parameters can be propagated
from one element to another through the symplectic transfer map. For a
periodic system, their initial values are completely determined by the peri-
odic condition. We have developed an iterative procedure with respect to the
power expansion of δ to compute their values. In a single-pass system, the
initial values can be assigned as input parameters. As a result, the lattice
parameters in the beamline will have functional dependence on these input
parameters. Aside from the symplectic transfer maps, the key ingredient is
the Jacobian operator that links a map to a matrix with the dependence of
δ. And this matrix allows us to efficiently utilize the matrix theory of linear
optics.

In a FODO cell with sextupoles, our analysis yields several insights to
its chromatic optics. Moreover, we show that the higher-order chromaticities
can be compensated by octupoles and decapoles. The nonlinear correction
makes the cell nearly perfect up to the third-order of δ.

A similar analysis can performed for the other type of cells such as the
double-bend achromat. Hopefully, this kind of analytical approach will pro-
vide us more understanding of beam physics and lead to better designs of
the next generation accelerators.
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