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A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons
was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in
terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically,
its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the
nucleon regardless of whether it is determined from all N particles or only the hadrons, the mesons
or the baryons separately. Ignoring all the other properties of these particles, it is shown that
the eigen-values, the polar representation (θν) of the masses on the Sphere, satisfy the symmetry
θν + θN+1−ν = π within less that 1% relative error. These pair correlations include such pairs as
θγ +θtop ' π and θgluon+θH ' π as well as pairing the weak gauge bosons with the three neutrinos.
The eigen-values form 6 clusters that are reflective of a ”Periodic” Chart of the Particles. A function
was established whose zeros were a good approximation to the masses (θν). A Regge analysis for
missing masses was carried out and some uses for particle fusion reactions were considered including
energy production. It was shown that there are very few particles with spin (J) larger than 1 + θ3.
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I. Introduction

Mass is a property of matter that we take for granted
but, other than experimental data, little is known about
its origins or composition. At the macroscopic level it
was first taken by Newton to summarize all the irre-
ducible properties of a body [1] and especially inertia
or its resistance to motion. Further, because force per se
was invisible while mass manifests itself in all observable
bodies, it was mass that defined force for Newton and
not the reverse. Later Einstein [2] postulated that the
gravitational mass equaled the inertial mass that might
include energy in various forms some of which appeared
to have no ponderable mass whatsoever.

At the microscopic level, it is taken first as a parameter
in a Hamiltonian and after renormalization the resultant
value is taken to be the inertial mass of a particle [3]. We
take these values as given [4,5]. At the low-energy end we
find a degenerate pair of zero mass bosons (the photon
and gluon) and the three neutrinos (electron, muon and
tau) [6]. At the high-energy end are the gauge bosons
W± and Z, the Higgs and the top quark.

Spanning from zero to more than 100GeV, we intro-
duce a geometric representation allowing us to posit a
generating particle - the Masson (pronounced as one does
the Muon). Associated with it, there is a generating func-
tion whose zeros are the masses of the particles. These
masses can be projected onto a 2D Riemann Sphere of
radius equal to the mass of the Masson that is deter-
mined by imposing the equivalent of a minimum action
criterion.

The only particle that we think we understand is the
photon with zero mass. Ignoring other hypothetical low
mass particles such as the axion or graviton [5], the pho-
ton must move at the speed of light because there is
no rest frame to measure the mass explicitly based on

m0/
√

1− β2.

Thus, while we know how to determine the extreme [5],
in general, we do not know the fundamentals underlying
the other values. However, we do know, according to
Sommerfeld [7], that it is not associated with the charge
alone. He pointed out that given a macroscopic charge of
finite radius and mass, the energy associated with the two

is different. His approach was simple: denoting by E
(rest)
EM

the electrostatic energy of the charged particle when at
rest and subtracting this energy from the electric and

magnetic energy when the particle is in motion E
(motion)
EM ,

it was shown that the difference does not equal the kinetic
energy of the particle. Recently, the Standard Model
was used to calculate the masses of 10 light hadrons as
reported by Dürr et.al. [8]. Normalizing to the mass
of the Ξ baryon, they found good agreement with the
observed data.

FIG. 1. The mass of a particle is marked on the axis (red-
dot). Projection of the mass of the particle on the Riemann
Sphere whose radius represents the mass of the Masson, is
uniquely determined by the polar angle θν .

We introduce a geometric (polar θν) representation
of the (N = 279) masses of the particles by employ-
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ing a Riemann Sphere. This allows us to interpret the
N masses in terms of a single particle, the Masson that
may be in one of the N eigen-states and whose mass we
take as the radius of the Riemann Sphere as shown in
Figure 1. Ignoring the other properties of these parti-
cles, it is shown that the eigen-values satisfy the symme-
try θν + θN+1−ν = π within less than 1% relative error.
These eigen-values form at least 6 clusters that are rep-
resentative of a ”Periodic” Chart of the Particles.

We consider a form of Regge trajectory obtained from
plotting the total spin J of some unflavored mesons
and baryons separately as a function of their squared
masses. This shows several linear correlations with
some multiplets having five or more members but with
conspicuous gaps or missing masses. Particle fusion
possibilities are discussed that compare favorably to
conventional sources of energy i.e. chemical and nuclear
fusion and fission. Finally, some experiments that relate
to inertial mass are discussed.

II. Riemann′s Sphere

Because the range of the N masses span many orders
of magnitude, we introduced a compact representation
based on a Riemann Sphere as shown in Figure 1. The
masses are organized in ascending order along the hor-
izontal axis “x”. The perpendicular axis is “z” and a
flat-space Riemannian geometry is assumed. A circle of
radius M0 has its center at “x” = 0, “z” = M0 and the
intersection of the straight-line, connecting the top of the
circle with “z” = 0, “x” = mν defines an angle θν . Based
on elementary trigonometric arguments one then finds

θν = 2 arctan

(
2M0

mν

)
. (1)

This transformation represents the projection of any
one of the masses on the circle whose radius we attribute
to the mass of the Masson. The latter is established next
based on the experimental data and a minimal action
criterion. To establish M0, the vector θν is organized in
ascending order and we define the interval-spread of any
two adjacent angles as

E (M0) =
1

π

√√√√ 1

N + 1

N∑
ν=0

(θν+1 − θν)
2
. (2)

M0 is the value that minimizes this functional; θν=0 = 0
and the θν=N+1 = π represent the upper and lower limits
of the masses in this polar representation. For the case
of a single particle represented by an angle θ, there are
two intervals: θ − 0 and π − θ so the intervals spread is
proportional to θ2 + (π − θ)2 and it has a minimum at
θ = π/2 implying for our simple case, the radius of the
sphere is half the mass of the particle i.e. M0 = m/2 or,
equivalently, the particle’s mass is twice the mass of the
Masson: m = 2M0.

Now we are in position to introduce the particles from
the Table in Ref. [4]. The spread of their intervals in
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FIG. 2. Spread of intervals for N=279 fundamental particles
as a function of M0. The dominant minimum is calculated
numerically and it occurs at M0[MeV] = 1003.

Figure 2 shows clear resonant behavior. The absolute
minimum represents the mass of the Masson occurring
at 1003 MeV. For this value (M0= 1003 MeV) the Rie-
mann Sphere is illustrated in Figure 3. Two facts are
evident – first, as anticipated, most of the particles are
located in the θ ∼ π/2 region and, second, close to zero
and π there are voids with no particles although these
are not symmetrically disposed nor do they appear to be
correlated in any obvious way but more on this later.

0

1

2

0 1 2

"z"

"x"

light 

heavy

M
0



FIG. 3. Projection of the masses of all 279 particles where
the mass of the Masson is determined from the requirement
that the spread of the intervals in Figure 2 is minimal. Light
particles (θ ∼ π) are the Axion, neutrinos and electron. The
heavy ones (θ ∼ 0) the gauge-particles, Higgs and top quark.

III. Characteristics of the Polar Representation

With the polar representation established, we now in-
vestigate some features of the inertial masses based on
this new representation. To begin, consider only the
hadrons (N = 261). If we were to establish the Mas-
son based on the hadrons alone, its mass would be only

slightly reduced to M
(H)
0 =962.2 MeV. Moreover, if we

attribute a separate Masson to baryons (N = 113) and



3

to mesons (N = 148) the corresponding Massons would

have masses of M
(B)
0 = 1094 MeV and M

(M)
0 =964 MeV.

Also, the latter is close to both M0 as well as to the sta-
ble nucleon mass N(940) and, curiously, there are more
mesons than baryons even though their numbers of con-
fined quarks(2) are fewer than for the baryons(3). In
all three cases, the corresponding ”intervals spread”, as
shown in Figure 2 for all of the particles, gave a single
minimum.

Another perspective on the polar representation of the
masses can be obtained by ordering θν in ascending order
and plotting them as a function of the index ν (quantum
number) as the red squares in Figure 4. For comparison,
the N zeros of the Legendre polynomial of order N = 279
are organized in ascending order and represented by the
green squares [PN (cos ζν) = 0; ν = 1, 2, ....N ]. While the
latter is virtually linear, the former has a more complex
structure with distinct ”band-gaps” in the range ν <
0.2N and ν > 0.9N .
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FIG. 4. Red squares represent the masses (θν) in ascending
order and the green squares the zeros of the Legendre function
of order N = 279.

Two observations warrant attention: (i) if the abso-
lute value of the argument of the Legendre polynomial
is larger than unity the behavior is hyperbolic and the
function has no zeros in this range. This explains the
existence of the band-gaps. (ii) Having in mind that the
argument of the Legendre polynomial (cos θ) varies be-
tween −1 and 1, we consider another function which is
defined in this range (tanh) and we calculate the zeros

of PN

[
tanh

(
3.46

(
π/2− θ(M)

ν

))]
= 0 which are repre-

sented by the black squares in Figure 4 where the super-
script ”M” indicates that this is a model. In the range
0.2 < ν/N < 0.9 these zeros approximate the polar rep-
resentation of the masses (θ) with an accuracy of 0.07%

being defined as 100 ×
〈

[1− θ(M)
ν /θν ]2

〉
ν
. What these

results indicate is that the θν may be regarded as the
eigen-values of a characteristic polynomial of the Leg-
endre type. Our approach was inspired by Liboff and
Wang [9] in connection with their study of the prime
numbers and the zeta function.

Having this representation in mind, an additional fea-
ture is revealed by examining the sum of the eigen-values.
Let us assume that we know the Hamiltonian whose
eigen-values are θsν wherein s is a free parameter to be
determined. In many cases of interest, the measurable is
given by a term of the form Trace (H) which in turn is
proportional to g(s) ≡

∑
ν θ

s
ν . In reality we do not know

this Hamiltonian however a rough idea as to its character
may be assessed by assuming that g(s) has a minimum.
A simple calculation reveals that such a minimum exists
for s ' −79/150 = −0.5267.

One of the main results of the present analysis relies on
a property of the Legendre polynomials that the sum of
two zeros of complementary order (ν+ν′ = N+1) equals
π, or explicitly ζν + ζN+1−ν = π. We have examined to
what extent this rule applies to the polar representation
of masses (θν) and we found θν + θN+1−ν = πχ with
χ = 0.958 within 0.13% relative error defined as

Error[%] = 100
1

2N

N∑
ν=1

[
θν + θN+1−ν − πχ
θν + θN+1−ν

]2
. (3)

The factor of 2 in Eq.(3) corrects the fact that each
pair of masses is counted twice. According to the present
spectrum of masses [4], this relation implies that the mass
of the Higgs and that of the Axion (if observed) are re-
lated θAxion + θHiggs ' π and the mass of the electrons
neutrino is then related to that of the Z-gauge boson
θνe + θZ ' π [5]. However, it should be emphasized that
the present estimate of the error is dominated by the
light particles θ ∼ π and it is larger if the deviation is
compared to the smallest angle between the two. In fact,
due to uncertainty associated with the measurement of
many of those masses and especially the neutrinos, com-
paring to the calculated deviation of χ from unity, we
hypothesize that χ ≡ 1 or explicitly

θν + θN+1−ν = π . (4)

Now we can use this symmetry to further quantify a
Periodic Particle Chart. For this we plot in Figure 5 the
normalized symmetry-pairs (θν + θN+1−ν)/π as a func-
tion of the normalized masses (θν/π).

Several important aspects are reflected in this plot: (i)
the pairs determined in Eq.(4) form (at least) six clusters
although a clearer picture will soon be revealed. (ii) The
error or deviation from unity is dominated by light par-
ticles (θ ∼ π). When both particles have similar mass,
the deviation is negligible − see the right cluster. (iii)
Further splitting is expected when including additional
quantum numbers that produce a Riemann hypersphere.
(iv) Subject to the condition χ ≡ 1, the error defined
above for hadrons is 0.47%, for baryons 0.07% and for
mesons it is 0.63%.

Before we proceed, it is important to assess whether
these small errors are the result of coincidence. For this
let us postulate that the Masson has a fixed inertial mass
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FIG. 5. The normalized symmetry-pairs, (θν + θN+1−ν)/π,
as a function of the normalized geometric representation of
the masses (θν/π). These pairs form at least six clusters that
resemble a ”Periodic Table” for the fundamental particles.

of M0=1003 MeV and between the two extremes, the
photon and the top quark, the various (279) particles are
randomly distributed. We represent the inertial masses
in terms of a random variable mν [MeV] = 10pν wherein
pν is uniformly distributed −8 ≤ pν ≤ 5 + log(1.26) =
5.104. As in the case of the real particles, we employ
the transformation in Eq. 1. It is tacitly assumed that
the mass of the Masson is not dependent on the specific
distribution. Once the θν are established, the error is
calculated based on Eq. 3. We determined this error 1000
times, each time for a different seed. The resulting error
spans from 7% to less than 11%. Figure 6 shows the error
as a function of the index of the seed (1 ≤ n ≤ 1000). For
comparison, in the case of all of the actual particles (279),
its value is 0.225% indicating that the almost two orders
of magnitude difference is not a result of coincidence.
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FIG. 6. The error associated with the polar representation of
a random distribution of masses for 1000 different seeds. The
value for the actual particles is 0.225%.

IV. Baryons and Mesons

Hadrons are the absolute majority (261) of the 279
fundamental particles we have considered and we have

called them fundamental because they are composite be-
ing made of different numbers of quarks (and gluons or
antiquarks) as opposed to those one might call elemen-
tary such as the electron. These particles can also be
distinguished as bosons or fermions according to their
individual spins. The elementary fermions include two
classes - the quarks and leptons whereas the elementary
bosons comprise the photon and gluons. As noted in the
abstract, we have not included any antiparticles in our
particle count. This was done because they bring nothing
new to our analysis and because, as far as we know, there
has never been a fermion discovered that did not lead to
the discovery of its corresponding antiparticle with the
possible exception of Majorana neutrinos.

This is one of the most important symmetries based on
the unification of relativity and quantum theory by Dirac
in 1928 [10] when studying the electron. Since that time
it has been used for all spin one-half fermions including
the proton and neutron with implications extending all
the way to cosmological searches for anti-galaxies (galax-
ies of anti-matter) as well as why such objects have not
been observed including several studies of how to observe
or infer their prior existence.

We now take a closer look at the mesons (148) and
baryons (113) separately and compare the two species.
The Masson is assumed to have the mass as determined
above (M0 = MMasson) and in the first row of Figure 7
we plot the polar intervals spread for both mesons and
baryons - similar to the process that lead to Figure 2
except these spreads are only for mesons or baryons in-
dependently. A good approximation to the exact expres-
sion in Eq. (2), the (red) solid-line, is given by a simple
Lorentzian (black) dashed-line corresponding to a band-
pass model

Emodel (M) = Emax +
Emin − Emax√

1 +Q2
(

M
MMasson

− MMasson

M

)2
The spread of meson masses (∆M = 5447 [MeV ])
is more than twice the spread for the baryons
(∆M = 2506 [MeV ]). Note that in these two cases, the
intervals spread has a single resonance - contrary to the
picture in Figure 2.

The central frames in Figure 7 show the normalized
density of states (DoS) projected on the Riemann sphere
when the arc is divided into 60 segments and a cubic
spline is used to approximate the DoS function. Two
comments may be made: (i) The resonance character
of the DoS is clearly revealed and (ii) the voids and
the structure in the DoS are more pronounced for the
mesons. The bottom frames illustrate the complemen-
tary symmetry for each species. For the mesons we see 5
sub-groups but only 3 for the baryons but both particle
types show a rough mirror symmetry about the central
range (θ ' π/2).

V. Spin
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FIG. 7. Mesons (147) left-column and baryons (113) right-column are considered separately. The Masson is assumed to have
the mass as determined above M0 = MMasson and in the first row the polar intervals spread for both mesons and baryons are
shown - similar to the process that lead to Figure 2 except the spread is only for mesons or baryons independently. A good
approximation to the exact expression [Eq. 2], (red) solid-line, is given by a simple Lorentzian (black) dashed-line corresponding
to a band-pass model. Central frames reveal the normalized density of states (DoS) projected on Riemanns sphere; the arc was
divided into 60 segments and a cubic spline was used to approximate the DoS. Two comments are: (i) The resonance character
of the DoS is clearly revealed and (ii) the voids in the DoS are more pronounced for the mesons. Bottom frames illustrate the
complementary symmetry for the mesons and baryons. For the mesons we identify 5 sub-groups but only 3 for the baryons.

At this point we take one more step and introduce in-
formation about the total spin J . The four frames of
Figure 8 reveal the polar representation of the masses
as a function of the quantum numbers (ν) wherein the
red circles represent the bosons (integer spins) and the
blue crosses show the fermions (non-integer). The top-
left frame reveals the overall picture whereas the other

frames are magnifications of three ranges. Two facts are
evident from the top-left frame: (i) there are significant
voids at both low and high energy ends, (ii) bosons oc-
cupy most of the low-energy states (θ ∼ π) i.e. most of
the lower-right frame.

At high energies (top-right frame) the voids become
more distinct and there is no indication of a preferred
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 FIG. 8. Polar representation of the masses vs the quantum numbers for fermions(blue crosses) and bosons(red circles).

species (fermion or boson) in any one of the ”energy-
bands” with the exception of the last one. In the cental
energy range (0.2N < ν < 0.8N), bottom-left frame,
θ is almost linear in ν and at the adopted resolution,
there are, at most, two voids: (i) close to θ ∼ π/2 there
is an interval that is fermions-free and (ii) at the top
end there is a region which is bosons-free. With higher
resolution, additional voids can be identified. Over the
central range one can see a slight third order perturba-
tion that gets considerably magnified at the wings (lower
right frame). Finally, at the low-energy end (bottom-
right frame), bosons dominate with four or five voids
that are boson-free. Without more quantum numbers, we
have no explanation for this ”band-gap” structure other
than greater sensitivity to the underlying quark masses.

Another observation refers to the distribution of
fermions and bosons between spin-states. Figure 9 shows
these distributions when each is normalized to unit area.
Several comments can be made: (i) the peak distribution
for the fermions is at the lowest state (J = 1/2) whereas
the distribution of the bosons peaks at the first ”excited
state” (J = 1) and not the ”ground state”. (ii) The aver-
age quantum-number for bosons is close to 〈J〉 ∼ 1 while
for fermions it is 〈J〉 ∼ 1.5. This contradicts distribu-
tions of single species of either bosons or fermions where
in thermodynamic equilibrium, the highest likelihood is
always the lowest or what we have called the ”ground
state” and this is also consistent with the Hamiltonian
formulation. (iii) For both species, the spread is similar.

Figure 10 shows the spin J , θ and the symmetry

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 D
is

tr
ib

ut
io

n

Total Spin (J)

Bosons
Fermions

<J>
Boson

=1.21

J
Boson

=0.424

<J>
Fermion

=1.435

J
Fermion

=0.48

FIG. 9. Comparison of spin distributions: fermions(blue) and
bosons(red). Fermions peak at one-half and bosons at one.

θν + θN+1−ν in one plot. Clearly, there are two major
voids: the one on the left indicates no particles with a
spin larger than 1+θ3 and, on the right, that there are no
lighter particles having θ > 0.6π with a spin larger than
2. We have no explanation for these two voids beyond
our expectation that the highest spins should lie near the
location of the highest density of states i.e. toward the
middle.

VI. A Regge Approach

Initially, we simply plotted all the meson masses
against other parameters and searched for linear trends.
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FIG. 10. The total spin J , θ and the symmetry θν + θN+1−ν
are shown with two major voids (colored). The one on the
left indicates that there are very few particles with a spin
larger than 1 + θ3 and, the one on the right, that there are
no lighter particles having θ > 0.6π with a spin larger than 2.
Rotating this figure shows an analog of the Periodic Table of
the Elements based on the particle’s total spin J.

Finding several quadratic curves among these we were
led to the so-called Regge trajectories and their variants
that provide methods to correlate and classify hadron
states as well as to assign and predict their quantum
numbers and masses. This makes expensive experiments
much more efficient for discovering new results as shown
in Figure 11 where the isoscalar η(1405) is considered to
be a candidate for the pseudoscalar JPC = 0−+ glueball
and the isoscalar η(1760) with its strong branching ratio
to two gluons is called a gluonic meson. No attempt was
made to incorporate the various quantum numbers for
each particle into these trajectories or to make them the
same for any trajectory in order to look for less obvious
correlations e.g. others associated with quark molecules.
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FIG. 11. Two parallel Regge trajectories for some heavier
unflavored mesons characterized by their baseline η masses
where the labels and the actual masses that were used are
from Ref. 4. The missing mass at J=3 occurs near 2125 MeV.

Another plot for some unflavored lighter mass baryons
is shown in Figure 12 where there are further missing
masses. All of the nucleon states shown there are isospin
doublets but the two trajectories distinguish two distinct
classes. Because the two appear to share common spin
and isospin characteristics one might assume that the
N(1440) state is a radially excited n=2, 3 quark state
of the nucleon N(940). Its prominent decay modes to
the Nπ and ∆π have suggested a more complex 5 quark
structure consisting of the 3 quark baryon and qq̄ meson.
We note that the two missing particles in these trajec-
tories are expected to be P13 and H19 with masses near
1350 and 2410 MeV respectively as well as an additional
higher spin state for the lower trajectory near 2200 MeV.
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FIG. 12. Two parallel Regge trajectories for unflavored
baryons characterized by their baseline P11 masses where the
labels and the actual masses that were used are taken from
Ref. 4. Missing masses occur at J=1.5 & 4.5 in the two trajec-
tories near 1350, 2200 and 2410 MeV. Note that P11 ≡ L2I2J .

VII. Particle Fusion Possibilities

When considering the structure of the mass eigenstates
it is interesting to explore any energy opportunities they
might provide as done for the atomic elements e.g. fusion
reactions can be thought of as the dual of fission reactions
in that to gain energy, fusion combines two light nuclei
into one while fission splits one heavy nucleus into two.
Because of the difference in binding energies per nucleon
between the initial and final states of roughly 1 MeV,
one expects to gain about 200 MeV per fission reaction
in nuclei. Compared to a chemical reaction of only a few
hundred eV per reaction one obtains a relative gain of
the order 106 discounting any differences in the masses
of the reactants (electrons).

For fusion, one expects a roughly order of magnitude
lower energy gain per reaction than for fission but be-
cause fission reactions are much ”dirtier” and the gain per
kG of fuel is much better for fusion, it is preferred if an
industrial-scale plant could be built. This is ironic con-
sidering the primary source of energy production in the
universe is fusion but we only harvest it as solar power.
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A major interest in heavy ion fusion lies in the hope of
extending the periodic table well beyond its present range
as well as extending nuclear models to much higher levels
of atomic number and mass with important implications
for states of very high angular momenta and large de-
formation. The range of ions and reaction energies of
interest is also driven by the need for input into astro-
physical calculations.

Lighter mass fusion reactions are well known from the
(p,n), (d,t) and (d,He3) reactions that release increasing
amounts of energy per reaction. Such reactions are in-
creasingly favorable up to Fe and Ni because the binding
energies per nucleon are increasing up to this area.

Our reason for discussing fusion reactions is because
they appear to be one of the better possibilities for the
controlled production of energy using the fundamental
particles and, more importantly, it seems to follow from
the above discussion that the energy gain per unit mass of
fuel could be much greater than for conventional fuels and
methods thereby negating at least some of the obvious
disadvantages.

As examples, consider the simplest, least exotic reac-
tions: p + n → d + Qn where Qn≈2.22 MeV and p +
p → d + e+ + νe + Qp where Qp≈0.42 MeV whereas
the d,t reaction yields 17.6 MeV. The e+e− annihilation
gives Qee≈1.02 MeV and the p+p− gives Qpp≈1.88 GeV.
These appear nearly optimal in terms of their reduced
energies per reaction (ζ≡δE/δMr) where ζ is a dimen-
sionless figure-of-merit based on normalizing the output
energy by the reduced mass Mr of the reactants. Said an-
other way, the annihilation reaction that totally converts
the mass of the reactants into free energy is ideal be-
cause it approaches perfect reaction efficiency and gives
ζ=4 while a typical fission reaction gives only 0.004 and
the pp fusion chain reaction (above) in the sun leading to
He4 yields 0.055. While these are not the best examples,
they provide a proof of principle if not the practicality of
such approaches because they are equivalent to nuclear
fusion and fission processes at the microscopic level that
reflect the dominance of the strong interaction of which
the nuclear force is only a residual.

Some more interesting examples are those based on
possible beam-dump experiments. This approach allows
us to ignore the high incident energy overhead and sim-
ply consider the decay chain of one or more possible cas-
cade reactions such as the Ξo→Λo+γ with Λo→ p+π−

yielding nearly 380 MeV per reaction that we will take
(arbitrarily) as a rough average over all possible outgoing
reaction channels.

The design of the dump/target configurations for such
possibilities presents some intriguing problems and op-
portunities. While practical questions such as the cost of
both the power plant and the fuels are certainly relevant,
they are beyond our interest here.

VIII. Other Experiments

Before concluding, additional comments on possible
experiments will be made. A comprehensive review of

neutrino oscillation experiments to determine neutrino
characteristics such as their numbers and masses was
given by Feldman et. al. [11]. Eddington’s 1919 ex-
periment [12], using the total solar eclipse of the Sun,
confirmed Einstein’s General Theory of Relativity that
light ”bends” in a strong gravitational field. One ex-
periment we propose is to test the Equivalence Principle
using neutrinos – the lightest inertial particles. As un-
charged fermions their masses should be easier to under-
stand than the other leptons that are considered to be
pointlike based on all measurements of the electron to
date. The problem is compounded when one considers
their electromagnetic moments so it seems clear that nei-
ther leptons nor quarks are understood. Further, there is
virtually no doubt that neutrinos do have mass because
they form a triplet even though mνe and certainly the
axion may be too small to measure directly at this time.

Accepting that we cannot directly measure the mass
of a neutrino, another way to study whether they are
truly inertial in some sense or whether their mass results
solely from their energies as with photons is to use a
supernova or certain binary stars. Such systems could
simultaneously provide photons for cross calibration and
synchronization and another independent mass measure-
ment if the neutrinos (and photons) pass close enough
to a strong gravitational attractor along their paths to
earth. We emphasize that we are also proposing a new
Eddington type of experiment but for a possible photon
mass e.g. by systematically varying the photons energy
using lasers and satellites.

Finally, it is interesting to study and search for rem-
nants of large annihilation events from anticomets or an-
tiastroids or the missing masses in Fig’s. 12 and 13 as
well as various hypothetical particles each with their own
unique problems of detectability.

IX. Conclusions

A geometric representation of the N = 279 masses
of the elementary and lowest lying fundamental parti-
cles was introduced by employing a Riemann Sphere. It
allowed us to interpret the N masses in terms of a sin-
gle entity, the Masson, that might be in one of the N
eigen-states. Geometrically, the mass of the Masson was
the radius of the Riemann Sphere while its numerical
value was closest to the mass of the nucleon regardless of
whether M0 was computed from all particles (279), the
hadrons (261), or just the mesons (148) or baryons (113).

Ignoring the other properties of these particles, it was
shown that the eigen-values, the polar representation
(θν), satisfy the symmetry θν + θN+1−ν = π within less
than 1% relative error. One thousand samples consist-
ing of 279 masses chosen randomly over the observed
mass range gave much larger errors e.g. none were less
than a factor of 30 larger. A function was established
whose zeros were, to good approximation, the polar rep-
resentation of the masses θν . A rough assessment of the
Hamiltonians’s character was made by imposing that its
trace

∑
ν θ

s
ν has a minimum for s=-0.523.
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Among other results we found that bosons occupy most
of the light mass states and there are virtually no funda-
mental particles with spin J larger than 1 + θ3. Among
hadrons we found that mesons form 5 clusters whereas
baryons form 3 but both clusters have a similar structure
being roughly symmetric about θν=π/2. This suggests
the ”periodic-like” arrangement shown in Figure 10.

The new symmetry and its extension pairing bosons
and fermions based on grouping all of the degenerate zero
mass particles into one we will call the ”photon” holds
well for the gauge bosons and the lowest lying leptons and
quarks until one has to pair hadrons because the quarks
and leptons are fermions while the highest lying hadrons
are bosons based on high lying, quark-antiquark mesons.
The first breakdown occurs when a pion has to be used
for the lowest member of a pair but there are more than
30 missing baryons according to this extended symmetry
with some having low energies according to Figure 12.

We did not include antiparticles in our analysis be-
cause every fermion has a corresponding antifermion [10]
so they added nothing new. Nevertheless, they are im-
portant for cosmology where the lack of any apparent
antimatter in the universe is a concern when one expects
anticomets and antigalaxies. Because the most disruptive
body that might hit the earth is one made of antimatter
this suggested some interesting experiments e.g. searches
for the remnants of such an event. However, it must be
noted that because the only stable hadron is a baryon
one sees the weakness of using only classical concepts in

an attempt to understand the microscopic particle world.
A Regge type analysis was carried out for mesons and

baryons that suggested missing members for each type
while providing different amounts of information on the
missing masses quite apart from their masses and spins.
Additional plots could be produced by filtering the data
with differing constraints on the other quantum numbers.
Similarly, the plot variables could be changed i.e. one
could use other spin and isospin components to look for
correlations between their results to search for the best
experiments.

Particle fusion possibilities, including annihilation re-
actions between various leptons, baryons and their an-
tiparticles, were suggested because these were the re-
actions with the best energy efficiencies and zetas (ζ).
However, some very fundamental tests could also be per-
formed in this realm if non rudimentary nuclei and their
anti-nuclei could be produced - even with relatively few
particles per beam but matrix beams [13] could be used
to reduce space charge limitations for higher currents.
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