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We study the rare B meson decays B±,0
→ J/ψK+K−K±,0, B±,0

→ J/ψφK±,0, and search for
B0

→ J/ψφ, using 469 million BB events collected at the Υ (4S) resonance with the BABAR detector
at the PEP-II e+e− asymmetric-energy collider. We present new measurements of branching
fractions and a study of the J/ψφ mass distribution in search of new charmonium-like states. In
addition, we search for the decay B0

→ J/ψφ, and find no evidence of a signal.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

I. INTRODUCTION

Many charmonium-like resonances have been discov-
ered in the past, revealing a spectrum too rich to in-
terpret in terms of conventional mesons expected from
potential models [1]. In several cases, it has not been
possible to assign a spin-parity value to the resonance.
Some of them have been extensively investigated as pos-
sible candidates for non-conventional mesons, such as
tetraquarks, glueballs, or hybrids [2].

In a search for exotic states, the CDF experiment stud-
ied the decay B+ → J/ψφK+ [3], where J/ψ → µ+µ−

and φ(1020) → K+K−, claiming the observation of a res-

aNow at the University of Tabuk, Tabuk 71491, Saudi Arabia
bAlso with Università di Perugia, Dipartimento di Fisica, Perugia,
Italy
cNow at Laboratoire de Physique Nucléaire et de Hautes Energies,
IN2P3/CNRS, Paris, France
dNow at Forschungszentrum Jülich GmbH, D-52425 Jülich, Ger-
many
eNow at the University of Huddersfield, Huddersfield HD1 3DH,
UK
fDeceased
gNow at University of South Alabama, Mobile, Alabama 36688,
USA
hAlso with Università di Sassari, Sassari, Italy
iAlso with INFN Sezione di Roma, Roma, Italy
jNow at Universidad Técnica Federico Santa Maria, Valparaiso,
Chile 2390123

onance labeled the X(4140) decaying to J/ψφ [4]. They
found evidence in the same decay mode for another res-
onance, labeled as the X(4270) [5]. Recently, the LHCb
experiment studied the decay B+ → J/ψφK+ in pp colli-
sions at 7 TeV, with a data sample more than three times
larger than that of CDF, and set an upper limit (UL)
incompatible with the CDF result [6]. The D0 and the
CMS experiments more recently made studies of the same
decay channel, leading to different conclusions [7, 8] than
the LHCb experiment. In this work we study the rare
decays B+ → J/ψK+K−K+, B0 → J/ψK+K−K0

S and
search for possible resonant states in the J/ψφmass spec-
trum. We also search for the decay B0 → J/ψφ, which
is expected to proceed mainly via a Cabibbo-suppressed
and color-suppressed transition b̄d → c̄cd̄d. The absence
of a signal would indicate that the required rescattering
of d̄d into s̄s is very small.

This paper is organized as follows. In Sec. II we de-
scribe the detector and data selection and in Sec. III we
report the branching-fraction (BF) measurements. Sec-
tion IV is devoted to the resonance search, while Sec. V
summarizes the results.

II. THE BABAR DETECTOR AND DATA

SELECTION

We make use of the data set collected by the BABAR

detector at the PEP-II e+e− storage rings operating at
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the Υ (4S) resonance. The integrated luminosity for this
analysis is 422.5 fb−1, which corresponds to the produc-
tion of 469 million BB pairs [9].

The BABAR detector is described in detail else-
where [10]. We mention here only the components of the
detector that are used in the present analysis. Charged
particles are detected and their momenta measured with
a combination of a cylindrical drift chamber (DCH) and
a silicon vertex tracker (SVT), both operating within the
1.5 T magnetic field of a superconducting solenoid. Infor-
mation from a ring-imaging Cherenkov detector (DIRC)
is combined with specific ionization measurements from
the SVT and DCH to identify charged kaon and pion
candidates. The efficiency for kaon identification is 90%
while the rate for a pion being misidentified as a kaon
is 2%. For low transverse momentum kaon candidates
that do not reach the DIRC, particle identification re-
lies only on the energy loss measurement, so that the
transverse momentum spectrum of identified kaons ex-
tends down to 150 MeV/c. Electrons are identified us-
ing information provided by a CsI(Tl) electromagnetic
calorimeter (EMC), in combination with that from the
SVT and DCH, while muons are identified in the Instru-
mented Flux Return (IFR). This is the outermost subde-
tector, in which muon/pion discrimination is performed.
Photons are detected, and their energies measured with
the EMC.

For each signal event candidate, we first reconstruct
the J/ψ by geometrically constraining to a common ver-
tex a pair of oppositely charged tracks, identified as either
electrons or muons, and apply a loose requirement that
the χ2 fit probability exceed 0.1%. For J/ψ → e+e− we
use bremsstrahlung energy-loss recovery: if an electron-
associated photon cluster is found in the EMC, its three-
momentum vector is incorporated into the calculation of
the invariant mass me+e− . The vertex fit for a J/ψ can-
didate includes a constraint to the nominal J/ψ mass
value [11].

For B+ → J/ψK+K−K+ candidates, we combine the
J/ψ candidate with three loosely identified kaons and re-
quire a vertex-fit probability larger than 0.1%. Similarly,
for B0 → J/ψK−K+K0

S
candidates, we combine the J/ψ

and K0
S
with two loosely identified kaons and require a

vertex-fit probability larger than 0.1%.

A K0
S
candidate is formed by geometrically constrain-

ing a pair of oppositely charged tracks to a common
vertex, with χ2 fit probability larger than 0.1%. The
pion mass is assigned to the tracks without particle-
identification (PID) requirements. The three-momenta
of the two pions are then added and the K0

S
energy is

computed using the nominal K0
S
mass. We require the

K0
S
flight length significance with respect to the B0 ver-

tex to be larger than 3σ.

We further select B meson candidates using the en-
ergy difference ∆E ≡ E∗

B − √
s/2 in the center-of-mass

frame and the beam-energy-substituted mass defined as
mES ≡

√

((s/2 + ~pi · ~pB)/Ei)2 − ~p 2
B, where (Ei, ~pi) is

the initial state e+e− four-momentum vector in the labo-

ratory frame and
√
s is the center-of-mass energy. In the

above expressions E∗

B is the B meson candidate energy in
the center-of-mass frame, and ~pB is its laboratory frame
momentum.
When multiple candidates are present, the combina-

tion with the smallest ∆E is chosen. We find that, af-
ter requiring mES > 5.2 GeV/c2, the fraction of events
having multiple candidates is 1.3% for B+ and 8.6% for
B0. From simulation, we find that 99.6% of the time we
choose the correct candidate.
The final selection requires |∆E| < 30 MeV and

|∆E| < 25 MeV for B+ and B0 decays, respectively; the
additional selection criterion mES > 5.2 GeV/c2 is re-
quired for the calculation of the BFs, while mES > 5.27
GeV/c2 is applied to select the signal region for the anal-
ysis of the invariant mass systems.

III. BRANCHING FRACTIONS

Figure 1 shows the mES distributions for (a)
B+ → J/ψK+K−K+ and (b) B0 → J/ψK−K+K0

S
can-

didates after having applied the ∆E selections described
in Sec. II, while the corresponding ∆E distributions are
shown in Fig. 1(c) and Fig. 1(d), respectively, for mES

> 5.27 GeV/c2. Figure 2 shows the K+K− invariant
mass distribution in the region mK+K− <1.1 GeV/c2 for
(a) B+ and (b) B0 candidates. A clean φ(1020) signal
is present in both mass spectra. The background contri-
butions, estimated from the ∆E sidebands in the range
40 < |∆E| < 70 MeV, are shown as shaded histograms
in Fig. 2(a) and Fig. 2(b) and are seen to be small. In the
following we have ignored the presence of possible addi-
tional S-wave contributions in the φ(1020) signal region.
We select the φ(1020) signal region to be in the mass

range [1.004−1.034] GeV/c2. Figure 2 shows the mES

distribution for (c) B+ → J/ψφK+ and (d) B0 →
J/ψφK0

S
candidates, respectively, for events in the φ

mass region, which satisfy the ∆E selection criteria. Fig-
ures 2(e) and 2(f) show the ∆E distribution for mES

> 5.27 GeV/c2, when requiring the K+K− invariant
mass to be in the φ(1020) signal region. The distributions
of Fig. 2(c) and Fig. 2(e) contain 212 events in the mES

and ∆E signal region, with an estimated background of
23 events. Similarly, those of Fig. 2(d) and Fig. 2(f) con-
tain 50 events, with an estimated background of 9 events.
We search for the decay B0 → J/ψφ by constraining

a fitted J/ψ and two loosely identified kaon candidates
to a common vertex. Possible backgrounds originating
from the decay B0 → J/ψK0∗(892), K0∗(892) → K−π+,
and from the channel B0 → J/ψK1(1270), K1(1270) →
K−π+π0 are found consistent with zero, after applying
a dedicated selection as described in Sec. II and Sec. III.
Figure 3 shows the corresponding mES and ∆E distri-
butions. We do not observe a significant signal for this
decay mode.
For Figs. 1-3 an unbinned maximum likelihood fit to

eachmES distribution is performed to determine the yield
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FIG. 1: The mES distributions for (a) B+
→ J/ψK+K−K+ and (b) B0

→ J/ψK−K+K0
S , for the ∆E regions indicated in the

text. The ∆E distributions for mES > 5.27 GeV/c2 are shown for (c) B+
→ J/ψK+K−K+ and (d) B0

→ J/ψK−K+K0
S . The

continuous (red) curve represents the signal plus background, while the dotted (blue) curve represents the fitted background.
Vertical (blue) lines indicate the selected signal regions.

TABLE I: Event yields, efficiencies (ǫ) and BF measurements (B) for the different decay modes. For channels involving K0
S , the

yields and efficiencies refer to K0
S → π+π−, the BF includes the corrections for K0

S → π0π0 and K0
L decay. The B0

→ J/ψφ
UL at 90% c.l. is listed at the end of the table.

B channel Event ǫ (%) Corrected B (×10−5)
yield yield

B+
→ J/ψK+K−K+ 290±22 15.08±0.04 1923±146 3.37±0.25±0.14

B+
→ J/ψφK+ 189±14 13.54±0.04 1396±103 5.00±0.37±0.15

B0
→ J/ψK+K−K0 68±13 10.35±0.04 657±126 3.49±0.67±0.15

B0
→ J/ψφK0 41± 7 10.10±0.04 406±69 4.43±0.76±0.19

B0
→ J/ψφ 6 ± 4 31.12±0.07 19 ±13 < 0.101

TABLE II: Systematic uncertainty contributions (%) to the evaluation of the BFs.

Source B+
→ J/ψK+K−K+ B+

→ J/ψφK+ B0
→ J/ψK−K+K0

S B0
→ J/ψφK0

S B0
→ J/ψφ

BB counting 0.6 0.6 0.6 0.6 0.6
Efficiency 0.04 0.04 0.04 0.04 0.07
Tracking 0.9 0.9 1.2 1.2 0.7
K0

S − − 1.7 1.7 −

Secondary BFs 0.08 0.5 0.1 0.5 0.5
Decay model − 0.4 − 0.9 1.0
pdfs 3.0 0.7 2.0 0.5 1.0
PID 2.5 2.5 3.0 3.0 2.0
Total contribution 4.1 3.0 4.2 4.4 2.7

and obtain a BF measurement [12]. We use the sum
of two functions to parametrize the mES distribution; a
Gaussian function describes the signal, and an ARGUS
function [13] the background. A study of the ∆E side-

bands did not show the presence of peaking backgrounds.
Table I summarizes the fitted yields obtained.

As a validation test, we fit the ∆E distributions shown
in Figs. 1-3, using a double-Gaussian model for the signal
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FIG. 2: (a) The K+K− mass spectrum, (c) mES, and (e) ∆E distribution for B+
→ J/ψφK+. (b) The K+K− mass spectrum,

(d) mES, and (f) ∆E distribution for B0
→ J/ψφK0

S . The dots are the data points, the shaded (yellow) distributions are
obtained from the ∆E sidebands. Vertical (blue) lines indicate the selected signal regions. In (a) and (b) the mES and ∆E
selection criteria described in Sec. II have been applied.
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FIG. 3: (a) The mES and (b) ∆E distribution for B0
→ J/ψφ event candidates. The curves in (a) and (b) are the result of

the fits described in the text.

and a linear function for the background, and we obtain
yields consistent with those from the mES fits.

The signals in Fig. 1, corresponding to the B+ →
J/ψK+K−K+ and the B0 → J/ψK+K−K0

S
decays,

yield 14.4σ and 5.5σ significance, respectively. Those in
Fig. 2, which restrict the invariant mass mK+K− to the
signal region of the φ(1020) meson, are observed with
significance 16.1σ and 5.6σ, respectively. In this pa-

per the statistical significance of the peaks is evaluated
as

√

−2ln(L0/Lmax), where Lmax and L0 represent the
maximum likelihood values with the fitted signal yield
and with the signal yield fixed to zero, respectively.

We estimate the efficiency for the different channels us-
ing Monte Carlo (MC) simulations. For each channel we
perform full detector simulations where B mesons decay
uniformly over the available phase space (PHSP). These
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FIG. 4: Efficiency distribution on the Dalitz plot for (a) B+
→ J/ψφK+ and (b) B0

→ J/ψφK0
S .
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FIG. 5: Invariant mass distribution J/ψK+K− for (a) B+
→ J/ψK+K−K+ and (b) B0

→ J/ψK+K−K0
S. The shaded

(yellow) histogram on each figure indicates the background estimated from the ∆E sidebands.

simulated events are then reconstructed and analyzed as
are the real data. These MC simulations are also used to
validate the analysis procedure and the BF extractions.

Table I reports the resulting integrated efficiencies for
the different channels, and the efficiency-corrected yields.
The efficiency is computed in two different ways. For
B+ → J/ψφK+ and B0 → J/ψφK0

S
we make use of

a Dalitz-plot-dependent efficiency, where each event is
weighted by the inverse of the efficiency evaluated in the
appropriate cell of the Dalitz plot shown in Fig. 4. This
approach is particularly important because of the lower
efficiency observed at low J/ψφ invariant mass, where
the spectrum deviates from pure PHSP behavior. For
the φ channels, the “Corrected yield” values in Table
I are obtained as sums of inverse Dalitz-plot efficien-
cies for events in the φ signal regions with background-
subtraction taken into account as described in Sec. IV.
The events in the φ signal region account for about 65%
of the data in the four-body final states. There is no evi-
dence of structure in the remaining ∼35% of these events,
and so they are corrected according to their average effi-
ciency obtained from MC simulation of four-body PHSP
samples. For these channels, B+ → J/ψK+K−K+ and
B0 → J/ψK+K−K0

S
, the PHSP corrected yield is added

to the φ signal region corrected yield to obtain the “Cor-
rected yield” values in lines 1 and 3 of Table I. The effi-
ciency values in the third column of Table I correspond
to “Event yield” divided by “Corrected yield”.

Systematic uncertainties affecting the BF measure-

ments are listed in Table II. The evaluation of the in-
tegrated luminosity is performed using the method of
BB counting [10], and we assign a uniform 0.6% un-
certainty to all the final states. The uncertainty on
the efficiency evaluation related to the size of the MC
simulations is negligible with respect to the other con-
tributions. The systematic uncertainty on the recon-
struction efficiency of charged-particle tracks is estimated
from the comparison of data samples and full detector
simulations for well-chosen decay modes. In a similar
way we obtain a 1.7% systematic uncertainty in the re-
construction of K0

S
meson decays. In the case of the

B0 → J/ψφK0
S and B+ → J/ψφK+ decay modes, since

the J/ψ and the φ are vector states, we compute the
efficiency also under the assumption that the two vec-
tor mesons are transversely or longitudinally polarized.
We consider the uncertainties related to the choice of
the probability density functions (pdf) in the fit proce-
dure, by varying fixed parameters by ±1σ in their un-
certainties. We also evaluate the efficiency variations
for different charged-particle-track PID. All uncertain-
ties are added in quadrature. We note that the BF for
B+ → J/ψφK+ and that for B0 → J/ψφK0 are in
agreement with their previous BABAR measurements [14],
which already dominate the PDG average values [11], but
now we obtain more than four times better precision. The
combination of these decay modes was observed first by
the CLEO Collaboration [15]. Our BF value for the decay
B+ → J/ψK+K−K+ is the first measurement. For the
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decay B0 → J/ψK+K−K0, the LHCb Collaboration has
obtained a BF value (2.02±0.43±0.17±0.08)×10−5 [16],
which is consistent with our result.
We estimate an upper limit (UL) at 90% confidence

level (c.l.) for the BF of the decay B0 → J/ψφ. The
signal yield obtained from the fit to the mES distribu-
tion is 6±4 events (Fig. 3(a)), corresponding to an UL at
90% c.l. of 14 events. The Feldman-Cousins method [17]
is used to evaluate ULs on BFs. Ensembles of pseudo-
experiments are generated according to the pdfs for a
given signal yield (10000 sets of signal and background
events), and fits are performed. We obtain an UL on
the B0 → J/ψφ BF of 1.01×10−6. The Belle Collabora-
tion reported a limit of 0.94 × 10−6 [18], while a recent
analysis from the LHCb Collaboration lowers this limit
to 1.9× 10−7 [19].
We compute the ratios

R+ =
B(B+ → J/ψK+K−K+)

B(B+ → J/ψφK+)
= 0.67±0.07±0.03 (1)

and

R0 =
B(B0 → J/ψK+K−K0)

B(B0 → J/ψφK0)
= 0.79±0.20±0.05, (2)

and they are consistent with being equal within the un-
certainties. We also compute the ratios

Rφ =
B(B0 → J/ψφK0)

B(B+ → J/ψφK+)
= 0.89± 0.17± 0.04 (3)

and

R2K =
B(B0 → J/ψK+K−K0)

B(B+ → J/ψK+K−K+)
= 1.04± 0.21± 0.06.

(4)
On the basis of the simplest relevant color-suppressed

spectator quark model diagrams (e.g. Fig.1 of Ref. [15]),
it would be expected that R+ = R0 and Rφ ∼ R2K ∼ 1.
Our measured values of these ratios are consistent with
these expectations.

IV. SEARCH FOR RESONANCE PRODUCTION

We plot in Fig. 5(a) the J/ψK+K− mass distribution
for B+ → J/ψK+K−K+ and in Fig. 5(b) that for B0 →
J/ψK−K+K0

S
; the signal regions are defined by the ∆E

selections indicated in Sec. II and mES > 5.27 GeV/c2.
No prominent structure is observed in both mass spectra.
We select events in the φ signal regions and search for

the resonant states reported by the CDF Collaboration
in the J/ψφ mass spectrum [5]. The mass and the width
values are fixed to m=4143.4 MeV/c2 and Γ=15.3 MeV
for the X(4140), and m=4274.4 MeV/c2 and Γ= 32.3
MeV for the X(4270) resonance. We evaluate the mass
resolution using MC simulations and obtain 2 MeV/c2

resolution in the mass region between 4100 MeV/c2 and
4300 MeV/c2. Therefore resolution effects can be ignored

because they are much smaller than the widths of the
resonances under consideration.
We estimate the efficiency on each quasi-three-body

Dalitz plot as the ratio between the reconstructed and
generated distributions, where the values are generated
according to PHSP. Figure 4 shows the resulting dis-
tributions evaluated over the m2

J/ψφ vs m2
φK plane for

the charged (a) and neutral (b) B decay, respectively.
The lower efficiency at low J/ψφ mass is due to the
lower reconstruction efficiency for low kaon momentum
in the laboratory frame, as a result of energy loss in the
beampipe and SVT material.
We test the agreement between data and MC by us-

ing a full MC simulation where the B+ → J/ψφK+ and
B0 → J/ψφK0

S
decays are included with known branch-

ing fractions. We repeat the entire analysis on these sim-
ulated data and find good agreement between generated
and reconstructed branching fractions. Resolution effects
are small and are computed using MC simulations. We
obtain average values of 2.9 MeV for (J/ψφ) and 2.2 MeV
for (J/ψK). These small values do not produce bias in
the evaluation of the efficiency and the measurement of
the branching fractions.
To search for the two resonances in the J/ψφ mass dis-

tributions, we perform unbinned maximum likelihood fits
to the B → J/ψφK decay Dalitz plots. We model the
resonances using S-wave relativistic Breit-Wigner (BW)
functions with parameters fixed to the CDF values. The
non-resonant contributions are represented by a constant
term, and no interference is allowed between the fit com-
ponents. We estimate the background contributions from
the ∆E sidebands, find them to be small and consistent
with a PHSP behavior, and so in the fits they are incorpo-
rated into the non-resonant PHSP term. The decay of a
pseudoscalar meson to two vector states may contain high
spin contributions which could generate non-uniform an-
gular distributions. However, due to the limited data
sample we do not include such angular terms, and assume
that the resonances decay isotropically. The amplitudes
are normalized using PHSP MC generated events with
B parameters obtained from the fits to the data. The fit
functions are weighted by the the two-dimensional effi-
ciency computed on the Dalitz plots.
We perform fits separately for the charged B+ sample

and the combined B+ and B0 samples. Due to the very
limited statistics of the B0 sample we do not perform a
separate fit, but instead subtract the fit result for the B+

sample from that for the combined B+ and B0 sample.
In this case we make use of the two different efficiencies
for the two channels. In the MC simulation performed,
we make use of a weighted mean of the two efficiencies
evaluated on the respective Dalitz plots.
Table III summarizes the results of the fits. We report

the background-corrected fit fractions for the two reso-
nances, fX(4140) and fX(4270), the two-dimensional (2D)

χ2 computed on the Dalitz plot, and the one-dimensional
(1D) χ2 computed on the J/ψφ mass projection. For
this purpose, we use an adaptive binning method, and
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TABLE III: Results of the fits to the B → J/ψφK Dalitz plots. For each fit, the table gives the fit fraction for each resonance,
and the 2D and 1D χ2 values. The fractions are corrected for the background component.

Channel Fit fX(4140)(%) fX(4270)(%) 2D χ2/ν 1D χ2/ν
B+ A 9.2 ± 3.3 10.6 ± 4.8 12.7/12 6.5/20

B 9.2 ± 2.9 0. 17.4/13 15.0/17
C 0. 10.0 ± 4.8 20.7/13 19.3/19
D 0. 0. 26.4/14 34.2/18

B0 +B+ A 7.3 ± 3.8 12.0 ± 4.9 8.5/12 15.9/19
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FIG. 6: Dalitz plot projections for B+
→ J/ψφK+ on (a) m2

J/ψφ, (b) m
2
φK+ , and (c) m2

J/ψK+ . The continuous (red) curves

are the results from fit model A performed including the X(4140) and X(4270) resonances. The dashed (blue) curve in (a)
indicates the projection for fit model D, with no resonances. The shaded (yellow) histograms indicate the background estimated
from the ∆E sidebands.

divide the Dalitz plot into a number of cells in such
a way that the minimum expected population per cell
is not smaller than 7. We generate MC simulations
weighted by the efficiency and by the results from the
fits. These are normalized to the event yield in data,
using the same bin definitions. We then compute the

χ2 =
∑Ncells

i=1 (N i
obs − N i

exp)
2/N i

exp where N i
obs and N i

exp

are the data and MC simulation event yields, respec-
tively. Indicating with n the number of free parameters,
corresponding to the number of resonances included in
the fit, the number of degrees of freedom is ν = Ncells−n.
In computing the 1D χ2 we rebin the J/ψφ mass projec-
tion into 25 bins, again with at least 7 entries per bin.
We perform the fits using models with two resonances

(labeled as model A), one resonance (models B and C),
and no resonances (model D). The fit projections for fit
A are displayed in Fig. 6, showing enhancements with a
statistical significance smaller than 3.2σ for all fit models.
All models provide a reasonably good description of the
data, with χ2 probability larger than 1%.
We estimate systematic uncertainties on the fractions

by varying the mass and the width values for both reso-
nances within their uncertainties. The results shown in
Table III are corrected by the fraction of background es-
timated in each sample. This results in correction factors
of 1.12 and 1.21 for the B+ and the B0 channels, respec-
tively. We obtain the following background-corrected
fractions for B+:

fX(4140) = (9.2±3.3±4.7)%, fX(4270) = (10.6±4.8±7.1)%.
(5)

Combining statistical and systematic uncertainties in
quadrature, we obtain significances of 1.6 and 1.2σ for
the X(4140) and the X(4270), respectively.
Using the Feldman-Cousins method [17], we obtain the

ULs at 90% c.l.:

B(B+ → X(4140)K+)× B(X(4140)→ J/ψφ)/

B(B+ → J/ψφK+) < 0.133 (6)

B(B+ → X(4270)K+)× B(X(4270)→ J/ψφ)/

B(B+ → J/ψφK+) < 0.181. (7)

The Feldman-Cousin intervals are evaluated as explained
in Ref. [17] and in Sec. III. The X(4140) limit may be
compared with the CDF measurement of 0.149± 0.039±
0.024 [4] and the LHCb limit of 0.07 [6]. The X(4270)
limit may be compared with the LHCb limit of 0.08.
The fit projections on the J/ψφ mass spectrum using

fit model A with two resonances are shown in Fig. 7(a) for
B+, in Fig. 7(b) for B0, and in Fig. 7(c) for the combined
B+ and B0 sample. The fit results are summarized in
Table III.
The central values of mass and width of the two reso-

nances are also fixed to the values recently published by
the CMS Collaboration [8]. In this case we obtain, for the
B+ data, the following background-corrected fractions:

fX(4140) = (13.2±3.8±6.8)%, fX(4270) = (10.9±5.2±7.3)%.
(8)



12

)2 (GeV/cφψJ/m
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

0

5

10

15

20

25
(a)

)2  (GeV/cφψJ/m
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

0

1

2

3

4

5

6

7

8

9

10
(b)

)2  (GeV/cφψJ/m
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

2
E

ve
nt

s 
/ 2

0 
M

eV
/c

0

5

10

15

20

25
(c)

FIG. 7: Projections on the J/ψφ mass spectrum from the Dalitz plot fit with the X(4140) and the X(4270) resonances for the
(a) B+, (b) B0, and (c) combined B+ and B0 data samples. The continuous (red) curves result from the fit; the dashed (blue)
curve in (a) indicates the projection for fit model D, with no resonances. The shaded (yellow) histograms show the background
contributions estimated from the ∆E sidebands.
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FIG. 8: (a) Average efficiency distribution as a function of J/ψφ invariant mass for B+
→ J/ψφK+. (b) Efficiency-corrected

J/ψφ mass spectrum for the combined B+ and B0 samples. The curve is the result from fit model A described in the
text. The shaded (yellow) histogram represents the efficiency-corrected background contribution. (c) Efficiency-corrected and
background-subtracted J/ψφ mass spectrum for the combined B+ and B0 samples.

These values are consistent within the uncertainties with
those obtained in Eq. (5). For comparison, CMS reported
a fraction of 0.10±0.03 for the X(4140), which is compat-
ible with the CDF, the LHCb and our value within the
uncertainties; CMS could not determine reliably the sig-
nificance of the second structure X(4270) due to possible
reflections of two-body decays.

Figure 8(a) shows the efficiency as a function of the
J/ψφ mass, obtained from a PHSP simulation of the
B+ → J/ψφK+ Dalitz plot. We observe a decrease of
the efficiency in the J/ψφ threshold region, as already
observed in Fig. 4.

Figure 8(b) shows the efficiency-corrected J/ψφ mass
spectrum for the combined B+ and B0 samples. To ob-
tain this spectrum, we weight each event by the inverse
of the efficiency evaluated on the respective B+ and B0

Dalitz plots. The curve is the result from fit model
A. The background contribution (shown shaded) is es-
timated from the ∆E sidebands, and has also been cor-
rected for efficiency. However, a few background events
fall outside the efficiency Dalitz plots, and to these we
assign the same efficiency as for B signal events.

Finally, Fig. 8(c) shows the efficiency-corrected and
background-subtracted J/ψφmass spectrum for the com-
bined B+ and B0 samples.

V. SUMMARY

In summary, we perform a study of the decays
B+,0 → J/ψK+K−K+,0 and B+,0 → J/ψφK+,0, and
for the latter obtain much-improved BF measurements.
For B+ → J/ψK+K−K+ this is the first measurement.
We search for resonance production in the J/ψφ mass
spectrum and obtain significances below 2σ for both the
X(4140) and the X(4270) resonances, with systematic
uncertainties taken into account. Limits on the prod-
uct Branching Ratio values for these resonances are ob-
tained. We find that the hypothesis that the events are
distributed uniformly on the Dalitz plot gives a poorer
description of the data. We also search for B0 → J/ψφ
and derive an UL on the BF for this decay mode, which
is in agreement with theoretical expectations.
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tional de Physique Nucléaire et de Physique des Partic-
ules (France), the Bundesministerium für Bildung und
Forschung and Deutsche Forschungsgemeinschaft (Ger-

many), the Istituto Nazionale di Fisica Nucleare (Italy),
the Foundation for Fundamental Research on Matter
(The Netherlands), the Research Council of Norway, the
Ministry of Education and Science of the Russian Federa-
tion, Ministerio de Ciencia e Innovación (Spain), and the
Science and Technology Facilities Council (United King-
dom). Individuals have received support from the Marie-
Curie IEF program (European Union), the A. P. Sloan
Foundation (USA) and the Binational Science Founda-
tion (USA-Israel).

[1] N. Brambilla et al., Quarkonium Working Group Collab-
oration, Yellow Report, arXiv:0412158v2 [hep-ph](2005).

[2] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[3] The use of charge conjugate reactions is implied through-

out this work.
[4] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.

102, 242002 (2009).
[5] T. Aaltonen et al. (CDF Collaboration), arXiv:1101.6058

[hep-ex].
[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 85,

091103(R) (2012).
[7] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 89,

012004 (2014).
[8] S. Chatrchyan et al. (CMS Collaboration), Phy. Lett. B

734, 261 (2014).
[9] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum.

Meth. Phys. Res., Sect. A 726, 203 (2013).
[10] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum.

Meth. Phys. Res., Sect. A 479, 1 (2002); ibid. 729, 615
(2013).

[11] J. Beringer et al. (PDG Collaboration), Phys. Rev. D 86,

010001 (2012).
[12] The BFs are calculated by dividing the efficiency-

corrected yields in Table I by the product of
NBB̄ × ΠiBFSi, where BFSi = BF of particles involved
in the relevant Υ (4S) decay and in the corresponding B
meson decay processes.

[13] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C
48, 543 (1990).

[14] B. Aubert et al. (BABAR Collaboration), Phys. Rev.
Lett. 91, 071801 (2003).

[15] A.Anastassov et al. (CLEO Collaboration), Phys. Rev.
Lett. 84, 1393 (2000).

[16] R. Aaij et al. (LHCb Collaboration), JHEP 07, 140
(2014).

[17] G. J. Feldman and R. D. Cousins, Phys. Rev. D. 57,
3873 (1998).

[18] Y. Liu et al. (Belle Collaboration), Phys. Rev. D 78,
011106 (2008).

[19] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 88,
072005 (2013).

http://de.arxiv.org/abs/1101.6058

	I Introduction
	II The BABAR detector and data selection
	III Branching Fractions
	IV Search for Resonance Production
	V Summary
	VI Acknowledgements
	 References

