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The measured Bd → π0π0 branching fraction deviates significantly from conventional QCD pre-
dictions, a puzzle which has persisted for more than 10 years. This may be a hint of new physics
beyond the Standard Model; however, as we shall show in this paper, the pQCD prediction is highly
sensitive to the choice of the renormalization scales which enter the decay amplitude. It is conven-
tional to choose a typical momentum transfer as the renormalization scale and to take an arbitrary
range to estimate the theory uncertainty. However, the prediction using this procedure depends on
the renormalization scheme, leaves a non-convergent renormalon series, and gives an arbitrary esti-
mate of the systematic error. In contrast, if one fixes the renormalization scale using the Principle of
Maximum Conformality (PMC), all non-conformal {βi}-terms in the perturbative expansion series
are resummed into the running coupling, one then obtains a unique, scale-fixed, scheme-independent
prediction at any finite order. The PMC is a generalization of the BLM procedure, and it reduces
in the Abelian limit to the standard Gell Mann-Low procedure used for precision tests of QED.
We show that the renormalization scale uncertainties for B → ππ can be greatly reduced by ap-
plying the PMC. Combining the errors in quadrature, we obtain the CP averaged branching ratio
B(Bd → π0π0)|PMC =

(
0.98+0.28

−0.32

)
× 10−6 by using the light-front holographic low-energy model for

the running coupling. All of the CP-averaged B → ππ branching fractions predicted by the PMC
are consistent with the Particle Data Group average values and the newly Belle data.

PACS numbers: 13.25.Hw, 12.38.Bx, 12.38.Cy

B-meson hadronic two-body decays contain a wealth of
information on the physics underlying the charge-parity
(CP) violation. Measurements of the B-meson two-body
branching ratios and their CP asymmetries provide key
information on the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. One challenge that has puzzled the
theoretical physics community for more than 10 years
is that the measured branching ratio for the decay of the
B meson to neutral pion pairs Bd → π0π0 is significantly
larger than the theoretical predictions based on the QCD
factorization approach [1–4] and the perturbative QCD
approach [5].

Beneke et al. (BBNS) [6] have developed a system-
atic QCD analysis of B → ππ based on the factoriza-
tion of long-distance and short distance dynamics. The
BBNS predictions for the branching ratios of Bd → π+π−

and B± → π±π0 are consistent with CLEO, BaBar,
and Belle data. However, the BBNS prediction for the
Bd → π0π0 branching ratio deviates significantly from
the measurements [3]. There have been suggestions on
how to resolve this puzzle and to obtain a consistent
explanation of all B → ππ channels within the same
framework. In particular, Beneke et al. [7] have noted
that the next-to-leading order (NLO) QCD corrections to
the color-suppressed hard spectator scattering amplitude

α2(ππ) could be important, as seen from their calculation
of vertex corrections up to next-to-next-to-leading order
(NNLO) level [4]. However, even after including those
higher-order QCD corrections, the discrepancy remains.
There is also the concern that the large K factor implied
by the higher-order corrections to the branching ratio of
Bd → π0π0, as well as the large renormalization scale un-
certainties, may make pQCD calculations questionable.

According to renormalization group invariance, a valid
prediction for a physical observable should be indepen-
dent of theoretical conventions, such as the choice of the
renormalization scheme and the value of the initial renor-
malization scale. This important principle is satisfied by
the Principle of Maximum Conformality (PMC) [8, 9].
The running behavior of the coupling constant is deter-
mined by its {βi}-function via the renormalization group
equation. Conversely, the knowledge of the {βi}-terms
can be used to determine the optimal scale of a partic-
ular process; this is the main goal of the PMC. If one
fixes the renormalization scale of the pQCD series using
the PMC, all non-conformal {βi}-terms in the pertur-
bative expansion series are resummed into the running
coupling, and one obtains a unique, scale-fixed, scheme-
independent prediction at any finite order. The resulting
{βi}-free pQCD series is thus identical to the conformal
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FIG. 1: Typical Feynman diagrams for the B → ππ decays,
which are sizable and correspond to α1, α2, α4 (or α6), re-
spectively. µr,V , µr,H and µr,P are renormalization scales for
these diagrams; they are different in general. Other Feynman
diagrams can be obtained by shifting one of the gluon end-
points to different quark lines. The vertex “⊗⊗” denotes the
insertion of a 4-fermion operator Qi. And the big dot stands
for the renormalized gluon propagator whose light-quark loop
determines the β0-terms and hence the optimal scale for the
running behavior of the QCD coupling constant.

series and is renormalization-scheme independent. The
PMC prediction satisfies all self-consistency conditions
of the renormalization group, such as reflectivity, sym-
metry, and transitivity [10]. The PMC is a generalization
of the BLM procedure [11], and it reduces in the Abelian
limit to the standard Gell Mann-Low procedure [12] used
for precision tests of QED.

In the following, we will apply the PMC procedure
to the BBNS analysis with the goal of eliminating the
renormalization scale ambiguity and achieving an accu-
rate pQCD prediction that is independent of theoretical
conventions. In fact, as we shall show, the PMC can
provide a solution to the B → ππ puzzle.

The amplitude for B → ππ decay, assuming the dom-
inance of valence Fock states for both the B meson and
the final-state pions, can be expressed as

〈ππ|Heff |B̄〉 =
GF√

2

∑
p=u,c

λp〈ππ|Tp|B̄〉 . (1)

The effective weak Hamiltonian [13]

Heff =
GF√

2

∑
p=u,c

λp

[
C1Q

p
1 + C2Q

p
2 +

∑
i=3...6

CiQi

]
, (2)

where the λp = V ∗pdVpb, Qi(µf ) are local four-fermion in-
teraction operators, and the Ci(µf ) are the correspond-
ing short-distance Wilson coefficients at the factorization
scale µf ' mb. The operator that creates the weak tran-
sition in the Standard Model is

Tp = αp1(ππ)(ūb)V−A ⊗ (d̄u)V−A + αp2(ππ)(d̄b)V−A ⊗ (ūu)V−A + α3(ππ)(d̄b)V−A ⊗ (q̄q)V−A +

αp4(ππ)(q̄b)V−A ⊗ (d̄q)V−A + α5(ππ)(d̄b)V−A ⊗ (q̄q)V+A + αp6(ππ)(−2)(q̄b)S−P ⊗ (d̄q)S+P . (3)

A summation over q = u, d is implied in this equation,
and the required currents are (q̄q′)V±A = q̄γµ(1 ± γ5)q′

and (q̄q′)S±P = q̄(1 ± γ5)q′. The branching ratio for
B → ππ is given by B(B̄ → ππ) = τB |A(B̄ →
ππ)|2S/(16πmB), where the symmetry parameter S =
1/2! for π0π0, and S = 1 for π+π− or π±π0, respectively.

Typical Feynman diagrams which provide non-zero
contributions to the B → ππ decays and correspond
to α1, α2, α4 and α6, respectively, are illustrated in
Fig.(1). The resulting amplitudes under the MS-scheme
for B → ππ can be written as [6]

A(B̄0 → π+π−) = i
GF√

2
m2
Bf

B→π
+ (0)fπ|λc|{Rbe−iγ [αu1 + αu4 + αu6rχ]− [αc4 + αc6rχ]} ,

A(B̄0 → π0π0) = i
GF√

2
m2
Bf

B→π
+ (0)fπ|λc|{Rbe−iγ [−αu2 + αu4 + αu6rχ]− [αc4 + αc6rχ]} ,

A(B− → π−π0) = i
GF√

2
m2
Bf

B→π
+ (0)fπ|λc|(Rb/

√
2)e−iγ [αu1 + αu2 ] , (4)

where Rb = |VubV ∗ud|/|VcbV ∗cd|, and γ is the V ∗ub phase.
The coefficient rχ = 2m2

π/[m̄b(µr)(m̄u(µr) + m̄d(µr))],
which equals to 1.18 when setting the scale µr = mb.

Here fπ(fB) is the pion (B-meson) decay constant, and
fB→π+ (0) is the B → π transition form factor at the zero
momentum transfer. The CP conjugate amplitudes are
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obtained from the above by replacing e−iγ to e+iγ . The
topological tree amplitude α1 expresses the contribution
when the final (ūd)-pair (produced from the virtual W−)
forms the pion directly. The tree amplitude α2 expresses
the contribution obtained when the final (ūd)-pair from
W− separates and the ū-quark forms a pion by coalescing
with the spectator u-quark. The amplitudes αi (i=3,6)
are topological penguin amplitudes. Note that when the
spectator quark combines with one of the quarks from
W− to form a pion, a color-suppressed factor ∼ 1/Nc
emerges. Thus, the amplitude α1 provides the domi-

nant contributions relative to the color-suppressed α2,4,6.
However this color suppression can effectively disappear
when one includes higher-order gluonic interactions to
α2,4,6; their contributions thus can be sizable. At present,
consistent pQCD calculations of the tree amplitudes α1,2

and their vertex corrections have been evaluated up to
NNLO level. The QCD correction to the hard specta-
tor scattering interaction has been calculated up to NLO
level [4].

We rewrite the contributions in the following conve-
nient form:

αp1 = C1 +
1

Nc

[
C2 + CFC2

αs(µinit
r,V )

4π
V1 +

(
αs(µ

init
r,V )

4π

)2

β0Ṽ1

+

(
αs(µ

init
r,V )

4π

)2

V2

+
4CFC2π

2

Nc

αs(µinit
r,H)

4π
H1 +

(
αs(µ

init
r,H)

4π

)2

β0H̃1

+

(
αs(µ

init
r,V )

4π

)2

H2

]
, (5)

αp2 = C2 +
1

Nc

[
C1 + CFC1

αs(µinit
r,V )

4π
V1 +

(
αs(µ

init
r,V )

4π

)2

β0Ṽ1

+

(
αs(µ

init
r,V )

4π

)2

V3

+
4CFC1π

2

Nc

αs(µinit
r,H)

4π
H1 +

(
αs(µ

init
r,H)

4π

)2

β0H̃1

+

(
αs(µ

init
r,V )

4π

)2

H3

]
. (6)

The penguin diagrams provide small contributions to the amplitudes. They are written as

αp4 = C4 +
C3

Nc

[
1 +

αs(µ
init
r,V )

4π
CFV1 +

αs(µ
init
r,H)

4π

4CFπ
2

Nc
H1 +

αs(µ
init
r,V )

4π

CF
Nc

P pπ,2

]
, (7)

αp6 = C6 +
C5

Nc

[
1 +

αs(µ
init
r,V )

4π
CF (−6) +

αs(µ
init
r,V )

4π

CF
Nc

P pπ,3

]
. (8)

Here β0 = (11Nc−2nf )/3, Vi (Ṽi) denotes the vertex cor-

rections, and Hi (H̃i) denotes the hard spectator scatter-
ing contributions. The corresponding expressions for the
functions Vi, Ṽi, Hi, H̃i and P pπ,n can be obtained from

Refs. [4, 14]. The initial scales are set to µinit
r,P = µinit

r,V .
The quantity P pπ,n refers to the contribution from the
pion twist-n light-cone distribution amplitude. In the
calculation both twist-2 and twist-3 terms are taken into
consideration. Note that the Wilson coefficients C1 and
C2 are different from the definition of Ref.[13], where the
labels 1 and 2 are interchanged.

In order to apply PMC scale-setting, we have divided

the amplitudes into β0-dependent nonconformal and β0-
independent conformal parts, respectively. There are two
typical momentum flows for the process; thus, we have
assigned two arbitrary initial scales µinit

r,V and µinit
r,H for the

vertex contributions and hard spectator scattering con-
tributions. In the case of conventional scale setting, the
scales are fixed to be their typical momentum transfers,
i.e. µr,V ≡ µinit

r,V ∼ mb and µr,H ≡ µinit
r,H ∼

√
ΛQCDmb.

After applying PMC scale setting, all non-conformal
β0-terms are resummed into the effective running cou-
pling, and the amplitudes become
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αp,PMC
1 = C1 +

1

Nc

[
C2 + C2CF

αs(Q
V
1 )

4π
V1 +

(
αs(Q

V
1 )

4π

)2

V ′2 +
4C2CFπ

2

Nc

αs(Q
H
1 )

4π
H1 +

(
αs(Q

H
1 )

4π

)2

H2

]
, (9)

αp,PMC
2 = C2 +

1

Nc

[
C1 + C1CF

αs(Q
V
1 )

4π
V1 +

(
αs(Q

V
1 )

4π

)2

V ′3 +
4C1CFπ

2

Nc

αs(Q
H
1 )

4π
H1 +

(
αs(Q

H
1 )

4π

)2

H3

]
, (10)

αp,PMC
4 = C4 +

C3

Nc

[
1 +

αs(Q
V
1 )

4π
CFV1 +

αs(Q
V
1 )

4π

4CFπ
2

Nc
H1 +

αs(Q
V
1 )

4π

CF
Nc

P pπ,2

]
, (11)

αp,PMC
6 = C6 +

C5

Nc

[
1 +

αs(Q
V
1 )

4π
CF (−6) +

αs(Q
V
1 )

4π

CF
Nc

P pπ,3

]
, (12)

where

QV1 = µinit
r,V exp

[
− Ṽ1

2V1

]
, QH1 = µinit

r,H exp

[
− H̃1

2H1

]

denote the separate PMC scales for the vertex contri-
bution and the hard spectator scattering contribution,
respectively. For the penguin amplitude, there is no β-
terms to determine its PMC scale, we take it as QV1 ,
the same as the scale of the vertex amplitude, since
both types of diagrams have similar space-like momen-
tum transfers. There is a residual scale dependence due
to unknown higher-order {βi}-terms, which however is
highly suppressed [8, 9]. Both V1 and Ṽ1 have an imagi-
nary part. We use the real part to set the PMC scale QV1 .
The values of the resulting PMC scales are QV1 ' 1.59
GeV and QH1 ' 0.75 GeV; they are nearly independent
of the initial scales µinit

r,V and µinit
r,H . A major problem

is that the PMC scale QH1 is close to ΛQCD in the MS
scheme. To avoid this low-scale problem, we utilize the
commensurate scale relation [15, 16] to transform theMS
running coupling to an effective charge defined from a
measured physical process. In particular the coupling
αg1
s (Q) defined from the Bjorken sum rule is very well

measured. The leading order commensurate scale rela-

tion gives αMS
s (0.75GeV) = αg1

s (2.04GeV). We adopt the
light-front holography model proposed in Ref. [18] as an
estimate of the running behavior of αg1

s (Q). This model
is based on the light-front holographic mapping of clas-
sical gravity in anti-de Sitter space, modified by a pos-
itive sign dilaton background and leads to a reasonable
nonperturbative effective coupling. The confinement po-
tential and light-front Schrödinger equation derived from
this approach accounts well for the spectroscopy and dy-
namics of light-quark hadrons.

The input parameters are chosen as [1]: the B-meson
lifetime τB+ = 1.641ps and τBd

= 1.519ps; fB = 0.194
GeV and fπ = 0.130 GeV; for the CKM parameters,
we use γ = 68.60, |Vcb| = 0.041, |V ∗cd| = 0.230 and

|Vub| = 4.15 × 10−3. The b-quark pole mass mb = 4.8
GeV, and the c-quark pole mass mc = 1.5 GeV. The
B → π form factor at zero momentum transfer is taken
as fB→π+ (0) = 0.25+0.03

−0.03, which is estimated by a NLO
light-cone sum rules calculation [19]. The n-th moment
of the B meson’s light-front distribution amplitude is
adopted as λB = 0.20+0.04

−0.02, λ1 = −2.2 and λ2 = 11 [4].
As usual, we set µf = µinit

r,H or µf = µinit
r,V , and vary

µinit
r,V ∈ [1/mb, 2mb] and µinit

r,H ∈ [1GeV, 2GeV] for analyz-
ing the scale uncertainty. In general the factorization and
the renormalization scales are different, thus one has to
determine the full factorization and renormalization scale
dependent expressions for all of the amplitudes; these
can be derived using Eqs.(9,10,11,12) via a general scale
translation [16].

We present our predictions for the CP-averaged B →
ππ in Tables I and II. The CP conjugate branching ratios
are obtained from the CP conjugate amplitudes following
the same procedures. An increased branching ratio is
observed after PMC scale setting. This indicates that the
resummation of the non-conformal series is important.

If one assumes conventional scale setting, there is
large renormalization-scale uncertainties, especially for
the color-suppressed topologically-dominated progresses.
In contrast, the ambiguity of the renormalization scale
has been greatly suppressed by using the PMC.

Are shown by Table II, after applying PMC scale
setting, the renormalization scale uncertainty has been
greatly suppressed as required. Table II shows that
all the CP-averaged branching ratios of B → ππ are
consistent with the data after PMC scale-setting. By
adding the mentioned errors in quadrature, we obtain
B(Bd → π0π0)|Conv. =

(
0.39+0.11

−0.09

)
× 10−6 and B(Bd →

π0π0)|PMC =
(
0.98+0.28

−0.32

)
× 10−6, where ‘Conv.’ means

calculated using conventional scale setting. After PMC
scale setting, the central value for B(Bd → π0π0) in-
creases by ∼ 100% even when we choose the conven-
tional result (0.47+0.08

−0.15) × 10−6. If we had more ac-
curate non-perturbative parameters such as the B →
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TABLE I: Dependence on the renormalization scale of the CP-averaged branching ratio B(B → ππ) (in unit 10−6) assuming
conventional scale setting and PMC scale setting, where three typical (initial) scales are adopted. The first column uncertainty
are from B → π form factor and the second column are from the B-meson moment.

Conventional PMC

µinit
r,V ; µinit

r,H mb/2; 1 GeV mb ; 1.5 GeV 2mb; 2 GeV mb/2; 1 GeV mb ; 1.5 GeV 2mb; 2 GeV

B− → π−π0 5.32+1.12+0.21
−1.00−0.29 5.26+1.11+0.19

−1.00−0.28 5.25+1.12+0.18
−1.01−0.27 5.82+1.07+0.34

−0.99−0.50 5.82+1.07+0.34
−0.99−0.50 5.82+1.07+0.34

−0.99−0.50

Bd → π+π− 6.10+1.72+0.20
−1.50−0.13 5.93+1.65+0.18

−1.46−0.13 5.82+1.62+0.17
−1.41−0.11 5.60+1.82+0.50

−1.57−0.33 5.60+1.82+0.50
−1.57−0.33 5.60+1.82+0.50

−1.57−0.33

Bd → π0π0 0.47+0.04+0.07
−0.04−0.10 0.39+0.04+0.07

−0.03−0.08 0.36+0.03+0.06
−0.03−0.08 0.98+0.06+0.18

−0.05−0.23 0.98+0.06+0.18
−0.05−0.23 0.98+0.06+0.18

−0.05−0.23

TABLE II: The CP-averaged B(B → ππ) (in units of 10−6).
The predicted errors are squared averages of those from the
B → π form factor, the B-meson moment, and the fac-
torization scale. For the factorization scale error, we take
µf,H = 4.8 ± 0.8 GeV and µf,V = 1.5 ± 0.3 GeV. The PDG
and Belle data are presented as a comparison.

Br (10−6) Data Conv. PMC

B− → π−π0 5.5± 0.4 [1] 5.26+1.13
−1.04 5.82+1.18

−1.15

Bd → π+π− 5.12± 0.19 [1] 5.93+1.67
−1.47 5.60+1.97

−1.66

Bd → π0π0 0.90± 0.12± 0.10 [20] 0.39+0.11
−0.09 0.98+0.28

−0.32

π form factor etc., we could achieve a more precise
pQCD prediction. One can define a ratio Rπ(π−π0) =
Γ(B− → π−π0)/(dΓ(Bd → π+`−ν̄`)/dq

2|q2=0) to cut
off the uncertainty from the B → π form factors. In
the QCD factorization framework, we have Rπ(π−π0) =
3π2f2

π |Vud|2|α1 + α2|2, which leads to Rπ(π−π0)|PMC =
0.86+0.09

−0.09. It is consistent with the heavy flavor averaging
group prediction 0.81± 0.14 [2] within errors.

In summary, the PMC provides a systematic and un-
ambiguous way to set the renormalization scale for high-
energy QCD processes, thus greatly improving the pre-
cision of tests of the Standard Model. We have applied
the PMC with the goal of solving the Bd → π0π0 puzzle.
When one applies PMC scale setting, the non-conformal
β0-dependent terms are resummed into the running cou-
pling, and we obtain the optimal scales QV1 ' 1.59 GeV
and QH1 ' 0.75 GeV for those channels.

The PMC results for B− → π−π0 and Bd → π+π−

are not very different compared with traditional predic-
tions: for B− → π−π0, the difference is about 10%;
for Bd → π+π−, the difference is less than 10%. How-
ever, the Bd → π0π0 channel is dominated by the color-
suppressed vertex and power-suppressed penguin dia-
grams. And the difference becomes about 100%. Our
prediction agrees with the recent preliminary Belle result
B(Bd → π0π0) = (0.90 ± 0.12 ± 0.10) × 10−6(6.7σ) [20].
The PMC prediction will become more precise when the
nonconformal terms are determined to higher order in the
strong coupling αs. Thus, the PMC provides a possible
solution for the Bd → π0π0 puzzle.

As a final remark, we have found that the factorization
scale uncertainty brings an additional 5% − 10% error
into the pQCD prediction. The factorization scale un-

certainty occurs even for a conformal theory; thus, how
to set the factorization scale reliably is another important
problem.
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