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We study electric and magnetic monopoles in static, spherically symmetric and constant curvature
geometries in the context of the inverse electrodynamics model. We prove that this U(1) invariant
Lagrangian density is able to support the standard metric of a Reissner-Nordström Black Hole,
but with more complex thermodynamical properties than in the standard case. By employing the
Euclidean Action approach we perform a complete analysis of its phase space depending on the sign
and singularities of the heat capacity and the Helmholtz free energy.
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I. INTRODUCTION

In General Relativity coupled with the usual U(1) in-
variant Electrodynamics theory, the Reissner-Nordström
black-hole (BH) solution arises, corresponding to a mas-
sive, charged, non-rotating and spherically symmetric
body [1, 2]. This kind of solution has been widely stud-
ied in the last decades (c.f. Refs. [3–5]). Nevertheless
the divergence of self-energy of point charges (like elec-
trons) in the standard Electrodynamics theory has sug-
gested that modified Electrodynamics theories might be
required in order to circumvent this shortcoming. Non-
linear models have also been studied from the point of
view of effective Lagrangians which attempt to describe
Quantum Electrodynamics [6]. Some important exam-
ples of these kinds of theories are the Born-Infeld [7, 8]
and the Euler-Heisenberg models [9–14]. Following this
line of reasoning, in the last years, different works have
studied modified Electrodynamics models coupled with
gravity [15]. In particular models providing static and
spherically symmetric solutions for electrostatic spheri-
cally symmetric fields have drawn remarkable attention
(c.f. [16] and references therein).

On the other hand, the study of the thermodynam-
ics properties of BH solutions began in the 1970’s with
the attainment of the four laws of BHs dynamics [17].
These mechanics laws seem very similar to the four laws
of Thermodynamics, where the BH mass, the area of
the horizon and the surface gravity play analogous roles
to the energy, the entropy and the temperature, respec-
tively. One approach in order to compute e the thermo-
dynamical properties of a BH solution is the Euclidean
Action Method [18, 19]. The Euclidean approach ex-
hibits some difficulties when is applied to General Rela-
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tivity. Except in special cases it is generally impossible to
represent an analytic spacetime as a Lorentzian section
of a four-complex-dimensional manifold with a complex
metric which possesses a Euclidean section. Therefore
there is not a general prescription for analytically con-

tinuing Lorentzian signature metrics to Riemannian met-
rics. However, in static metrics on which we shall focus,
the aforementioned continuation procedure can be done.
Nevertheless, even if possible to be performed, there are
not any theorems guaranteeing the analyticity of the ob-
tained quantities (for further details, c.f. Ref. [20], [21]).

The paper is organized as follows: in Section II we in-
troduce the Inverse Electrodynamics Model (IEM) and
the static, spherically symmetric solutions supported
therein by electric and magnetic monopoles. In Section
III we apply the Euclidean Method in order to distinguish
the different thermodynamics phases of the solutions, de-
fined in terms of their stability, and we shall compare
the phase diagrams with the standard electrodynamics
model counterparts. The appearance of a new thermo-
dynamical phase, absent in the standard case, shall be
extensively discussed. In Section IV we then perform a
classification of the BH configurations depending on the
phase transitions that they present. Finally, in Section
V we summarize the main results and conclusions.

Unless otherwise specified, Planck units, (G = c =
kB = ~ = 4πε0 = 1) will be used throughout this pa-
per, Greek indices run from 0 to 3. The symbol ∇ de-
notes the standard covariant derivative and the signature
+,−,−,− is used.

II. INVERSE ELECTRODYNAMICS MODEL

In this section, we shall show the static and spherically
symmetric solutions for the IEM in General Relativity.
Thus the action is given by

S = Sg + SU(1) , (1)
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where Sg and SU(1) denote the gravitational and matter
terms of the action, respectively. The usual gravitational
action term takes the form

Sg =
1

16π

∫

d4x
√

|g| (R− 2Λ) , (2)

being g the determinant of the metric gµν , R the scalar
of curvature and Λ a cosmological constant.
On the other hand, we assume that the matter term of

the action, SU(1), is given by the IEM Lagrangian density
L(X,Y ), namely,

L(X,Y ) = − 1

8π
X +

η

8π

Y 2

X
, (3)

which is a function of the Maxwell invariants X and Y ,
defined as

X ≡ −1

2
FµνF

µν , Y ≡ −1

2
FµνF

∗µν , (4)

being Fµν = ∂µAν −∂νAµ the usual electromagnetic ten-

sor and F ∗
µν ≡ 1

2

√

|g|ǫµναβFαβ , with ǫµναβ the Levi-
Civita symbol. In terms of the Lagrangian density
L(X,Y ), the matter term of the action (1) takes the form

SU(1) = −
∫

d4x
√

|g|L(X,Y ) . (5)

This action is parity-invariant and can be interpreted as
a perturbation of the standard Electrodynamics theory
(L(X,Y ) ∼ X) for a small enough value of the param-
eter η. Moreover, provided Fµν represents an electric
monopole with a null magnetic field, the standard La-
grangian and the standard point-like solutions are recov-
ered as one might expect. Another interesting property
of the IEM is its conformal invariance. In fact, the trace
of the associated energy-momentum tensor vanishes as in
standard Electrodynamics:

T ≡ T µ
µ = gµνTµν = − 2gµν

√

| g |
δSU(1)

δgµν
= 0 . (6)

In this paper we restrict ourselves to the study of static
and spherically symmetric solutions. Hence, for the met-
ric tensor let us consider the most general ansatz for
static and spherically symmetric scenarios,

ds2 = λ(r)dt2 − 1

µ(r)
dr2 − r2

(

dθ2 + sin2 θdφ2
)

, (7)

where the functions λ(r) and µ(r) depend solely on r in
order to ensure staticity and spherical symmetry. Be-
sides, with this metric (7) we consider an ansatz for the
electromagnetic tensor

F01 = −F10 = E(r) , F23 = −F32 = −B(r)r2 sin θ , (8)

being identically null the other components, and E(r)
and B(r) functions on r. In Minkowski spacetime, where

λ(r) and µ(r) equal to 1, (8) is the electromagnetic tensor
for radial electric and magnetic fields E(r) and B(r),
respectively [22]. For this reason, we shall refer to these
functions as “electric” and “magnetic” fields.
With the metric (7), we can raise or lower indices in

(8), and then the gauge invariants (4) can be rewritten
in terms of the electric and magnetic fields as follows

X =
µ(r)

λ(r)
E(r)2 −B(r)2 , Y = 2

√

µ(r)

λ(r)
E(r) · B(r) . (9)

Furthermore, with (7) we get the scalar curvature R as
a function on the coefficients λ(r) and µ(r):

R(r) =
1

2λ(r)2r2
[

λ′(r)µ′(r)λ(r)r2 + 2µ(r)λ′′(r)λ(r)r2

−λ′(r)2µr2 + 4rµ(r)λ′(r)λ(r) + 4rµ′(r)λ(r)2

−4λ(r)2 + 4λ(r)2µ(r)
]

, (10)

where prime denotes derivative with respect to r.
By performing variations of the total action (1) with

respect to the metric tensor, we achieve the Einstein field
equations in metric formalism,

Rµν − 1

2
Rgµν + Λgµν + 8πTµν = 0 , (11)

where Rµν holds for the Ricci Tensor. Then, by taking
the trace in the previous expression, we reach R = 4Λ,
due to the traceless character of the Electromagnetic
energy-momentum tensor.
Furthermore, by replacing the Lagrangian density (3),

and the metric and electromagnetic tensors (7) and (8) in
the energy-momentum definition (6), we obtain the non
zero components of the energy-momentum tensor

T 0
0 (r) = T 1

1 (r) = −T 2
2 (r) = −T 3

3 (r)

= − 1

8π

(

1 + 2
B2

X

)(

X + η
Y 2

X

)

, (12)

With the components of the energy-momentum tensor
above and the metric tensor (7), one defines the quantity
ζ(r) ≡ λ(r)/µ(r). Then by subtracting the field equa-
tions (11) corresponding to µ = ν = t and µ = ν = r,
one reaches the condition

ζ′(r) = 0 , (13)

i.e., the quantity λ(r)/µ(r) is a constant, which can be
fixed to one by performing a time reparametrization. In
others words, equation (13) is equivalent to

λ(r) = µ(r) . (14)

With this expression, we could simplify the gauge invari-
ants (9), which now read as

X = E(r)2 −B(r)2 , Y = 2E(r) ·B(r) , (15)

2



i.e., the usual gauge invariants in standard Electrody-
namics are recovered. Moreover, we can replace (14) in
the rest of Euler field equations (11), achieving the ex-
pressions

− rλ′(r)− λ(r) + 1 + 8πT 0
0 (r)r

2 = 0 , (16)

−16πT 2
2 (r)r + 2λ′(r) + rλ′′(r) = 0 , (17)

where (16) is obtained from the equation (11) with µ =
ν = r and, on the other hand, equation (17) is propor-
tional to (11) with µ = ν = θ or µ = ν = φ (both
equations are in fact equivalents). Finally, replacing (14)
in (12), we reach that the non-vanishing components of
the energy-momentum tensor can be rewritten as

T 0
0(r) = T 1

1(r) = −T 2
2(r) = −T 3

3(r)

= −E2 +B2

8π

[

1 + 4η
E2B2

(E2 −B2)2

]

. (18)

The general solution of the field equations system (16)-
(17) reads

λ(r) = 1− 2M

r
− 8π

r

∫ ∞

r

x2T 0
0 (x)dx +

1

3
Λr2 , (19)

whereM is an integration constant, that can be identified
as the BH mass. The metric function (19) can be rewrit-
ten in terms of an “external energy function”, which is
defined as

εex(r) = −4π

∫ ∞

r

x2T 0
0 (x)dx . (20)

This external energy represents the energy provided by
the U(1) fields E(r) and B(r) outside a sphere of radius
r (see Ref. [16]).
Considering now L(X,Y ) and its derivatives, the as-

sociated Euler field equations, together with the Bianchi
identities for the electromagnetic field, take the form

∇µ (LXFµν + LY F
∗µν) = 0 , ∇µF

∗µν = 0 . (21)

These generalized Maxwell equations can be expressed
for static and spherically symmetric solutions of the IEM
with the electromagnetic tensor (8) as

r2B(r) = Qt , (22)

r2

[

1 + 4η

(

E(r)B(r)

E(r)2 −B(r)2

)2
]

E(r)

= 4η
E(r)B(r)

E(r)2 −B(r)2
Qt +Qc , (23)

with Qc and Qt the sources of the generalized Maxwell
equations (21), i.e., the current and the topological
charges respectively. It is easy to see that equation (23)
possesses solutions for electric fields that decrease as r−2.

Thus, provided that we impose E(r) = Qe/r
2, and using

equation (22), we achieve a equation for this parameter
Qe

Qe

[

1 + 4η

(

QeQt

Q2
e −Q2

t

)2
]

= 4η
QeQ

2
t

Q2
e −Q2

t

+Qc . (24)

From this equation, one can obtain the parameter Qe as
a function of η and the charges Qc and Qt, and seeing
that Qe coincides with the current charge Qc in standard
Electrodynamics (η = 0). The analytic expression of this
parameter is not trivial, but for a small enough η, could
be expressed as

Qe = Qc − 4η
QcQ

4
t

(Q2
c −Q2

t )
2 +O(η2) , (25)

whereas if the topological charge is smaller than the cur-
rent one, the expression reads

Qe = Qc

[

1− 4η

(

Qt

Qc

)4

+O
(

Qt

Qc

)6
]

. (26)

In the following, instead of using as charges {Qc, Qt} we
choose {Qe, Qm} (being Qm ≡ Qt), denoted as “electric”
and “magnetic” charges. This election has the important
advantage that the electric and magnetic fields read di-
rectly as E = Qe/r

2 and B = Qm/r2 and therefore the
interpretation of the following results.
In terms of these charges, the non-null components of

the electromagnetic tensor (18) read

T 0
0 (r) = T 1

1 (r) = −T 2
2 (r) = −T 3

3 (r)

= − 1

8π

Q2
e +Q2

m

r4

[

1 + 4η

(

QeQm

Q2
e −Q2

m

)2
]

.(27)

Then we can replace these components in the expression
(20), and rewrite the external energy in the form

εex(r) =
Q2

e +Q2
m

2r

[

1 + 4η

(

QeQm

Q2
e −Q2

m

)2
]

. (28)

One can realize that, as also occurs in the standard case
(η = 0) the external energy diverges at the origin, i.e.,
the total energy from the U(1) fields is divergent. Fur-
thermore, we can replace (28) in the expression (19), so
the metric parameter λ(r) can be rewritten as

λ(r) = 1− 2M

r
+

k1
r2

+
1

3
Λr2 , (29)

where k1 is defined as

k1 ≡
(

Q2
e +Q2

m

)

[

1 + 4η

(

QeQm

Q2
e −Q2

m

)2
]

. (30)

The obtained metric corresponds to a Reissner-
Nordström-like with a scalar curvature R = 4Λ, and a
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Figure 1: Phase diagrams of BH solutions with η = 0 (usual Electrodynamics Lagrangian) corresponding to rh = Rs, in flat spacetime
(Λ = 0) (left panel) and AdS spacetime with Λ = 10R−2

s (right panel), being Rs the Schwarzschild radius of an object with a solar mass,
Rs ≃ 1038lp. The electric and magnetic charges are also expressed in Rs Planck charges. In the flat spacetime case, two different phases

exist: in blue both C and F are positive, while in green C < 0 and F > 0. For AdS scenario Λ = 10R−2
s there is a phase with C > 0 and

F < 0 (yellow) and again a phase with both quantities positive. The phase with both C and F negative does not hold on for the usual
Electrodynamics theory. Regions in white correspond to either negative temperature T , entropy S or mass parameter M . The diagram
is represented solely for positive values of the charges; however, under the change Qe → −Qe or Qm → −Qm the diagram would be
completely symmetric.

modified charge term equal to k1 which in the standard
case (η = 0) provides the well-known sum of squares of
chargesQ2

e+Q2
m. Once the metric parameter λ(r) for the

Reissner-Nordström-like solution has been obtained, the
horizons structure for this solution can be determined.
In order to obtain the radii of the horizons, one has to
calculate the roots of λ(r) or, equivalently, satisfying the
condition

M − rh
2

− 1

6
Λr2h = εex(rh) , (31)

whose solutions may provide in general one external
(event) horizon and one internal horizon. Note that the
external energy could be positive or negative depending
on the sign of k1. We are just interested in the anti-de
Sitter (AdS) case Λ > 0, since otherwise (Λ < 0) some
problems of normalization of the temporal Killing ∂t arise
[24]. Thus, the value of the external horizon yields [23]

rh =
1

2

(

√
x+

√

− 6

Λ
− x+

12M

Λ
√
x

)

, (32)

with

x =

(

1 + 4Λk1
Λ

)

3

√

2

y
+

3

Λ
3

√

y

32
− 2

Λ
, (33)

and

y = 2 + 36ΛM2 − 24Λk1

+

√

(2 + 36ΛM2 − 24Λk1)
2 − 4 (1 + 4Λk1)

3
.(34)

Then, using (31) we can write the BH mass as a function
of the external horizon radius rh, the charge term k1 and
the cosmological constant Λ, provied that at least one
horizon is present, as

M(rh) =
rh
2

(

1 +
k1
r2h

+
1

3
Λr2h

)

. (35)

If we assume both k1 and Λ positive (as in the stan-
dard AdS case), the function M(rh) has a minimum at

rh min =

√

Λ
(

√

1 + 4k1/Λ2 − 1
)

/2. This means that

provided the mass of the configuration is small enough,
no horizon appears and then such configuration would
not constitute a proper BH configuration. However, if k1
takes a negative value and Λ is non negative, the ranges of
values of M(rh) covers entirely the interval [0,∞). Then,
for any positive mass value, it is possible to have a BH
solution with at least one horizon.

III. THERMODYNAMICS ANALYSIS IN AdS

SPACE

In this section, we shall apply the so-called Euclidean
Action method [18] in order to obtain a thermodynam-
ics analysis of the Reissner-Nordström-like solution cor-
responding to the IEM model defined by the Lagrangian
density (3). We shall focus on the AdS space case
(Λ > 0), in order to avoid the normalization problem
mentioned above. With this method, we shall obtain the
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Figure 2: Phase diagrams of BH solutions in the IEM model: The horizon radius was taken rh = Rs and different values of η and Λ.
Regions with either negative temperature, entropy or mass were again avoided. Phase diagrams for η = 0.1 in flat spacetime (Λ = 0)
(upper left panel) and AdS spacetime with Λ = 10R−2

s with the same value of η (right upper panel). One can appreciate that for positive
η the phase diagrams are just deformed with respect the Standard Electrodynamics, but they do not hold any new phase. In the lower
left and lower right panels, the phase diagrams of the solutions for η = −0.1, in flat spacetime and in AdS spacetime - with Λ = 10R−2

s

- are respectively plotted. Here, we see that for curved (AdS) spacetime and negative η a new phase, where both C and F are negative,
appears. Such a phase is not realized in the standard case.

thermodynamics properties of the BH solutions. Con-
sequently the BH configurations stability shall thus be
studied.
First of all, the BH temperature can be defined in

terms of the horizon gravity κ as [25]

T =
κ

4π
, (36)

where the horizon gravity is defined as

κ = lim
r→rh

∂rgtt
|gttgrr|

. (37)

This expression can be simplified by replacing (29) in the
temperature definition, yielding

T =
1

4πrh

(

1− k1
r2h

+ Λr2h

)

. (38)

For large BHs with rh → ∞ the temperature goes to
infinity, whereas near rh ∼ 0 the temperature diverges
with its sign opposite to the sign of k1. Let remind that,
by imposing the positivity of the temperature (38), we

5



Figure 3: BH entropy in the standard and inverse electrodynam-
ics models versus horizon radius rh: Entropy for Λ = 0, η = 0.1,
Qe = 0.4Rs and Qm = 0.15Rs as a function of the horizon radius
is represented with the red solid line. The dashed blue line corre-
sponds to the usual result S = πr2

h
. According to expression (49),

for the choice of parameters and for a determined horizon radius
interval, the entropy turns out to be a decreasing function of rh,
and so of the horizon area. The grey area shows the region where
the entropy decreases with the horizon radius; whereas the black
area is forbidden since the entropy would become negative.

achieve the condition

k1 < r2h
(

1 + Λr2h
)

. (39)

This condition will later be employed to discard some
sets of parameters in the IEM model.
Once we have obtained the temperature, we can com-

pute the other thermodynamics quantities. First we use
the Euclidean quantum gravity definition [26] introduc-
ing the Euclidean time t → iτ . When in the total ac-
tion (1), we replace the time coordinate by the Euclidean
time, the action becomes Euclidean and the metric be-
comes periodical with a period β which coincides with
the inverse of the temperature (38). The change to the
imaginary time implies that, due to the fact that the
magnetic field is a pseudo-vector, the magnetic charge
becomes imaginary (B → iB) in the action, i.e.

X = E2 −B2 → X̃ = E2 +B2 =
Q2

e +Q2
m

r4
, (40)

Y = 2E · B → Ỹ = 2iE ·B = 2i
QeQm

r4
. (41)

So after performing the corresponding changes, the Eu-
clidean action reads as

∆SE = − 1

16π

∫

d4x
√

|g|
[

R− 2Λ− 16πL
(

X̃, Ỹ
)]

. (42)

Then, we just need to evaluate the integral in the dif-
ference of four-volume of two metrics: the first volume,
when there is solely an AdS metric (M = 0, Qe = 0
and Qm = 0); and second one, when there is our metric
solution (29) (see Ref. [27]). The computation of the dif-
ference leads to the expression for the Euclidean action
as follows

∆SE = β

[

− Λ

12

(

r3h − 3

Λ
rh

)

+
k1 + 2k2

4rh

]

, (43)

where we have defined the parameter k2 as

k2 ≡
(

Q2
e +Q2

m

)

[

1 + 4η

(

QeQm

Q2
e +Q2

m

)2
]

. (44)

From (43) we can obtain the different thermodynamics
quantities. The Helmholtz free energy is just the quo-
tient between the Euclidean action and the inverse of
temperature: F = ∆SE/β. Therefore,

F = − Λ

12

(

r3h − 3

Λ
rh

)

+
k1 + 2k2

4rh
. (45)

On the other hand, the total energy is defined as

E =
∂∆Se

∂β
= −T 2

∂∆Se

∂rh
∂T
∂rh

, (46)

T being the temperature of the BH solution (38). Then
the total energy is given by the expression

E =
Λ2r8h + 2Λr6h − 3r4h(1− 2Λk2) + 3k1(2r

2
h + k1 + 2k2)

6rh(Λr4h − r2h + 3k1)
.

(47)

Additionally, the entropy of the BH is defined as the
difference

S = βE − βF , (48)

so we can express the entropy as

S =
Λr4h − r2h + k1 + 2k2

Λr4h − r2h + 3k1
πr2h . (49)

In general, the BH entropy is not proportional to the
horizon area A = 4πr2h, unlike the well-known result in
standard Electrodynamics. For small η, the entropy can
be approximated as

6



S =
1

4
A− 128π2A

ΛA2 − 4πA+ 48π2 (Q2
e +Q2

m)

Q4
eQ

4
m

(Q2
e +Q2

m) (Q2
e −Q2

m)
2 η +O

(

η2
)

, (50)

where we can see the the standard result S = A/4 is re-
covered in the limit η → 0. However, the previous result
proves that general relation between entropy and horizon
area turns out to be cumbersome. In fact, for the IEM
model under study (3) the entropy might decrease with
the BH horizon area depending upon the charges values
and the parameter η characterizing the model. Without
entering into details at this stage, let us mention that
this behavior affects the fulfillment of the Second Law of
the BH dynamics and may have relevant consequences in
the so-called Focusing theorem where the entropy usually
encodes the degrees of freedom inside the BH which in
the standard case are proportional to the area [28]. For
scenarios where magnetic charges are smaller than the

electric charges, the entropy (49) becomes

S =
1

4
A

[

1− 29ηπ2Q2
e

ΛA2 − 4πA+ 48π2Q2
e

(

Qm

Qe

)4

+ O
(

Qm

Qe

)6
]

(51)

i.e., for small magnetic charges compared to electric
charges, the entropy behaves very similarly to the stan-
dard case since the first correction is of order (Qm/Qe)

4.
Finally, the heat capacity C can be defined as C = T ∂S

∂T
,

so we can replace expressions (38) and (49) in this defi-
nition, yielding

C = 2πr2h
(Λr4h + r2h − k1)

[

Λ2r8h − 2Λr6h + r4h − 6k1r
2
h − 2Λk2r

4
h + 8Λk1r

4
h + 3k1(k1 + 2)

]

(Λr4h − r2h + 3k1)3
. (52)

Once the relevant thermodynamics quantities are ob-
tained, it is possible to discuss the BH stability regions
in terms of the sign of the heat capacity (52) and the
Helmholtz free energy (45) [29]. BH configurations with
F > 0 are more energetic than pure radiation, so they
eventually decay to radiation by tunneling; whereas BH
solutions with F < 0 will not decay to radiation since
they are less energetic. Furthermore, if the solution has
C < 0 it is unstable under acquiring mass, on the con-
trary to solutions with C > 0 [29]. In the following, we
discuss the stability regions for the IEM model as well
as we compare the results with the standard Electrody-
namics theory which are briefly revised below.

Standard case: η = 0

For illustrative purposes let us consider the case η = 0
in the IEM Lagrangian density (3). In this case the de-
fined quantities k1 and k2 coincide, being their expression

k1 = k2 =
(

Q2
e +Q2

m

)

. (53)

Using this result, we can simplify the free Helmholtz en-
ergy (45) and the heat capacity (52) of the BH solution

are given by

F = − Λ

12

(

r3h − 3

Λ
rh

)

+
3

4

Q2
e +Q2

m

rh
, (54)

C = 2πr2h
Λr4h + r2h −

(

Q2
e +Q2

m

)

Λr4h − r2h + 3 (Q2
e +Q2

m)
. (55)

In Figure 1, we represent the phase diagrams of a BH
solutions in the Standard Electrodynamics theory in flat
and AdS spacetimes. One can see that the phase with
both C and F negative does not appear in the standard
Electrodynamics theory.

General case

In the IEM, depending on the parameter η and the cos-
mological constant Λ the Thermodynamics phase corre-
sponding to {C < 0, F < 0}, which is absent in the stan-
dard Electrodynamics theory, may exist. In order to il-
lustrate this scenario, we represent in Figure 2 the phase
diagrams for different signs of the parameter η in flat
and AdS spacetimes. For the example η = 0.1 (positive
η) we see that the phases are deformed with respect to
the standard case but new phases do not appear. For the
example η = −0.1 (negative η) we see that no new phases
exist in the flat case, whereas for the Ads configuration

7



Figure 4: From left to right panels, behavior of the heat capacity (denoted HC) for slow, inverse and fast black holes, respectively. We
can see that slow BHs present two phase transitions (for two horizon radii the heat capacity diverges). Inverse BHs present a unique
phase transition and fast BHs doesn’t have any phase transitions. The actual values for each panel were: Left: η = −0.1, Qe = 0.7Rs,
Qm = 0.2Rs, Λ = 0.1R−2

s ; Center: η = −0.1, Qe = 0.5Rs, Qm = 0.4Rs, Λ = 0.1R−2
s ; Right: η = −0.1, Qe = 1Rs, Qm = 0.1Rs,

Λ = 0.1R−2
s .

all the four possibles phases could exist, including the
corresponding to {C < 0, F < 0}. This means that the
BH solutions in the IEM when the space-time is curved
(AdS) host a different stability phenomenology from the
standard Electrodynamics model.

Finally, we illustrate the found modified behavior of
the entropy. In Figure 3, we depict the entropy for the flat
case Λ = 0 with η = 1, Qe = 0.4Rs andQm = 0.15Rs. As
can be seen, the entropy (49) is not proportional to the
horizon area (A = 4πr2h). In fact, for the flat spacetime,
the entropy decreases with the area, as seen in Figure
3 in the flat case Λ = 0 with η = 1, Qe = 0.4Rs and
Qm = 0.15Rs. Thus, the BH entropy could decrease in
some physical process violating the so-called second law
of the BH dynamics. This violation is prevented provided
that the corrections of the IEM model to the standard
Electromagnetism are small, since the dominant term in
(50) is still A/4.

IV. CLASSIFICATION OF BH SOLUTIONS IN

TERMS OF THE NUMBER OF PHASE

TRANSITIONS

In this section we shall perform a classification of BH
solutions based on the number of phase transitions that
they present. These phase transitions occur at a set of
values of Λ, Θ, Qm and M for which the denominator of
the heat capacity (52) goes to zero, i.e., the heat capacity
goes through an infinite discontinuity [30]. Thus we have
to obtain the parameters for which the derivative of the
temperature (38) with respect to the external horizon

radius is null, ∂T
∂rh

∣

∣

∣

Λ,θ,Qm

= 0, or equivalently, find the

parameters for which the relation

r2h =
1

2Λ

(

1±
√

1− 12k1Λ
)

, (56)

is satisfied. Trying to solve this equation, we can distin-
guish three different classes of BH solutions:

• Fast BHs. If k1 > 1
12Λ , the radicand in (56) is neg-

ative, consequently expression (56) is not satisfied
for any rh and therefore phase transitions are ab-
sent for these BH configurations . We shall refer to
these kinds of solutions as fast BHs. In flat space-
time, Λ = 0, this kind of solution is not allowed.

• Slow BHs. For 0 < k1 < 1
12Λ , equation (56) can

be satisfied for both plus and minus signs, since for
both possibilities r2h > 0. It means that for these
BH configurations there are two horizon radii for
which a phase transition occurs, i.e., there are two
different phase transitions. We shall refer to these
kinds of solutions as slow BHs.

• Inverse BHs. Provided k1 < 0, equation (56) can be
satisfied for the plus sign but not for the minus sign.
In this case, there is solely one phase transition and
we shall refer to these kinds of solutions as inverse
BHs, since they appear in the IEM but not in the
standard Electrodynamics theory.

In Figure 4, the heat capacity for different classes of
BHs is represented. One can distinguish that slow, in-
verse and fast BHs present two, one or none phase tran-
sitions respectively. On the other hand, in Figure 5, we
depicted the domain of each class in the case η = ±0.1,
rh = Rs and Λ = 10−1R−2

s . For a negative parameter
η all the three classes of BHs are present. However, for
positive η, the inverse type does not appear. This is due
to the fact that for positive η, the charge term given by
(30) is always positive.

8



Figure 5: Classification of BHs solutions as a function of the charges Qe and Qm: Fast BHs (blue), slow BHs in (red) and inverse BHs
(yellow) are depicted. In the left panel, the case with η = 0.1, rh = 1Rs and Λ = 10−1R−2

s is represented, and we can see that the inverse

class does not appear. This is an expected result since for η > 0, the charge term k1 is always positive and the inverse class is not allowed.
In the right panel, regions corresponding to the parameters η = −0.1, rh = Rs and Λ = 10−1R−2

s are depicted. We can see that the
inverse BH does appear. In this case, all the classes described in Section IV are realized.

V. CONCLUSIONS

In this paper we have examined gravitational solutions
associated to the Inverse Electrodynamics Model as de-
fined in expression (3). This model, which constitutes a
straightforward extension of the usual Electrodynamics
theory, is parity and gauge invariant and respects confor-
mal invariance. In fact, it can be interpreted as a pertur-
bation of the standard theory provided that the param-
eter η is sufficiently small. First, we have shown that for
static and spherically symmetric U(1) fields, this model is
able to support Reissner-Nordström-like black-hole solu-
tions. After having obtained the metric tensor, we have
performed a thermodynamics analysis of the solutions
using the Euclidean Action approach. We have thus ex-
plored the phase diagrams of the different black holes
types, i.e., enabling electrical and/or magnetic charges to
exist. The stability of those configurations is fully char-
acterized by the signs of the heat capacity and the free
Helmholtz energy. We have found that for some sets of
values of the Inverse Electrodynamics Model parameters,
a new black-hole stability phase, namely a phase where
both heat capacity and free energy are negative, which
does not appear in the standard Electrodynamics theory,
arises. This phase would imply that the black hole would
possess a free energy smaller than pure radiation (null
free energy) and consequently pure radiation will tend
to tunnel or to collapse into the black-hole configuration.
The fact that the heat capacity is negative means that,
analogously to the Schwarzschild black holes, the more
energy (mass) the black hole acquires the lower its tem-
perature will be. To summarize this configuration would

never be in equilibrium with thermal radiation. This fact
opens the possibility of further study in other extended
electromagnetic theories in order to determine whether
this behavior is shared by other non-linear theories.

Another novel result concerns the black hole entropy,
that unlike the standard case, turns out to be in gen-
eral not proportional to the horizon area. This quantity
presents in the aforementioned model a cumbersome de-
pendence with the horizon area as seen in expression (49).
In fact, the entropy may decrease with the horizon area
for a pathological choice of electric and magnetic charges.

Finally, we have classified the black-hole solutions in
terms of the existing number of phase transitions, i.e.,
number of heat capacity divergences as a function of
the horizon radius. Namely we have described the phe-
nomenology of fast, slow and inverse black holes with
none, two and one phase transitions respectively. This
analysis shows explicitly a new difference with respect to
the standard Electrodynamics since, whilst in the stan-
dard case fast and slow black holes are the only existing
scenarios, in the Inverse Electrodynamics Model there
may also exist a third configuration, the inverse black
hole with a sole phase transition.
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