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Abstract: In a Euclidean path integral formulation of gauge theory and quantum mechan-

ics, the θ-term induces a sign problem, and relatedly, a complex phase for the fugacity of

topological defects; whereas in Minkowskian formulation, it induces a topological (geometric)

phase multiplying ordinary path-amplitudes. In an SU(2) Yang-Mills theory which admits

a semi-classical limit, we show that the complex fugacity generates interference between Eu-

clidean path histories, i.e., monopole-instanton events, and radically alters the vacuum struc-

ture. At θ = 0, a mass gap is due to the monopole-instanton plasma, and the theory has a

unique vacuum. At θ = π, the monopole induced mass gap vanishes, despite the fact that

monopole density is independent of θ, due to destructive topological interference. The theory

has two options: to remain gapless or to be gapped with a two-fold degenerate vacua. We

show the latter is realized by the magnetic bion mechanism, and the two-vacua are realization

of spontaneous CP-breaking.

The effect of the θ-term in the circle-compactified gauge theory is a generalization of

Aharonov-Bohm effect, and the geometric (Berry) phase. As θ varies from 0 to π, the gauge

theory interpolates between even- and odd-integer spin quantum anti-ferromagnets on two

spatial dimensional bi-partite lattices, which have ground state degeneracies one and two,

respectively, as it is in gauge theory at θ = 0 and θ = π.
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1 Topological terms

Topological terms in quantum field theories, for example θ, Chern-Simons, and WZW, may

affect the low energy theory in non-trivial ways. They also render Euclidean action complex,

and introduce a sign problem in numerical simulations based on the Euclidean path integral

formulations. Questions about the dependence of the mass gap and the spectrum on the θ

angle in Yang-Mills theory are physical, but also out of reach due to strong coupling. A way
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to gain insight into a strongly coupled and asymptotically free gauge theory is to move to a

simpler theory which resembles the target theory as much as possible1, and which shares the

same universality properties as the original theory.

In this work, we report on a small step on θ-angle dependence of observables in SU(2)

Yang-Mills theory by using continuity, and deformed Yang-Mills theory [1, 2]. The deformed

theory, on small R3 × S1, is continuously connected to the pure Yang-Mills theory on large

R3 × S1 and R4 in the sense that the only global symmetry of the compactified theory, the

center symmetry, is unbroken in both regimes. Using this framework, we calculate the vacuum

energy density, mass gap, string tension, deconfinement temperature, and CP-realization by

using semi-classical field theory at decidedly small values of the number of colors N , and for

all values of θ ∈ [0, 2π), in deformed theory on small R3 × S1. Because of continuity, we

expect all of our findings to hold qualitatively for pure Yang-Mills theory on R4. Arbitrary

θ is problematic in lattice simulations due to sign problem, and N = 2 is not easy to reach

using gauge/gravity correspondence. Even if these two obstacles were not there (and we hope

that in time they will be surmounted), our results provide unique insights into the nature of

θ-angle dependence.

The main virtue of our formulation is that it interconnects seemingly unrelated topological

phenomena in diverse dimensions in deep and beautiful ways. We show that the geometric

(Berry) phase [3] induced topological term in the action of certain spin systems [4] and

quantum dimer models [5] is a discrete version of θ-angle in 4d gauge theory compactified

on R3 × S1. This connection can only be shown by using compactification that respects

center symmetry and continuity [1, 2].2 A new compactification of gauge theory on T 3 × R,

reducing the theory to simple quantum mechanics, shows that θ angle in gauge theory can

also be mapped to Aharonov-Bohm flux [6], and the interference induced by θ angle is the

Euclidean realization of the Aharonov-Bohm effect [7]. This provides a new perspective to

theta dependence and sign problem, and will be discussed in a companion paper.

Our result suggest that θ-angle in 4d gauge theory is the parent of many topological

terms in lower dimensions. The corresponding topological terms are inter-related and the

sign problems are physical, as opposed to being technical problems.

1.1 General structure of θ-dependence

The structure of the θ-dependence for a subclass of observables in Yang-Mills theory in the

large-N limit has been conjectured in Ref. [8] using standard assumptions about the infrared

dynamics. Ref. [8] argued, based on i) large-N ’t Hooft scaling applied to holomorphic

1We demand that the simpler theory should be asymptotically free, should possess the same global symme-

tries, and identical matter content (for light or massless fields) as the original theory. If possible, it should also

be continuously connected to the original theory, so that maximum amount of data can be extracted about

the original theory.
2Using thermal compactification, the theory moves to a deconfined phase in small S1, and is disconnected

from the large-S1 theory. In this case, the connections we propose are invisible. This “traditional” compacti-

fication is probably the reason why the simple observations of this paper were not realized earlier.
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Figure 1. The θ angle (in)dependence of observables in large-N limit of gauge theory. For extensive

observables, such as vacuum energy density, the θ dependence is present at N =∞. The Hilbert space

and the mass gap exhibits θ independence at N = ∞. The figure is for N = 5. At N = ∞, m(θ)

becomes a straight horizontal line.

coupling τ = 4πi
g2 + θ

2π , and ii) the assumption that the vacuum energy density E(θ) must be

a 2π-periodic function of θ, that E(θ) must be a multi-branched function:

E(θ) = N2 min
k
h ((2πk + θ)/N) large-N (1.1)

for some function h which has a finite O(N0) limit as N → ∞. The energy is an extensive

observable which scales as O(N2), whereas the mass spectrum scales as O(N0) in large-

N limit, and is non-extensive. This simple observation has strong implications for the θ

dependence of observables at large-N , which are not systematically explored in the literature.

We first provide a streamlined field theoretic argument for general observables, and then

comment on literature.

If we denote H(θ) as the Hilbert space of the pure Yang-Mills theory at θ, the spectrum

of the theory must obey

Spec[H(θ)] = Spec[(H(0)] at N=∞ (1.2)

We will refer to this property as large-N theta-independence. A simple way to argue for θ

independence is following.

By the assumption of a smooth large-N limit, the spectrum at θ = 0 is O(N0). Consider

the mass gap associated with each branch, mk(θ), and let mk0(θ) denote the mass gap of the

theory, in the Hk0(θ), the Hilbert space associated with the true vacuum sector. Each branch

is 2πN periodic, but the physics is 2π periodic. As θ → θ+ψ, for some ψ = O(N0), the mass

of any state in Hk0(θ) changes by an amount O(ψ/N2). However, if ψ = 2π, Hk0+1(θ) takes

over as the new Hilbert space associated with the new true vacuum. Since O(ψ/N2) → 0

as N → ∞, the mass gap and the spectrum of the theory remains invariant under such

shifts, implying the θ-independence of non-extensive observables (1.2). Although the mass

gap associated with each branch is θ-dependent, and changes drastically over the course of the
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full period of the particular branch, the spectrum of the theory built upon the true ground

state, corresponding to the extremum (1.4), is theta independent.

Large-N θ-independence is a property of all observables which have O(N0) limits, and not

a property of the extensive observables. Specifically, the mass gap of the theory, at large-N ,

ought to be

m(θ) = m(0) max
k

(
1− (θ + 2πk)2O(N−2)

)
, (1.3)

This implies that the susceptibility of the mass spectrum to θ-angle is N -dependent, it must

scale as N−2 and must vanish at N = ∞. On the other hand, the topological susceptibility

associated with vacuum energy density is O(N0). This leads to the difference in θ dependence

as depicted in Fig. 1. In the opposite limit, i.e., small-N , if (1.3) approximately holds, the

mass gap and spectrum must be strongly θ dependent.

By standard large-N counting, for an observable which scales as Np, p ≤ 2 in the large-N

limit, we expect

O(θ) = Np ext+
k hO ((2πk + θ)/N) large-N (1.4)

for some function hO which has a finite O(N0) limit as N → ∞. The extremum with

superscript plus instructs to choose the branch associated with the global minimum of energy.

The main message of this short description is following: The N = ∞ limit is useful to

extract the theta dependence of the extensive observables. The same limit washes out the θ

dependence of observables which are O(N0).

There is already compelling lattice evidence backing up the large-N theta-(in)dependence,

see for example, the structure of systematic large-N expansion in Refs.[9–12]. There is also

evidence from gauge/gravity correspondence supporting our arguments. Ref.[13] shows the θ

dependence of vacuum energy density in a bosonic gauge theory (which is a pure Yang-Mills

theory plus extra particles that appear at the scale of glueball mass). The theta-independence

of the mass gap is shown in [14]. The combination of these earlier results clearly anticipates

the structure of θ dependence we outlined above.

1.2 θ-dependence in (deformed) Yang-Mills theory

We list the main outcomes of our semi-classical analysis for SU(2) deformed Yang-Mills

theory. Because of continuity, we expect a smooth interpolation of all physical observables to

pure YM on R4.

• Mass gap, string tension and vacuum energy density are two-branched functions. These

observables exhibit two-fold degeneracy (and level crossing) at exactly θ = π, where

they are not smooth. The theory breaks CP spontaneously at θ = π.

• The θ term induces a complex phase for the fugacity of topological defects. In the

Euclidean path histories and sum over configurations in the partition function, these

phases generate destructive or constructive interference between topological defects. We

refer to this phenomenon as topological interference.
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• Changing θ radically influence the mechanism of confinement and mass gap. The

mass gap at θ = 0 is of order e−S0/2 and is due to monopole-instantons [1], where,

S0 = 1
2 ×

8π2

g2 is the action of monopole-instanton, which is half of the 4d instanton

action. At θ = π, the mass gap is of order e−S0 , and it is due to magnetic bions.

The behavior at θ = π or its close vicinity is doubly-surprising, especially considering

that the density of monopole-instantons ρm is independent of θ angle, ρm(θ) = ρm(0).

Despite the fact that ρm is exponentially larger than the density of magnetic bions ρb

for any value of θ, the effect of the monopole instantons dies off at θ = π as a result

of destructive topological interference. This is one of the qualitative differences with

respect to Polyakov’s mechanism [15]. This important effect was missed in the earlier

work by the author and Yaffe [1].

• The θ = 0 theory is sign problem free, and θ 6= 0 is a theory with a sign problem. The

corresponding sign problem is solvable by semi-classical means. The sign problem and

the associated subtle cancellations may be seen as a result of topological interference.

• A discrete version of θ-angle phase appears in quantum anti-ferromagnets with bipartite

lattices in d = 2 space-dimensions [4] and in quantum dimers [5], as the geometric

(Berry) phases. The long distance description (a field theory on R2,1) of spin-system

for 2S = 0 mod 4 and 2S = 2 mod 4 are equivalent, respectively, to θ = 0 and θ = π of

deformed Yang-Mills on R3 × S1. The topological θ-term in YM provides a continuous

generalization of the Berry phase induced term in the spin system. The existence of two

vacua of the spin-system at 2S = 2 mod 4 may be seen as an evidence for CP breaking

at θ = π in Yang-Mills.

• The previous connection may seem quite implausible on topological grounds. The Berry

phase induced term in the spin system is proportional, to the first Chern number ch1(B)

associated with magnetic flux of instanton events whereas the topological term that

appear in the Yang-Mills theory is proportional to second Chern-number, ch2(F ), the

topological charge in 4d. To this end, we found a beautiful identity. In the background of

center-symmetric gauge holonomy, and for the topological defects pertinent to deformed

Yang-Mills theory on R3 × S1, we show that 3

exp [iθ ch2(F )] = exp

[
iξ
θ

2
ch1(B)

]
(1.5)

where ξ = ±1 for the two different types of magnetic charge +1 monopole-instanton

events,M1 andM2, in deformed YM.4 The opposite phases for the two same magnetic

charge instanton events underlies the topological interference and its effects on physical

observables are elucidated in Section. 4
3 This relation is implicitly present in my work with Poppitz [16] on index theorem on R3 × S1. The

importance of this relation for θ dependence and dynamics is not discussed there.
4The existence of the second type of monopole was understood in Refs. [17, 18]. The role of these monopoles

in semi-classical dynamics on R3×S1, and in the mass gap problem and θ dependence was initiated in Ref. [1].
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1.3 θ-angle as Aharonov-Bohm effect in quantum mechanics

Some ingredients of our formalism, especially those related to molecular instantons, which

we also refer to as topological molecules, are neither widely known, nor generally correctly

understood in literature. To this end, we decided to study a class of quantum mechanical

toy models as useful analogs of gauge theory. These models are simple enough to be easily

tractable, but they also have enough structure to emulate some non-trivial features of the

four-dimensional counter-part. We chose to address some of the hard issues first in this

context.

As a simple generalization of the particle on a circle, we discuss an infinite class of models:

A particle on a circle in the presence of a potential with N -degenerate minima and a θ-term.

For brevity, we refer to it as the TN (θ)-model. T1(θ) and T∞(0) are well-studied text-book

examples [19, 20]. Some aspects of the N ≥ 2 model are parallel to the SU(N) dYM theory

on R3 × S1.

• TN (θ)-model has fractional instanton events with fractional winding number. It also

has instanton events with integer winding number.

• The physical observables are multi-branched (N -branched) functions.

• There are topological molecules, correlated instanton-instanton or instanton-anti-instanton

events, topologically distinct from instantons.

• The θ angle acquires an interpretation as Aharonov-Bohm flux. The TN (θ)-model

can also be described as an N -site lattice Hamiltonian with a magnetic flux thread-

ing through the ring. The topological interference due to the θ-angle in the Euclidean

context is the analytic continuation of the Aharonov-Bohm effect in Minkowski space.

2 Particle on a circle

Consider a particle on a circle in the presence of a periodic potential and a topological θ-

term. We first briefly review the standard textbook discussion of the instantons, and the

semi-classical dynamics of this theory and then move to the lesser known, yet still semi-

classically calculable physics of molecular instantons. The Euclidean action is

SE[g, θ] = S[g]− iθW

=

∫
dτ
[

1
2 q̇

2
c + g−1(1− cos qc

√
g)
]
− iθ

[√
g

2π

∫
dτ q̇c

]
(2.1)

=

∫
dτ

1

g

[
1
2 q̇

2 + (1− cos q)
]
− iθ

[
1

2π

∫
dτ q̇

]
(2.2)

g is the coupling constant, which permits a semi-classical analysis for g � 1, and θ is an

angular variable. W ∈ Z is the winding number (topological term) which depends only

on the globals aspects of the field configuration. The first form of the action (2.1) has a
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canonically normalized kinetic term for the field qc, and is more suitable for perturbative

discussions. In a semi-classical analysis, it is more natural to write the action as in (2.2).

The action S[g] given in (2.2) without any further specification is associated with infinitely

many physical systems. In order to uniquely specify the physical system under consideration,

we have to state the configuration space of the particle, i.e., the physical identification of the

position. For any fixed positive integer N ∈ Z+, we declare

q ≡ q + 2πN, N ∈ Z+, as physically the same point. (2.3)

In this section, we study N = 1 case, for which the potential has a unique minimum within

the configuration space S1
q and the theory has a unique ground state. In this case, W ∈ Z is

an integer and is valued in in first homotopy group π1(S1
q ) = Z.

The general case, that we refer to as TN (θ)-model, will be discussed in Section. 3.

2.1 Brief review of instantons and dilute gas approximation

We first review a few well-known results in N = 1 theory with arbitrary θ, T1(θ)-model

in our notation, see standard textbooks [19, 20]. This theory has a unique minimum in

the configuration space, q ∈ [0, 2π], and since q is periodic variable, tunneling events 0 →
±2π,±4π, . . . are permitted, and present. These instanton effects induce a θ dependence in

the ground state energy

E(θ) = 1
2(ω +O(g))− 2ae−S0cosθ, S0 = 8

g , a(g) = 4√
πg , (2.4)

where S0 is the instanton action, and frequency of small oscillations is ω = 1.

An intimately related model is a particle moving on an infinite lattice 2πZ, in the absence

of an a topological term. This is T∞(0) model in our notation. In this model, there is a

q → q + 2π translation-symmetry T , which commutes with Hamiltonian, [H,T ] = 0. There

is no physical identification between any two lattice points. This means, perturbatively, that

there are infinitely many degenerate vacua. Non-perturbatively, this degeneracy is lifted due

to tunneling events. Then, E(θ) arises as the dispersion curve, where θ = ka is identified as

quasi-momenta and takes all values in the interval, θ ≡ ka ∈ [−π, π), the Brillouin zone. The

lattice spacing is labeled by a. E(θ = ka) parametrizes how the infinite degeneracy of the

perturbative ground states is lifted as a function of quasi-momentum:

E(ka) = 1
2(ω +O(g))− 2ae−S0coska (2.5)

In the T1(θ) model, θ is fixed for a given theory. However, we are free to think class of

theories with different theta by externally tuning it. The ground state energy of the T1(θ)

model corresponds to one of the infinitely many points in the dispersion curve of the T∞(0)-

model, using identification θ = ka.

Let us pause for a moment, and ask a set of fairly simple, interrelated question: For

θ = π
2 (and 3π

2 ), (2.4) tells us that the dilute instanton gas does not contribute to the ground

state energy despite the fact that the instanton density is independent of θ. Why is this so?
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Should we have expected this? What is so special about θ = π/2? Will this persist at higher

orders in semi-classical expansion?5

Consider first θ = 0, and the partition function Z(β) = tr[e−βH ] of the theory in the

β → ∞ limit, where Z(β) ∼ e−βE . In the Euclidean path integral formulation, the ground

state energy receives contributions from small perturbative fluctuations around the minimum

of the potential, say q = 0, and from the dilute gas of instantons corresponding to large-

fluctuations:

e−βE ∼ e−
ω
2

(1+O(g))β
∞∑
n=0

∞∑
n=0

(βI)n

n!

(βI)n

n!

= e−(ω2 (1+O(g))−I−I)β (2.6)

where I = ae−S0 is the instanton amplitude.

In the presence of the θ-term, the instanton amplitude (or fugacity) picks up a complex

phase for each instanton event which depends on the θ-angle as

I = ae−S0+iθ, I = ae−S0−iθ . (2.7)

The phases are opposite for an instanton and an anti-instanton. At θ = π/2, the sum over

leading instanton events gives

I + I = (eiπ/2 + e−iπ/2) = 0 . (2.8)

This means, in the partition function or in their contribution to the ground-state energy, I
and I interfere destructively. In contrast, for example, at θ = 0, the interference is construc-

tive. This is the topological interference which is the source of the θ dependent structure of

observables. Despite its simplicity, it leads to qualitatively new effects. In gauge theory, we

show that topological interference effects even alter mechanism of confinement.

2.2 Molecular instantons: classification

Within the dilute instanton approximation, the vacuum energy does not receive any contri-

bution at θ = π/2. We may ask if it receives any other non-perturbative contribution, and if

there are molecular (composite or correlated) instanton events contributing to E(θ). Clearly,

we must distinguish two uncorrelated instantons and a molecular instanton.6

5 The analogous situation in deformed YM is sufficient to appreciate the importance of these simple ques-

tions. In that context, the mass gap at leading order in semi-classical expansion vanishes at θ = π! The similar

question there is whether SU(2) deformed Yang-Mills, and by continuity the ordinary YM on R4, are gapless

at θ = π?
6In literature and textbooks, the word “multi-instantons” is used both for multiple uncorrelated instanton

events as well as correlated instanton events. In a Euclidean space, where instantons are viewed as particles,

correlated instanton events should be viewed as molecules, and carry different topological numbers than in-

stantons. The role of, say, two uncorrelated instantons vs. a molecular instanton composed of two instantons

in the dynamics of the theory are completely different. This is discussed in some detail below.
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Figure 2. Field configuration as a function of Euclidean time and the equivalent dilute gas of instan-

tons and topological molecules. In the textbook treatment, usually, only instantons are accounted for.

Topological molecules such as [II], [II], [II] despite being rarer, are nonetheless present. There are

some effects for which instantons do not contribute, and the leading semi-classical contribution arise

from molecular instantons. The topological molecules are also crucial in order to make sense of the

continuum theory in connection with large-orders in perturbation theory.

At second order in fugacity expansion, there are three types of molecular events: [II], [II],

and [II]. In the Euclidean space where instanton are viewed as classical particles, the corre-

lated instanton events may be viewed as molecules. We refer to molecular instanton events

with two constituents as bi-instantons, following Coleman [20], and examine their properties.

Much like a dilute instanton gas, we will also construct a dilute instanton, bi-instanton, etc,

gas.

The characteristic size of the bi-instanton molecule rbI is much larger than instanton size

rI , but much smaller than the inter-instanton separation dI−I that in turn is much smaller

than the inter-molecule separation dbI−bI . Namely,

rI � rbI � dI−I � dbI−bI
↓ ↓ ↓ ↓
1 � − log( g32) � e8/g � e16/g

(2.9)

This hierarchy means that the use of semi-classical method for instantons and molecular

instantons is simultaneously justified.7 We derive the size of the bi-instantons below after we

briefly discuss their implications for the physics of the system.

The bi-instantons in T1-model are of two-types.

• W = ±2 bi-instantons: [II] and [II], which carry winding number W = ±2;

7 It is the hierarchy (2.9), not the presence or absence of the molecular/correlated instanton events, which

is crucial for the validity dilute gas approximation. The presence of molecular instantons does not mean that

an instanton liquid picture needs to be used. The instanton liquid is an interesting phenomenological model,

but obviously, it has no semi-classical justification.
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• W = ±0 bi-instantons: [II] and [II] which carry zero net winding number W = 0.

The amplitudes associated with [II] and [II] are given by

[II] = b(g)e−2S0+2iθ, [II] = b(g)e−2S0−2iθ (2.10)

±2 reflects the winding number of these molecule, and b(g) is a prefactor that will be calculated

in connection with the bi-instanton size. The proliferation of [II] and [II] gives a θ-dependent

contribution to E(θ), the ground state energy. Notice that at θ = π where instantons interfere

destructively, the bi-instanton effects are the leading non-perturbative cause of the energy

shift.

[II] and [II] correspond to the amplitudes

[II] = [II] = c(g)e−2S0 . (2.11)

c(g) will be calculated below. The proliferation of these bi-instantons give a θ- independent

shift to the ground state energy because these molecules carry zero net winding number.

There is in fact a deep reason behind the θ independence of W = 0 bi-instanton contribution.

The perturbation theory in this simple model, despite having a unique vacuum, is not even

Borel summable, see Section. 2.6. If one attempts to give a meaning to perturbation theory

through Borel procedure, there is an ambiguity associated with the would-be Borel sum,

hence, non-summability. The W = 0 bi-instanton amplitude, most importantly and as will

be described below, is also ambiguous, in a way to precisely cancel the ambiguity that arise

from perturbation theory. Perturbation theory is independent of θ by its construction and

hence cannot mix with W 6= 0 sectors. By this, we mean that a contribution, say, from W 6= 0

sector cannot cure an ambiguity that arises in perturbation theory around the perturbative

vacuum. However, perturbation theory around the perturbative vacuum can, and in fact

does, mix with non-perturbative physics in the W = 0 sector. This is the intrinsic difference

between the two types of bi-instanton events. This will be discussed in slightly more detail

in Section 2.6, and more fully in a separate publication.

2.3 W = ±2 bi-instantons

The way to derive the size of a molecule is as follows. The action of a pair of instantons is

S(z) = 2S0 +
32ε1ε2
g

e−z (2.12)

where we associate ε = 1 to instantons and ε = −1 to anti-instatons, and z is the separation

between two instanton events. The interaction is short-range and repulsive for ε1ε2 = +1 and

attractive for ε1ε2 = −1.

If the two instantons were non-interacting, each would have an exact translational zero

mode of its own. However, instantons do interact. In this case, it is useful to split the

coordinates into a relative coordinate z = z1− z2 and center coordinate τ = (z1 + z2)/2. The

center coordinate is still an exact zero mode (as the potential between two instantons only
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log
32

g

z

ã-VHzL

Figure 3. The plot of the integrand over the quasi-zero mode (separation between two instanton

events) for g � 1. The saddle point of the integral is located at rbI = log
(

32
g

)
. Since the separation

between these two (correlated) instanton events rbI is much larger than the instanton size, each

instanton is individually sensible. Since rbI is exponentially smaller than the typical inter-instanton

separation, these pairs cannot be viewed as two uncorrelated single instanton events. Due to this

reason, we interpret the resulting structure as a topological molecule, with size rbI .

depends on the relative coordinate) and importantly, the separation between two instantons

is a quasi-zero mode, and it needs to be treated exactly.

W = ±2 bi-instantons: For the ε1ε2 = +1, the integral I+(g) over the quasi-zero mode

reduce to (see Bogomolny [21])

b(g) = a(g)2I+(g), I+(g) =

∫ ∞
0

dz
[
e
− 32
g
e−z − 1

]
(2.13)

The (-1) factor subtracts uncorrelated instanton events which are already taken into account

in the dilute instanton approximation at the leading order. In other words, this term is there

to prevents the double-counting of the uncorrelated instanton events. Following Bogomolny

[21], the interaction integral is suppressed in the |z| � − log( g32) domain due to repulsion.

However, the (-1) term, which accounts for the prevention of the double-counting, corresponds

to the dilute gas of instantons and does not “know” the repulsion. Integration by parts takes

care of this problem, and yields:

I+(g) =
32

g

∫ ∞
0

dz

[
e
−
(

32
g
e−z+z−log z

)]
= −γ + log

( g
32

)
(2.14)

where γ is Euler constant. Hence, the amplitude for the bi-instanton event is

[II] = a(g)2
(
−γ + log

( g
32

))
e−2S0+2iθ (2.15)

The saddle point of the integral over the quasi-zero mode is the characteristic size of

the molecular instanton event. It is given by rbI ∼ − log( g32). Clearly, the size obeys the

hierarchy (2.9). rb is much larger than instanton size so that each individual instanton actually
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makes sense, and it is much much smaller than inter-instanton separation so that it should

be carefully distinguished from two uncorrelated instanton events. This characterization is

the definition of an instanton molecule. The existence of such molecules do not invalidate the

dilute gas approximation, rather they should be accounted for.

Alternative way of evaluating the quasi-zero mode integral: Another way to

calculate the integral over the quasi-zero mode, which has the merit of being straight forwardly

generalizable to quantum field theory, is following. Consider the theory with f fermions.

When f > 0, the fermion zero-mode exchange cuts-off the integral over the quasi-zero mode.

This effect is familiar from the stability of magnetic bions on R3×S1 [22, 23], and molecular

instanton events in supersymmetric quantum mechanics [24]. We obtain, as the counterpart

of (2.13),

I+(f, g) =

∫ ∞
0

dze
−
(

32
g
e−z+fz

)
. (2.16)

Substituting u = e−z and using 32
g � 1, we map this integral to

I+(f, g) =

∫ 1

0
du uf−1 e

− 32
g
u ≈

∫ ∞
0

du uf−1 e
− 32
g
u

=
( g

32

)f
Γ(f) (2.17)

We need I+(ε, g) as ε → 0. The gamma-function Γ(f) has a pole at f = 0 zero. This

divergence stems from the double-counting of the uncorrelated instanton events, as described

above. Expanding the result around ε = 0, we obtain

I+(ε, g) =
( g

32

)ε
Γ(ε) =

(
1+ε log

( g
32

)
+O(ε2)

)(1

ε
−γ+O(ε2)

)
=

1

ε
+(log

( g
32

)
−γ)+O(ε)

(2.18)

Our subtraction scheme, which gets rid of double-counting of uncorrelated instanton events,

is to drop the 1
ε -pole term. The result is equal to (2.14), obtained earlier by Bogomolny.

2.4 W = 0 bi-instantons and Bogomolny–Zinn-Justin prescription

For ε1ε2 = −1, the integral I−(g) over the quasi-zero mode is, naively,

cnaive(g) = a(g)2I−(g), I−(g) =

∫ ∞
0

dz
[
e

+ 32
g
e−z − 1

]
(2.19)

Now, the interaction between the instanton and anti-instanton is attractive and the integral

(2.19), as it stands, is dominated by the regime |z| � − log( g32) where the two are close.

If this is indeed the case, then neither the individual instanton, nor a molecular instanton

are meaningful notions in the attractive case. In literature, this characteristic is sometimes

regarded as unfortunate! To the contrary, this behavior is a very positive feature, and not

a bug, as described below. Otherwise, there would be an inconsistency in the full theory, as

will be briefly described in section 2.6.

The physics of this problem is explained in two complementary papers by Bogomolny and

Zinn-Justin [21, 25] in quantum mechanics. Their (combined) proposal is clever and deep, but

as yet unappreciated in the literature. Hence, we will refer to it as Bogomolny–Zinn-Justin
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prescription, or BZJ-prescription for short. The BZJ-prescription may be viewed as a recipe

to obtain topological molecules with vanishing topological numbers (just like perturbative

vacuum), which in the older literature are also called quasi-solutions. Zinn-Justin, in Ref.

[19] Section 43 page 1020, states that the generalization of quasi-solutions, i.e, topological

molecules to field theory is non-trivial and has still to be worked out. The present author

undertook this step in collaboration with Poppitz and Argyres. The generalization of BZJ-

prescription to non-supersymmetric quantum field theories on R3 × S1 will be given in a

detailed manner in an upcoming work with Argyres [26]. In Ref.[27], it is shown that the

BZJ-prescription produces the correct bosonic potential in a supersymmetric theory without

any recourse to superpotential.

Let us now describe the BZJ-prescription. Bogomolny proposes the following prescription

in order to make sense out of attractive instanton-anti-instanton pairs. Continue the coupling

to negative values g → −g where the interactions between I and I becomes repulsive, perform

the integral exactly and continue back to the positive coupling. The final result is I+(−g), or

c(g) = a(g)2I+(−g) = a(g)2

(
−γ + log

(
−g
32

))
= a2

(
−γ + log

( g
32

)
± iπ

)
= b(g)± iπa(g)2 (2.20)

whose real part is equal to b(g) given in (2.13). This prescription certainly sounds ad hoc

at first. Moreover, (2.20) has an (naively) unexpected imaginary part proportional to two-

instanton effect which is ambiguous depending on whether we approach to the positive real

axis from above or below! This results in a two-fold ambiguous W = 0 bi-instanton amplitude:

[II] =
(
b(g)± iπa(g)2

)
e−2S0 (2.21)

The connection of the ambiguity in the molecular amplitude with the ambiguity that arise in

large orders in perturbation theory is explained below.

The physical meaning of this prescription is explained by Zinn-Justin. Ref.[25] observes

that ordinary perturbation theory in quantum mechanics is divergent for:

i) Theories with multiple-degenerate minima. For example, V (q) = 1
2q

2(1 − q)2, q ∈ R
which has two minima, and V (q) = 1

2(1 − cos q), q ∈ R which has infinitely many, or

V (q) = 1
2(1− cos q), q ≡ q + 2πN,N ≥ 2, which has N minima.

We may add to this list

ii) Theories with a unique minimum and a periodic identifications of the fields, for example,

V (q) = 1
2(1− cos q), q ≡ q + 2π ∈ R/2πZ),

In this class of theories, for g > 0, perturbation theory is not even Borel-summable.

There are cases in which perturbation theory becomes Borel summable if we take g < 0. As

usual, we then define the perturbative sum as the analytic continuation of the Borel sum from

the negative g < 0 to |g| ± iδ. The Borel sum is well-defined on the cut-plane, the exclusion

is the branch-cut along g > 0. Along the branch-cut, Borel sum develops an imaginary part,
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which is non-unique, and depends on how one approaches to positive axis, from below or

above, |g| ± iδ. The corresponding ambiguity in the analytic continuation of Borel sum is

proportional to ∓iπa2e−2S0 . Compare this with (2.20).

Since the ground state energy is real, the sum of perturbative and non-perturbative

contributions must be real. This suggests that the imaginary part coming from Bogomolny

prescription applied to winding number zero molecules must cancel with the imaginary part

of the Borel sum continued to the positive real axis when the two (interconnected) procedures

are performed consistently [25]. Also see [28].

In other words, neither the perturbation theory on its own, nor the topologically neutral

topological molecule amplitudes are unambiguous notions. Yet, the combination of the two

must be ambiguity free.

2.5 Validity of dilute gas approximation for instantons and bi-instantons

Let T = {I, I, [II], [II], [II], [II], [III], . . .} denote the set of instantons and molecular

instantons. The ordering is according to fugacity, the leading ones are rare and subleading

ones are rarer, but nevertheless all are present. As should be clear by now, there is also a

hierarchy (2.9) of length scales. This hierarchy implies that the use of dilute gas approximation

which involves both instantons and bi-instantons is justified. As asserted in footnote 7, the

presence of molecular instantons does not mean that an instanton liquid picture (for which

there is no semi-classical justification) should be used, much like the presence of atoms and

molecules in a gas does not imply that one should use a liquid description.

The shift in the ground-state energy is due to the proliferation (or the grand canonical

ensemble) of all defects in set T :

e−Eβ ∼ e−
ω
2

(1+O(g))β
∏
T

(∑
nT

(βT )nT

nT !

)

= e−
ω
2

(1+O(g))β

(∑
nI

(βI)nI

nI !

)∑
nI

(βI)nI

nI !

∑
n[II]

(β[II])n[II]

n[II]!

 . . .

= e−(ω2 (1+O(g))−I−I−[II]−[II]−[II]+...)β (2.22)

Therefore, the shift in the ground state energy at second order in the fugacity expansion reads

∆E(θ) = −2ae−S0cosθ − 2be−2S0cos2θ − 2be−2S0 . (2.23)

At θ = π/2, the instanton effects vanish due to destructive topological interference and do

not contribute to ground state energy. There, the topological molecules are the leading non-

perturbative contribution to ∆E(θ).
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2.6 The relation between perturbative and non-perturbative physics

The ground state energy8 and eigenspectrum of the quantum mechanical system is what is

measured in an experiment and is a set of finite numbers. On the other hand, the perturbative

expansion of ground state energy, also called Rayleigh-Schrödinger perturbation theory, in g

is of the form

E(0)(g) =

∞∑
q=0

E(0)
q gq (2.24)

and is a divergent expansion, regardless of how small g is. (Here, zero denotes that the

calculation does not take into account any instantons or topological molecules.) (2.24), in our

current example and many other cases, is an asymptotic series. By the Poincaré prescription,

the series is truncated at the minimum of the error, one obtains finite, reasonable results,

with an error determined by the last term kept. However, the issue at hand is like sweeping

an elephant under the rug, and it does not change the fact that the series (2.24) is actually

divergent. Therefore, if one takes (2.24) literally, the perturbative expansion clashes with the

finiteness of the ground state energy or other observables, meaning that, a purely perturbative

expansion to all orders is not sensible.

A (still schematic) version of the expansion for the ground state energy or other observ-

ables –that may actually be given a meaning– is following:

E(g) = E(0)(g) + E(1)(g) + E(2)(g) + E(3)(g) + . . .

=
∞∑
q=0

a0,qg
q + e

− 8
g

∞∑
q=0

a1,qg
q + e

− 16
g

∞∑
q=0

a2,qg
q + e

− 24
g

∞∑
q=0

a3,qg
q + . . . , (2.25)

where S0 = 8
g is the instanton action. E(1)(g) is the contribution of the dilute gas of instantons

times the sum which accounts for the perturbative fluctuations around it, E(2)(g) is the

contribution of the dilute gas of bi-instantons times corresponding perturbative fluctuations

around it, and so and so forth. This expression is still slightly incorrect, but we will correct

and refine it momentarily.

Formally, each power series multiplying the relevant instanton factor is actually divergent,

and needs to be defined in some way. We will return to this issue in more detail later, but

in order to get a better handle on it for now, let us re-introduce the θ parameter into the

expansion. This is useful because perturbation theory, by its construction, is independent of

θ-term. More precisely, perturbation theory around any background, either the perturbative

8This section does not aim to be complete, rather, it aims to provide the basic intuition behind the intercon-

nectedness of perturbation theory and non-perturbative effects on simple physical grounds. The mathematical

theory behind the types of series given in (2.26) and related works in mathematics and physics literature will

be covered elsewhere, both for quantum mechanics and quantum field theory in various dimensions, including

four dimensional Yang-Mills theory.
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vacuum or any given topological configuration, is independent of θ-term. This helps us to

re-structure and refine the above expansion as:

E(g) =
∞∑
q=0

a[0,0],qg
q

+

ae− 8
g

+iθ
∞∑
q=0

a[1,1],qg
q + ae

− 8
g
−iθ

∞∑
q=0

a[1,−1],qg
q


+

a2
(
−γ + log

( g
32

))
e
− 16
g

+2iθ
∞∑
q=0

a[2,2],qg
q + a2

(
−γ + log

(
− g

32

))
e
− 16
g

∞∑
q=0

a[2,0],qg
q

+ a2
(
−γ + log

( g
32

))
e
− 16
g
−2iθ

∞∑
q=0

a[2,−2],qg
q


+ . . . (2.26)

The notation a[n,k],q means the following: n labels the action of the sector, k labels the θ

angle dependence, or the winding number of the sector, and q is a variable accounting for

the perturbative expansion around a given background. Note that the action and winding

number are not necessarily proportional, and this will be crucial in order to make sense out

of such sums. We can also define the following abbreviations for the series:

E(g) ≡
∞∑
n=0

n∑
k=−n
k→k+2

E[n,k] ≡
n∑

k=−n
k→k+2

(
Q[n,k](g)e

− 8n
g

+ikθ
)
S[n,k], S[n,k] ≡

∞∑
q=0

a[n,k],qg
q (2.27)

Here,
(
Q[n,k](g)e

−n
g

+ikθ
)

is the amplitude of the instanton event for n = 1 and molecular

instanton event for n ≥ 2. Q[n,k](g) is the pre-factor of the associated instanton or molecular

instanton amplitude. We have calculated these amplitudes for n ≤ 2.

At least in lower dimensional theories, there is a way how to get a finite number out of this

combined expansion, which is presumably the physical answer: Consider the divergent (non-

Borel summable) series, E(0) = S[0,0] =
∑∞

q=0 a[0,0],qg
q. Continue g to negative g in the sum.

The resulting series is Borel summable at negative g. Call the sum B[0,0]. B[0,0] is analytic

function on the cut-plane with the real positive axis excluded. There, the function B[0,0] has

an imaginary discontinuity when passing from |g| − iε to |g| + iε. B[0,0](g) = ReB[0,0](g)] ±
iImB[0,0](g) where ±iImB[0,0](g) ∼ ±iπe−2S0 . This means that the Borel prescription for

perturbation theory, as it stands, also produces a two-fold ambiguous result, and therefore,

by itself, is meaningless, because the observable we are aiming to calculate is actually real.

However, the disturbing fact that B[0,0](g) produces a two-fold ambiguous result is in

reality, not in the superficial world of perturbation theory, is as good as it can be. Actually,

without it, we would run into an inconsistency in the whole theory. To see this, recall our

discussion of the proliferation of bi-instantons with W = 0, i.e., the two-instanton sector

associated with zero winding number, and the BZJ-prescrription. The BZJ-prescription also
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produces an amplitude which is two-fold ambiguous, as in (2.20). Presumably, what must

happen is that

ImB[0,0](g) + ImE[2,0](g) = 0 up to e
− 4
g ambiguities, (2.28)

leading to a cancellation of the imaginary parts between the contributions coming from the

[0, 0] sector and the contributions coming from [2, 0] sectors at order e
− 2
g . To get a finite,

sensible answer for the ground state energy, such cancellations between the perturbative and

non-perturbative physics must be omni-present in the description of quantum mechanics or

field theory. It should also be understood that the cancellation is between the e−2S0 effects,

the e−2S0 discontinuity of the Borel function and e−2S0 imaginary part of the neutral bi-

instanton. Needless to say, there are e−4S0 and lower order imaginary contributions to the

discontinuity of ImB[0,0](g). This may potentially be cured by a molecule of the type [IIII],

etc.. Hence, we may expect

ImB[0,0](g) + ImE[2,0](g) + ImE[4,0](g) + . . . = 0 (2.29)

We conjecture that, analogously, the same result also holds in sectors with non-zero

winding number, i.e., the θ angle dependence must also be unambiguous:

ImB[1,1](g) + ImE[3,1](g) + ImE[5,1](g) + . . . = 0 (2.30)

In general, this suggests a recursive structure between perturbative and non-perturbative

effects in quantum mechanics, which can be written as

ImB[n,k](g) + ImE[n+2,k](g) + ImE[n+4,k](g) + . . . = 0 (2.31)

Intrinsic to this cancellation is the θ-independence of perturbation theory, or equivalently,

the splitting of the the sectors according to winding number k. Recall that perturbation

theory in the background of any (topological) configuration is unable to produce any extra

θ dependence. This means that although sectors with different action backgrounds can mix,

the sectors with different θ dependence never mix. This provides a sectorial dynamics to the

whole theory.

We aim to discuss the interrelation of perturbative and non-perturbative physics in quan-

tum mechanics and quantum field theory more systematically in the future. Clearly, this is a

problem of outstanding importance.

3 TN -model and fractional winding number

For N = 1, recall that the field q(τ) is a mapping from the circle along the Euclidean time

direction (with circumference β) to the target space in which the particle lives:

q : S1
β → S1

q

τ → q(τ) (3.1)
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Such mappings are assigned a winding number, the number of times q(τ) traverses around

the S1
q as τ makes a circuit in S1

β:

W =
1

2π

∫ β

0
dτ q̇ =

1

2π
(q(β)− q(0)) ∈ Z (3.2)

This number depends only on the global aspects of the field configuration, and is valued in

first homotopy group π1(S1
q ) = Z. The amplitude associated with the instanton events with

unit winding number is e−S0eiθ.

Assume N ≥ 2, and recall the physical identification (2.3). Our assertions about the

maps from the circle S1
β to the target space S1

q are still valid. The instanton interpolating

from q(0) = 0 to q(β) = 2πN is assigned winding number +1, because q ≡ q + 2πN are

physically the same point.

For convenience, let us normalize the circumference of the circle to 2π. Take the q ≡ q+2π

identification, but modify the potential into V (q) = 1−cos(Nq). This potential has N -minima

within the configuration space, and a q → q + 2π
N discrete shift symmetry. Let us recall the

Euclidean action:

SE[g, θ] =

∫
dτ

1

g

[
1
2 q̇

2 + (1− cosNq)
]
− iθ

[
1

2π

∫
dτ q̇

]
(3.3)

We may rewrite the action in a form more suitable for instanton calculus. Let V denote an

auxiliary potential and V ′ = ∂V
∂q such that the bosonic potential can be expressed as V (q) =

(V ′)2. The auxiliary potential is the counterpart of the superpotential in supersymmetric

theories. Then, the action at θ = 0 can be written as

SE[g, 0] =

∫
dτ

1

g

[
1
2 q̇

2 + 1
2(V ′)2

]
=

∫
dτ

1

2g

[(
q̇ ± V ′

)2 ∓ 2q̇V ′
]

≥
∣∣∣∣1g
∫

dV
∣∣∣∣ (3.4)

where the auxiliary potential is

V =
4

N
cos

Nq

2
. (3.5)

The (anti)instantons obey q̇±V ′ = 0, and saturate the bound. Now, there are more possibil-

ities for instanton events. Since there are N degenerate minima within configuration space

S1
q , located at qi = 2π

N i, we may view an instanton event as a tunneling event from the (i)th

minimum to the (i + 1)th minimum. Let us refer to this instanton as Ii. The action and

phase associated with this event is the integral of two total divergences, dV and dq:

S0 − iθW =

∣∣∣∣1g
∫ i+1

i
dV
∣∣∣∣ − iθ

∫ i+1

i
dq

=
4

gN

∣∣∣∣ cos(i+ 1)π − cos iπ

∣∣∣∣− iθ(2π(i+ 1)

N
− 2πi

N

)
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=
8

gN
− i θ

N
(3.6)

This is obviously a finite action topological configuration whose properties depend on global

aspects of the field. It cannot be smoothly deformed to a vacuum configuration. Such an

instanton carries a fraction of winding number, given by 1
N . However, this is not valued in

π1(S1
q ), which is strictly an integer. This means that we have to relax the condition that

the winding number associated with an instanton event should be an integer, or refine the

homotopic considerations accordingly. The amplitude associated with the fractional winding

instanton is Ii ∼ e−S0eiθ/N .

The discussion of molecular instanton events follows very closely Sections 2.2 and 2.3

with essentially one difference. Because of the ordering of the classical vacua, the interaction

between instantons is modified. It is given by

S(z)(i,j) − 2S0 =

{
+32

g δ
i,j−1e−z instanton-instanton

−32
g δ

i,je−z instanton-anti-instanton
(3.7)

By the same analysis as in Section 2.3, there are two-types of bi-instanton events; W = 2
N

and W = 0. These are [IiIi+1] ∼ e−2S0ei2θ/N , and [IiIi] ∼ e−2S0 . The first one of these leads

to correlated next-to-nearest neighbor tunneling, and has a θ dependence. The second one is

an event which tunnels to the nearest-neighbor vacuum, and then immediately tunnels back

to the original vacuum. ‘Immediately’ here means that the whole process takes a Euclidean

time ≈ − log
( g

32

)
, which is much larger than the instanton size, but exponentially smaller

than the separation between uncorrelated instanton events.

Note that the winding number W = 1 instanton event may be thought as an ordered

concatenation of N -fractional instantons. The amplitudes and the fractional winding numbers

for Ii obey

IW=1 =
N∏
i=1

Ii, W =
N∑
i=1

Wi =
N∑
i=1

1

N
= 1 (3.8)

The W = 1 instanton in the TN -model may be viewed as the analog of the BPST-instanton

and the N types of the W = 1/N fractional instantons are the counterparts of the N -types

of monopole-instantons on R3 × S1.

We can find the θ dependence of the ground state energy by using standard instanton

methods. Instead, we will follow a slightly different method. We map the TN (θ)-model to a

N -site lattice ring with a magnetic flux passing through the ring.

3.1 θ-angle dependence as Aharonov-Bohm effect

Consider the Minkowski space Lagrangian:

L[g, θ] =
1

g

[
1
2 q̇

2 − (1− cosNq)
]

+
θ

2π
q̇ (3.9)
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Figure 4. The θ angle in the TN (θ)-model is the equivalent of Aharonov-Bohm flux Φ in units of the

flux quantum Φ0, with identification θ
2π ≡

Φ
Φ0

.

The canonical momentum conjugate to the position q is p = ∂L
∂(q̇) = q̇

g + θ
2π . Thus, the

Hamiltonian can be found by the Legendre transform, H[p, q] = extq̇

[
pq̇ − L[q, q̇]

]
.

H[g, θ] =
g

2

(
p− θ

2π

)2
+

1

g
(1− cosNq) (3.10)

Therefore, the particle on a circle in the presence of the θ-angle, given in (3.9) and (3.10),

is same as a charged particle on a circle in the presence of a flux Φ treading the circle. The

Aharonov-Bohm flux (in units of flux quantum Φ0) is identified with theta angle (divided by

2π):
θ

2π
≡ Φ

Φ0
, Φ0 ≡

2π~c
|e|

(3.11)

This gives an experimental set-up to study the θ dependence of certain quantum mechanical

systems.

The model can possibly be studied at arbitrary coupling, g, however, this is not essential

for our purpose.9 Here, our interest is the weak coupling asymptotics. At g = 0, Hamiltonian

reduce to the potential term. This may be viewed as an infinitely heavy particle with no

dynamics, localized at one of the minima. At weak coupling, g � 1, the potential term

dominates, and semi-classical methods usefully apply. Below, we will solve this problem at

weak coupling and study the effect of the θ term or the magnetic flux.

3.2 Tight-binding Hamiltonian with Aharonov-Bohm flux

The TN (θ) model at θ = 0 may be approximated by a one-dimensional tight-binding Hamilto-

nian H on an N -site lattice. The N degenerate minima on the ring S1
q may be considered as

the N lattice sites. The simplest tunneling (instanton) effects correspond to nearest neighbor

9The wave equation reduce to Mathieu or Hill’s equations, for which there are known analytic solutions.
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hoping terms in H. Turning on θ-angle, as described above, is equivalent to a magnetic flux

through the ring, as shown in Figure 4

Let aj , a
†
j denote annihilation and creation operators on site j obeying the canonical

anti-commutation relation [aj , a
†
j′ ] = δjj′ . The tight-binding Hamiltonian reads

H =

N∑
j=1

ε a†jaj − t[1,1]

N∑
j=1

(
eiθ/Na†j+1aj + e−iθ/Na†j−1aj

)
(3.12)

where t[1,1]e
iθ/N is the of forward hopping amplitude and t[1,−1]e

−iθ/N is the backward hopping

amplitude. The modulus of the amplitudes are equal, t[1,1] = t[1,−1], and the phase factor

that particle picks up is due to the existence of Aharonov-Bohm flux.

In a Euclidean path integral formulation, t[1,1] may be seen due to simplest instanton event

with positive winding number (in units of 1/N), and t[1,−1] comes from the anti-instanton

event with the same action but opposite winding. There is a directionality associated with

an instanton.

The Hamiltonian commutes with discrete translation symmetry, TN . The eigenstates

obey obey TN |k〉 = e2πik/N |k〉. Using the canonical transformation

a†k =
1√
N

N∑
j=1

e2πjk/Na†j , (3.13)

we may diagonalize the Hamiltonian as

H =

N∑
k=1

Ek(θ)a
†
kak where Ek(θ) = ε− 2t[1,1] cos

(
θ + 2πk

N

)
(3.14)

Ek(θ) is the eigen-energy of the state |Ψk〉 with quasi-momentum k. Clearly, the eigenstates

|Ψk〉 are independent of θ. However, the ordering of energies depend on θ. For the angular

range θ ∈ [−π, π], the ground state is k = 0, which is a translation invariant state. In

the range θ ∈ [π, 3π], the ground state is k = 1, which is non-singlet under the translation

symmetry. At θ = π, the two states which transform differently under translation symmetry

become degenerate and their ordering switches. This is a simple example of a quantum phase

transition where symmetry of the ground state changes as a function of an external parameter

[29]. More generally, we have

θ ∈ [(2k − 1)π, (2k + 1)π] mod(2πN) −→ |Ψground〉 = |Ψk〉 (3.15)

Following Ref.[30], we may refer to the set of states as the “vacuum family”. Every state in the

vacuum family does eventually become the true ground state as θ is varied. At θ = (2k+1)π,

there is a two-fold degeneracy. The ground state energy (as well as the spectrum) is a 2π

periodic function of θ, and is given by

Eg(θ) = min
k

[
ε− 2t[1,1]) cos

(
θ + 2πk

N

)]
(3.16)
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to first order in the hopping parameter expansion.

The second order terms in the hopping parameter can be viewed as sourced by the

molecular instantons. There are two types of terms at this order, one of which has fractional

winding ±2/N and θ dependence, and the other is the molecular instanton event with zero

winding number, W = 0 and no θ dependence. We may write the second order terms in

Hamiltonian as

H(2) = −t[2,2])

N∑
j=1

(
ei2θ/Na†j+2aj + e−i2θ/Na†j−2aj

)
− t[2,0]

N∑
j=1

a†jaj (3.17)

Diagonalizing the Hamiltonian, we obtain the eigen-energies of the states in the vacuum

family as

Ek(θ) = (ε− t[2,0])− 2t[1,1] cos

(
θ + 2πk

N

)
− 2t[2,2] cos 2

(
θ + 2πk

N

)
(3.18)

As before, there are N branches in the vacuum family, and for a given θ, the ground state

energy is the branch with the lowest energy.

4 Deformed Yang-Mills on R3 × S1 at arbitrary θ

Consider Yang-Mills theory on R3 × S1 with action

S[g, θ] = S − iθQT =

∫
1

2g2
trF 2

µν(x)− iθ 1

16π2

∫
trFµνF̃

µν (4.1)

where Fµν = F aµνt
a is non-Abelian field strength, F̃µν = 1

2ε
µνρσFρσ, g is 4d gauge coupling,

and tr(tatb) = 1
2δ
ab .

The YM theory possess a large-S1 confined phase and small-S1 deconfined phase, distin-

guished according to the center symmetry realization and the behavior of the Polyakov order

parameter. There exists a simple one-parameter family of deformation of the pure YM theory

such that the deformed theory has no phase transition as the radius is reduced. The action

of the deformed Yang-Mills (dYM) theory is

SdYM = S − iθQT + Sd.t., Sd.t. =
a1

L4

∫
|trΩ|2. (4.2)

where a1 is a judiciously chosen deformation parameter [1]. The small-S1 regime of the

deformed theory may be seen as the analytic continuation of the confined phase to weak

coupling.10

10The double-trace deformation by the line operator is only needed when S1 size is smaller than the strong

scale of gauge theory. In this regime, this operator may be induced by introducing a heavy adjoint fermion

endowed with periodic (not anti-periodic) boundary condition. The one-loop potential of massive fermion

induce the deformation term, see [31, 32]. Since the fermion is much heavier than the strong scale, the infrared

dynamics is essentially that of Yang-Mills, or equivalently, that of deformed Yang-Mills.
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At small S1, the SU(2) theory is Higgsed down to U(1) by a center-symmetric vev

Ω = diag
(
eiπ/2, e−iπ/2

)
and is amenable to semi-classical treatment. For details, see [1]. Due

to the “breaking” SU(2) → U(1) by Wilson line, a compact adjoint Higgs field, there are

two types of monopole-instnantons, the regular 3d one, and the twisted one, which is there

due to compact topology of adjoint Higgs, or equivalently due to the locally 4d nature of the

theory [17, 18]. These defects carry two types of quantum numbers, magnetic and topological

charge, (Qm, QT ), given by

M1 : (+1,+1
2), M2 : (−1,+1

2),

M1 : (−1,−1
2), M2 : (−1,−1

2). (4.3)

The action is half of the 4d-instanton action, S0 = 1
2 × SI = 4π2

g2 . Note that the quantum

number of M1M2 is the one of 4d-instanton. The θ = 0 theory at small-S1 × R3 realizes

confinement due to monopole-instanton mechanism [1].

Introducing θ term in the action, the action of a 4d instanton is shifted as SI → SI − iθ.
Since M1 and M2 carry fractional topological charge (in a center symmetric background),

and by (1.5), their action is shifted as S0 → S0 − i θ2 , whereas the shift for their conjugates is

reversed, S0 → S0 + i θ2 . This is to say, fugacities acquire complex phases, and the amplitudes

are

M1 = ae−S0+i θ
2 e+iσ M2 = ae−S0+i θ

2 e−iσ

M1 = ae−S0−i θ2 e−iσ M2 = ae−S0−i θ2 e+iσ (4.4)

Here, σ denotes the dual photon defined through abelian duality relation, εµνλ∂λσ = 4πL
g2 Fµν .

The form of the amplitudes account for long-range Coulomb interactions between monopole-

instantons.

The dilute gas of monopoles with complex fugacity generates the dual Lagrangian

Ld(σ) =
1

2L

( g
4π

)2
(∇σ)2 − 4ae−S0 cos

(
θ
2

)
cosσ (4.5)

where V (1)(σ, θ) = −4ae−S0 cos
(
θ
2

)
cosσ is the potential induced by the proliferation of

monopole-instanton events.

For later convenience, in order to make the comparison to the quantum spin system

easier, we introduce a second (equivalent) form of the dual Lagrangian, by using the field

redefinition σ → σ − θ
2 ≡ σ̃ . As a result, the monopole operators are modified as

M1 = ae−S0eiσ̃, M2 = ae−S0+iθeiσ̃ (4.6)

and their conjugates. The phase differences between the two types of monopole-instanton

events remains the same upon field redefinition, and is a crucial element in our discussion.

The Lagrangian, in this second form, is

Ld(σ̃) =
1

2L

( g
4π

)2
(∇σ̃)2 − 2ae−S0

(
cos σ̃ + cos(σ̃ + θ)

)
(4.7)
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Figure 5. The dilute gas of monopole-instantons and bions. In Euclidean space where monopole-

instantons are viewed as particles, the correlated instanton events should be viewed as molecules.

Despite the fact that the density of monopole-instantons is independent of θ, at θ = π, the effect of

the monopole-instanton events dies off due to destructive topological interference, and the properties

of dYM theory are determined by a dilute bion plasma.

The advantage of (4.7) is its manifest 2π periodicity. In (4.5), to show the 2π periodicity, one

needs to use a field redefinition σ′ = σ + π upon the shift θ → θ + 2π.

At θ = 0, confinement and the mass gap for gauge fluctuations are due to the monopole-

instantons. Ref. [1] showed that a simple generalization of Polyakov’s model, which takes

into account two types of monopole-instanton events, is operative in deformed Yang-Mills

theory at θ = 0. As we will see, this conclusion does not hold for general θ due to the

important topological phase (4.4). This is how the confinement mechanism presented here

differs qualitatively from Polyakov’s monopole-instanton mechanism [15]

A striking phenomenon occurs at θ = π. The monopole-instanton induced potential

vanishes identically:

V (1)(σ, θ = π) = 0 (4.8)
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which means that the dilute gas of monopole-instantons no longer generates a mass gap–

despite the fact that their density is independent of θ angle.

In a Euclidean volume V3, there are, roughly, N3 = V3
e−S0

L3 monopole events, where L is

the monopole size. The monopole density is ρm = N3/V3 ∼ e−S0

L3 , from which we can extract

the mean separation between monopoles as dm−m = ρ
−1/3
m = LeS0/3. Despite the fact that

density of monopole does not change with θ, the mass gap at leading order in semi-classical

expansion disappears. This important effect was missed in the earlier work of the author and

Yaffe [1], and in a later work [33] discussing the theta dependence of deformed Yang-Mills.

Experienced with the quantum mechanical example, we may guess that topological in-

terference may be taking place. This is indeed true, but there are some differences. One may

at first think thatMi must be interfering destructively withMi, for i = 1, 2. This is actually

not the case. Since the monopole-instanton interactions are long-ranged — unlike instanton

interactions in quantum mechanics — the interference cannot occur between M1 and M1,

which carry opposite magnetic quantum numbers. On the other hand, M1 and M2 has the

same magnetic quantum numbers, and opposite topological charge, see (4.4). At θ = π, the

sum over the M1 instanton and M2 anti-instanton yields

M1|θ=π +M2|θ=π = e−S0e+iσ
(
eiπ/2 + e−iπ/2

)
= 0 , (4.9)

a destructive topological interference, giving (4.8).

In order to see the two-branched structure of the observables in SU(2) theory, consider

(4.7). The minima of the potential V (σ̃) for a given θ can be found as

dV (σ̃)

dσ̃
= 0 =⇒ σ̃ =

{
− θ

2 branch− one

− θ
2 + π branch− two

(4.10)

or in terms of original σ = σ̃ + θ/2 field, and potential (4.5)

dV (σ)

dσ
= 0 =⇒ σ =

{
0 minimum for 0 ≤ θ < π

π minimum for π < θ < 2π
(4.11)

The extremization problem has multiple solutions within the fundamental domain of σ ∈
[0, 2π). The nature of an extrema changes with varying θ. A minimum may become a

maximum or vice versa. This results in multi-branched observables. The ground state is

associated with the branch which has lowest energy. Various observables will be discussed in

Section 4.2.

4.1 Dilute gas of monopoles and bions

Since mass gap and confinement at leading order in fugacity expansion are destroyed by

topological interference, Polyakov’s monopole-instanton mechanism is no longer operative. It

is natural to ask whether confinement and mass gap will ever set in at θ = π, and if so, how?

In (deformed) Yang-Mills theory, at θ = π, there are only two physical options: Either the

theory remains gapless or it has two-fold degenerate vacua with a a much smaller mass gap,
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as will be shown by symmetry in 4.4. An identical conundrum is recently found in principal

chiral NLσ model in 2+1 dimensions in Ref. [35], but was not resolved. In gauge theory, we

will be able to solve the analogous problem.

The question of whether a mass gap will ever set in, or not, is not unfounded. For example,

there is a well-known classification of spin-S antiferromagnetic spin chain in 1+1 dimensions:

half-integer spin systems are gapless, while the integer spin systems are gapped [34]. This

difference stems from a topological term in the path integral, Z(2πS) =
∑

W∈Z e
i2πSWZW

where ZW is the partition function over a fixed topological charge sector. Here, we may

identify θ ≡ 2πS and the crucial difference between integer spin (for which e2πiSW = (+1)W )

and half-integer spin (for which ei2πSW = (−1)W ) is the signed sum over the topological

sector in the latter. Although this is analogous to the situation we encounter in dYM at

θ = 0 vs. θ = π, we will in fact show that, despite the interference effect, a mass gap is

generated. It is m2(θ = π) ∼ e−2S0 , exponentially smaller than m2(θ = 0) ∼ e−S0 , and the

vacuum is two-fold degenerate. This phenomenon is a generalization of what takes place in

2+1 dimensional bi-partite anti-ferromagnetic lattices [4] and quantum dimer model [5].

In order to answer the question of mass gap generation at θ = π, we need to understand

the topological defects at second order in fugacity expansion. There are two classes of such

defects, classified according to topological charge. These are [MiMj ] for which QT = 1 and

[MiMj ] for which QT = 0. In a normalization where the 4d instanton amplitudes are given

by I4d = [M1M2] = e−2S0+iθ, and I4d = [M1M2] = e−2S0+iθ, the formal expressions for the

possible topological molecule amplitudes are given by

[M1M2] = b(g)e−2S0+2iσ [M2M1] = b(g)e−2S0+2iσ

[M1M1] = c(g)e−2S0 , [M2M2] = c(g)e−2S0 ,

[M1M1] = d(g)e−2S0+2iσ+iθ, [M1M1] = d(g)e−2S0−2iσ−iθ,

[M2M2] = d(g)e−2S0−2iσ+iθ, [M2M2] = d(g)e−2S0+2iσ−iθ (4.12)

The molecules with QT = 0 do not have a θ-dependence. [M1M2] is capable of producing

a mass gap for gauge fluctuation, as it carries a magnetic charge plus two. This molecule is

referred to as a magnetic bion in the context of QCD(adj) and N = 1 SYM, where it is the

leading cause of confinement in semi-classical domain on R3 × S1 [22, 23].

The generalization of the analysis of Section. 2.3 can be used to give the values of the

prefactors for the amplitudes of these events. The result is

b(g) =
2πa2

3

(
− log

(
g2

4π

)
+ γ − 11

6

)
, (4.13)

which is the prefactor of the magnetic bion amplitude. The analysis above is in the semi-

classical domain and reliable therein. There are also lattice studies in strongly coupled domain

providing some evidence which can possibly be interpreted in terms of magnetic bions [36].

Although the [M1M1] molecule is not important for our current analysis, it is of crucial

importance in the full theory. In N = 1 SYM theory, this molecule is shown to lead to center
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stabilization, and is referred to as neutral or center-stabilizing bion [27].11 Perhaps, to keep

the analogy between the molecules in quantum mechanics and the ones in field theory as

parallel as possible, we should note that the constituents of the center-stabilizing bion are

also attractive. That means, we need the generalization of the BZJ-presciption to field theory,

which is undertaken in [26]. Following Ref. [26], we find,

c(g) =
2πa2

3

(
− log

(
− g

2

4π

)
+ γ − 11

6

)
= b(g)± 2πa2

3
(iπ) (4.14)

As in quantum mechanics, the (refined) BZJ-prescription leads to an imaginary part con-

tribution to vacuum energy. In Yang-Mills theory, we also expect that the vacuum energy

in perturbation theory to be non-Borel summable. In order for the gauge theory to make

sense, the ambiguity (associated with non-Borel summability) must cancel with the two-fold

ambiguity of the neutral bion contribution.12

The characteristic size of the [MiMj ] molecules can be found, as in quantum mechanics,

by studying the integral over the quasi-zero mode. The result is, parametrically, rb ∼ L
g2 ,

same as the magnetic bion size in QCD(adj) or N = 1 SYM [22, 23], and is universal. The

bion size is much larger than monopole-instanton size rm ∼ L, but much smaller than the

inter-monopole separation dm−m ∼ LeS0/3 that in turn is much smaller than the inter-bion

separation db−b ∼ Le2S0/3. Namely,

rm � rb � dm−m � db−b

↓ ↓ ↓ ↓
L � L

g2 � LeS0/3 � Le2S0/3

(4.15)

Again, this hierarchy means that the use of semi-classical methods for a dilute gas of instan-

tons, bions, and other topological molecules is simultaneously justified.

On the other hand, the molecules appearing in the first class have non-universal proper-

ties. Whether these molecules form or not depends on the details of theory. In dYM, their

properties are dependent on the mass of A4-scalar, and hence on the deformation parameter

a1. The characteristic A4-mass in the center-symmetric phase is g
L(a1 − 1). If mA4 = 0,

the net interaction between self-dual monopole-instantons vanishes: the σ-scalar exchange

is cancelled by the A4-scalar exchange. This is unlike bions, where the interaction strength

is parametrically unaltered in the limit mA4 = 0. The size of the bion is only altered by a

factor of two in this limit. For a range of a1 deformation parameter, the amplitude associated

11In order to see its role in center-symmetry, restore the gauge holonomy dependence in the monopole

amplitude, M1 → e
− 4π
g2

∆φ+iσ
, where ∆φ is the separation between two eigenvalues of Wilson line. Then,

[M1M1] = e
− 8π
g2

∆φ
leading to a repulsion between eigenvalues, and [M2M2] = e

− 8π
g2

(2π−∆φ)
. The sum of the

two is minimized when ∆φ = π, the center-symmetric configuration at weak coupling regime. See Ref. [27].
12 This molecule is associated with a pole in the Borel plane at t = 8π2 = 1

2
(16π2), where t = 16π2 is

the pole corresponding to 4d instanton-anti-instanton. Ref. [26] provides evidence that the neutral bion is

the weak coupling semi-classical incarnation of the elusive IR-renormalon (for which, up to our knowledge, no

semi-classical description exists.) We are quickly glossing over this issue here, for the fuller discussion, see [26]

– 27 –



with the QT = 1 type events are much suppressed d(g) � b(g) relative to QT = 0 events.

This approximation becomes exact in the supersymmetric N = 1 theory, as well as its softly

broken N = 0 non-supersymmetric version. This suggests that we can omit such events with

respect to bions in the long-distance description and we will do so.

Let T = {Mi,Mi, [MiMj ], [MiMj ] . . .} denote the set of topological defects and molecules

in dYM. The grand canonical partition function of this Coulomb gas is

Z =
∏
T

{ ∞∑
nT =0

(ζT )nT

nT !

∫
R3

nT∏
k=1

drTk

}
e−Sint(r

T
k ) , (4.16)

where Sint denotes the Coulomb interactions among the set of defects in T , and ζT is the

fugacity of T . Unlike Ref.[1], which only took into account the monopole-instantons in the

compactified theory, we also include the defects at second order in the semi-classical expansion.

This is necessary (and sufficient) to correctly describe the infrared physics at arbitrary θ in

the small S1 × R3 domain. We do keep the BPST instanton induced term in the action, not

because it should be kept to capture the long-distance physics correctly, rather to show its

unimportance of its contribution to observables. The partition function can be transformed

into a 3d scalar field theory Z(θ) =
∫
Dσ e−

∫
R3 Ld[σ] where

Ld =
1

2L

( g
4π

)2
(∇σ)2 − 4ae−S0 cos

(
θ
2

)
cosσ︸ ︷︷ ︸

monopole−instanton

− 2be−2S0 cos 2σ︸ ︷︷ ︸
magnetic bion

− 2a4de
−2S0 cos θ︸ ︷︷ ︸

BPST−instanton

(4.17)

The physical aspects of the long-distance theory are captured by this dual action (4.17).

These are examined below.

In order to make the correspondence with quantum anti-ferromagnet easier, we will also

give the equivalent Lagrangian in terms of shifted variable σ̃ = σ − θ
2 . It is

Ld(σ̃) =
1

2L

( g
4π

)2
(∇σ̃)2 − 2ae−S0

(
cos σ̃ + cos(σ̃ + θ)

)
− 2be−2S0 cos(2σ̃ + θ)− 2a4de

−2S0 cos θ (4.18)

4.2 Vacuum energy density and topological susceptibility

The potential (4.17), for arbitrary θ, has two θ-independent extrema, located at σ = {0, π},
which lead to two competing vacua. There are also, for a range of θ, two θ-dependent extrema.

But these are always maxima. The “vacuum family”, in the sense of Ref.[30] is captured by

theta-independent extrema of (4.17), at least one of which is always a minima. For a range

of θ, there are two minima, located at σ = 0, and π, independent of θ. See the potential for

dual photon, Fig. 6, for three values of θ.

Because of the existence of two candidate vacuum states, physical observables, such

as vacuum energy density, mass gap, string tension, deconfinement temperature are two-

branched functions. Because the two candidate ground states become degenerate at θ = π,

or at odd-multiples of π, the observables are smooth except for odd-multiples of π, where it

is non-analytic.
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Figure 6. V (σ, θ) as a function of σ for θ = 0, 7π
8 , π. At θ = 0, there is a unique ground state. For a

range of θ, there are two minima. At θ = π, there are two degenerate (ground) states.

The true ground state properties, for a given θ, are found by using the branch associated

with the global minimum of energy. The vacuum energy density E(θ) is extracted from the

value of the V (σ, θ) evaluated at these two extrema, LE(θ) = Mink=0,1 [V (kπ, θ)]. Explicitly,

E(θ) = Λ4 min
k=0,1

[
−4a(ΛL)−1/3 cos

(
θ + 2πk

2

)
− 2b(ΛL)10/3 − 2a4d(ΛL)10/3 cos θ + . . .

]
(4.19)

Recall that the multi-branch structure is a conjecture on R4 for large-N theory [8]. Here,

we were able to derive the two-branched structure, shown in Fig. 7 starting with microscopic

physics in a semi-classical framework in deformed Yang-Mills theory. By continuity, we expect

that this result also holds for pure Yang-Mills theory on R4.

The multi-branched structure is sourced by topological defects with fractional topological

charge. It is also worth noting that the 4d-BPST instanton effects in this expansion are

analytic, negligible and unimportant.

We can also extract topological susceptibility:

χ =
∂2E
∂θ2

∣∣∣
θ=0
≈ Λ4a(ΛL)−1/3 + 2a4d(ΛL)10/3 + . . . (4.20)

The crucial point in this expression is that the 4d BPST instanton effects, even in the semi-

classical domain, give negligible contributions to topological susceptibility. This is in accor-

dance with lattice results [9, 11]. In the semi-classical regime, in (deformed) YM theory, the

leading contributions are from monopole-instanton events.

4.3 Mass gap, string tension and deconfinement temperature

The mass gap of the theory is also a two-branched function. It can be extracted from the

curvature of the potential at its minima: m2
1,2(θ) = L

(
4π
g

)2
∂2V (σ,θ)
∂σ2 |σ=0,π. At leading order

in the semi-classical expansion, we find

m(θ) = AΛ(ΛL)5/6
∣∣∣ cos

(
θ
2

) ∣∣∣1/2 (4.21)
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At leading order in semi-classical expansion, at θ = π, mass gap vanishes despite the fact that

the density of monopole-instantons is independent of θ. This is a consequence of destructive

topological interference. At this stage, the theory has two choices, either to remain gapless

or two have to isolated gapped vacua. A similar problem also appears in Refs.[35, 38]. At

subleading e−2S0 order, a much smaller mass gap is generated due to magnetic bions, and it

is proportional to m(π) ∼ Λ(ΛL)8/3.

The mass gap of the theory is the upper branch of a two-branched function:

m2(θ) = max
k=0,1

aΛ2

[
(ΛL)5/3 cos

(
θ + 2πk

2

)
+ (ΛL)16/3 + . . .

]
(4.22)

For the range of θ for which both m2
1 > 0 and m2

2 > 0, there are two minima. If m2
1 > 0 and

m2
2 < 0 (or vice versa), then the second extremum is actually a maximum. The functions

E(θ) and the mass gap are smooth function for all θ, but odd multiples of π, where they are

non-analytic. At these values, there are two true ground states, located at σ = 0 and σ = π.

This is a manifestation of the CP-symmetry at θ = π, which is spontaneously broken, and is

discussed in 4.4.

Π 2 Π 3 Π 4 Π
Θ

EHΘL

Π 2 Π 3 Π 4 Π
Θ

m2@ΘD

Figure 7. a) The vacuum energy density E(θ) is periodic by 2π and smooth except for odd- multiples

of θ = π, where a two-fold degeneracy arises. b)The mass gap of the theory, associated with the

global minimum of vacuum energy, is the maximum of the two branches. At θ = π, there is spectral

degeneracy.

We also define the topological susceptibility of the mass gap (square) as

χm =
∂2[m2(θ)]

∂θ2

∣∣∣
θ=0

= −AΛ2(ΛL)5/6/4 < 0 (4.23)

This implies that at θ = 0, the mass gap is maximum (the correlation length is minimum).

With increasing theta, due to the topological interference of the monopole-instantons, the

mass gap decreases and correlation length increases. Although we have not been able to

do so yet, we believe that it can be proven rigorously that the mass gap (and spectrum)

susceptibility is negative semi-definite: It is negative for all finiteN for SU(N) and approaches

zero at N = ∞ limit. It may be interesting to demonstrate this analytically and check it

by using lattice techniques. For example, a recent lattice work [39] studies mass gap in two-

dimensional O(3) field theory at arbitrary θ and claims that this should be feasible for SU(2)

Yang-Mills theory. It would be interesting to check (4.22) through simulations.
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String tension: The string tension may be evaluated by calculating the expectation values

of large Wilson loops in the defining 1
2 -representation of SU(2),

〈
W1/2(C)

〉
. This calculation

is done for deformed Yang-Mills theory at θ = 0 in [1]. We refer the reader there for details,

and here we mainly quote the differences.
〈
W1/2(C)

〉
is expected to decrease exponentially

with the area of the minimal spanning surface,〈
W1/2(C)

〉
∼ e−T1/2(θ) Area(Σ) . (4.24)

Here Σ denotes the minimal surface with boundary C, and T1/2(θ) is the θ-dependent string

tension for 1
2 -representation. Such area law behavior implies the presence of an asymptotically

linear confining potential between static charges in 1
2 -representation, VR(x) ∼ T1/2(θ) |x| as

|x| → ∞.

The insertion of a Wilson loop W1/2(C) in the original theory corresponds, in the low-

energy dual theory, to the requirement that the dual scalar fields have non-trivial monodromy,∫
C′
dσ = 4π × (1

2) = 2π , (4.25)

where C ′ is any closed curve whose linking number with C is one. For an R2 filling Wilson

loop in the xy-plane, this is equivalent to finding the action of the kink solution interpolating

between σ = 0 at z = −∞ and σ = 2π at z = +∞. At leading order in semi-classical

expansion, we find,

T1/2(θ) ∼ Λ2(ΛL)−1/6
∣∣∣ cos

(
θ
2

) ∣∣∣1/2 (4.26)

Clearly, T (θ + 2π) = T (θ). At θ = π, the string tension vanishes at leading order in semi-

classical expansion just like the mass gap did. This means that at θ = π, and at leading

order in semi-classical expansion, the gauge theory does not confine. However, at subleading

(e−2S0) order, a much smaller string tension is generated due to magnetic bions. The string

tension at θ = π is,

T (π) ∼ Λ2(ΛL)5/3 (4.27)

We may also discuss the susceptibility of the string tension to the θ angle, χT = ∂2T (θ)
∂θ2

∣∣∣
θ=0

.

The conclusions are quite similar to the ones for the mass gap. Most importantly, the sus-

ceptibility is negative for SU(2). Since the string tension is a non-extensive observable, the

susceptibility must reach zero as N →∞. In other words, the string tension at N =∞ must

be θ-independent, as per our discussion in Section 1.

Deconfinement temperature: Consider the deformed YM on R3×S1
L, where we inserted the

subscript L to remind the reader that there is a deformation along this circle, and the theory

at any value of L is confining. In the small-L regime, we can examine the deconfinement

transition by semi-classical techniques by introducing a thermal thermal circle S1
β (with no

deformation), and considering the theory on R2 × S1
L × S1

β. At θ = 0, the physics near

the deconfinement temperature is described by a classical 2d XY-spin model with a U(1)→
Z2-breaking perturbation, and the transition temperature is, in the semi-classical domain,
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βd(θ = 0) = 4πL
g2 [37]. At θ = π, according to (4.17), the monopole effects disappear. If we

do not incorporate the magnetic bion term, the theory does not confine, i.e., the theory is

then in the deconfined phase for any T ≥ 0. Incorporating magnetic bions, for sufficiently

low temperatures the theory is confined, but we expect the deconfinement temperature to be

reduced with respect to θ = 0 case. At θ = π, the physics near the deconfinement temperature

is described by a classical 2d XY-spin model with a U(1)→ Z4-breaking perturbation. This is

same as SU(2) QCD(adj) discussed in [37]. In this latter case, βd(θ = π) = 8πL
g2 = 2βd(θ = 0).

Therefore, in terms of temperatures,

Td(θ = π) =
1

2
Td(θ = 0) (4.28)

To calculate Td(θ) for general θ is a more demanding task, but it is possible by using the RG

techniques described in [37]. As mentioned above, on physical grounds, we should expect a

lower deconfinement temperature at θ = π and indeed, this is the case.

Finally, in the large-N limit, the deconfinement temperature must exhibit θ independence

because it is a non-extensive observable, as per our discussion in Section 1.

4.4 CP-symmetry and its realization

In the microscopic theory, under CP, e−iθ
1

16π2

∫
trFµν F̃µν → e+iθ 1

16π2

∫
trFµν F̃µν . Since θ is 2π

periodic and the second Chern number is an integer for 4d instanton configurations, CP is a

(non-trivial) symmetry of the theory if and only if θ = π, because −π + 2π = π. At θ = 0,

Yang-Mills theory is believed to possess a unique vacuum. If so, at θ = π, the theory must

have two vacua, and spontaneously broken CP.

In order to see how this symmetry is realized in the long distance theory, recall the two

types of monopole amplitudes (4.4),M1 andM2. These amplitudes are periodic functions of

σ ∈ [0, 2π), leading to the Lagrangian (4.5). Since the microscopic theory possess an exact Z2

symmetry exactly at (odd-multiples of) θ = π, and no other θ, this must also be a symmetry

of the low-energy effective theory at exactly at (odd-multiples of) θ = π, and no other θ.

Consider the shift σ → σ + ψ. This rotates the amplitudes as

M1 → eiψM1, M2 → e−iψM2, [M1M2]→ e2iψ[M1M2] . (4.29)

Clearly, this is not a symmetry of (4.17) for general ψ. However, only at ψ = π, the phase

shift of both monopole amplitudes coincide Mi → (−1)Mi, and bion amplitude remains

invariant. Consequently, in low energy effective theory (4.17), cos
(
θ
2

)
cosσ → − cos

(
θ
2

)
cosσ

and cos 2σ → cos 2σ. This can be a symmetry of the theory if and only if the first operator

vanishes identically. This happens exactly at (odd-multiples of) θ = π.

The low-energy effective theory has a Z2 shift symmetry exactly at θ = π, and is described

by the Lagrangian

Ld =
1

2L

( g
4π

)2
(∇σ)2 − 2be−2S0 cos 2σ +O(e−4S0 cos 4σ) (4.30)

– 32 –



The effective theory obtained in deformed Yang-Mills theory at θ = π coincides with the one

in non-linear sigma models [38]. The potential has two minima within the unit cell related

by the Z2 shift-symmetry σ → σ + π, and a spontaneously broken CP-symmetry. CP, in the

small- S1 domain, is broken due to the condensation of a disorder (monopole) operator,

e−S0〈eiσ〉 = ±e−S0 (4.31)

Due to spontaneous breaking of CP, there must be a domain wall. Consider one filling R2

on xy plane. Then, the σ(z) must interpolate between the two vacua such that
∫∞
−∞ dσ = π .

The resulting domain wall tension scales as TDW(π) ∼ Λ3(ΛL)2/3.

Clearly, as the θ parameter is varied, there are not only quantitative but qualitative

changes in the behavior of gauge theory. At θ = π, despite the fact that the density of

monopole-instantons is exponentially larger than the density of magnetic bions, confinement,

the mass gap, and string tensions are sourced by the latter, and the theory has two vacua.

4.5 Continuity and evading the problems with 4d instantons

The problems associated with 4d instantons in an unbroken asymptotically free gauge theory

on R4 are well-know. Since the instanton size is a moduli, a self-consistent treatment of dilute

instanton gas approximation does not exist. (See, for example, section 3.6 in Coleman’s lecture

[20]. This is still an up to date presentation.)

In the semi-classical regime, the deformed theory exhibits abelianization, and the long

distance theory is described by SU(2)→ U(1) abelian group, much like the Coulomb branch

of supersymmetric theories. The gauge symmetry breaking scale is v ∼ 1
L . In our locally four-

dimensional spontaneously broken gauge theory, the instanton size moduli is cut-off by the

gauge symmetry breaking scale v, as in supersymmetric gauge theories with adjoint scalars,

such as N = 4 SYM. This sets the scale of the coupling constant entering to the 4d instanton

amplitude exp
[
− 8π2

g2(v)
+ iθ

]
. The only 4d instantons in the systems are the ones with size

less than v−1 ∼ L. Therefore, the 4d instanton expansion is justified.

However, as discussed in depth, the control over the 4d instantons is hardly the point.

The expansion on R3 × S1 is an expansion in monopole-instantons. It is the 3d instantons

and twisted-instantons (whose topological charge in a center-symmetric background is 1/2).

For general N , the topological charge for these defects is 1/N , and the correct expansion

parameter is

exp

[
− 8π2

g2N(v)
+ i

θ

N

]
(4.32)

In the semi-classical expansion, the 4d instantons with amplitude ∼ exp[−8π2

g2 ] are expo-

nentially suppressed and are not the origin of the most interesting physics. The expansion

parameter is (4.32), and not the 4d instanton amplitude. It is worth noting that (4.32)

survives the large-N limit.
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5 Quantum anti-ferromagnets and deformed Yang-Mills

In this section, we will outline a surprising relation between two dimensional quantum anti-

ferromagnets (AF) on bi-partite lattices, deformed Yang-Mills theory on R3 × S1, and by

continuity, pure Yang-Mills theory on R4. As reviewed below, the long distance theory for

the AF is defined on R2,1 in Minkowski space and the one of the dYM is also defined on R2,1.

We will demonstrate that AF with even and odd integer spin (not half-integer) is equivalent

to dYM with θ = 0 and θ = π, respectively.

The ground state properties of SU(N) quantum anti-ferromagnets on bi-partite lattices

in two spatial dimensions are studied in Ref. [4]. Following Ref. [4], call the two-sublattices

of the bi-partite lattice as A and B. One associates an irreducible representation of SU(N)

with nc rows and m-columns to sublattice-A and the conjugate irrep with nc rows and N−m-

columns to sublattice-B. For SU(N), in the low energy, large nc (spin) limit, the continuum

limit of the lattice system can be described by a NLσ model with a complex Grassmann

manifold (target space)

MN,m(C) = U(N)/ [U(m)× U(N −m)] (5.1)

supplemented with a Berry phase induced term. For m = 1, this corresponds to the CPN−1

model. The field theory has topological configurations, “hedgehog” type instanton events.

Ref. [4] expresses the low energy partition function as a dilute gas of instantons with complex

fugacities. The complexification of the fugacity is due to the Berry phase. Ref.[4] proposed

that the properties of the Coulomb plasma vary periodically with the spin nc of states on

each site, and that the ground state has a degeneracy

d(2S) = 1, 4, 2, 4, for nc = 2S = 0, 1, 2, 3 (mod4) (5.2)

According to Ref. [4], for a given nc, the fugacity of the monopole-instantons becomes complex

due to the Berry phase. The monopole amplitude is modified into

e−S0eiσ̃ −→ e−S0+iπnc
2
ζseiσ̃, ζs = 0, 1, 2, 3 (5.3)

Since the lattice is bi-partite, the unit cell of the lattice, similarly to staggered fermions in

lattice gauge theory, may be thought of as having a unit cell 2a × 2a. The monopole-events

emanating from each one of these four smaller cells (with size a× a) may acquire a different

phase depending on the value of nc. There are three inequivalent cases.

i) For nc = 0 (mod 4), the phase is zero. Then, there is only one type of monopole-

instanton event

M1 ∼ e−S0eiσ̃, (5.4)

whose proliferation generates the effective potential V (nc = 0) ∼ e−S0 cos σ̃ with a unique

ground state.

ii) For nc = 2 (mod 4), then there are two types of instanton events, which differ by a

phase shift π:

M1 ∼ e−S0eiσ̃, M2 ∼ e−S0+iπeiσ̃ (5.5)
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Clearly, these two events, in a Euclidean path integral formulation, interfere destructively,

and the effective potential is V (nc = 2) ∼ e−2S0 cos 2σ̃ with two ground states.

iii) For nc = 1, 3 (mod 4), then there are four types of instanton events,

M1 ∼ e−S0eiσ̃, M2 ∼ e−S0+iπ
2 eiσ̃, M3 ∼ e−S0+iπeiσ̃, M4 ∼ e−S0+i 3π

2 eiσ̃ (5.6)

These instanton events interfere destructively both at leading order (e−S0), as well as sub-

leading orders (e−2S0 , e−3S0). The effective potential is V (nc = 1) ∼ e−4S0 cos 4σ̃ with four

ground states.

Now, let us switch back to deformed Yang-Mills theory. This theory has two types of

monopoles, M1 and M2. At θ = 0, the amplitude M1 and M2 are identical. The theory at

θ = 0 (mod 2π) has a unique ground state, much like the nc = 0 (mod 4) case of the spin

system. However, when we introduce θ, we can in fact distinguish M1 and M2 monopole-

events.They have identical magnetic charge, but their topological phase are opposite in sign.

Using (4.18), the grand canonical partition function of the Coulomb plasma takes the

form

Z(θ) =
∑

n1,n1≥0
n2,n2≥0

∑
nb,nb≥0

eiθ[(n2−n2)+(nb−nb)] Z(n1n2n1n2, nbnb) (5.7)

where Z(n1n2n1n2, nbnb) is the canonical partition function for a fixed number of monopole-

instantons, bions. The crucial difference with respect to Polyakov model — apart from the

existence ofM2 monopole — is the existence of the θ-phase factor. The partition function is

2π periodic.

The partition functions of spin system with integer spin, for the first two cases listed

above, are

S ∈ 2Z =⇒ Z =
∑

n1,n2,n1,n2≥0

Zn1n2n1n2

S ∈ 2Z + 1 =⇒ Z =
∑

n1,n2,n1,n2≥0

eiπ[(n2−n2)+(nb−nb)]Z(n1n2n1n2, nbnb) (5.8)

which means that the deformed YM theory interpolates between even integer spin S ∈ 2Z
and odd-integer spin S ∈ 2Z + 1 as θ varies continuously from 0 to π,. In the S ∈ 2Z
partition function, we did not include bions because they give an exponentially suppressed

perturbation.

We reach to the following identification between the quantum anti-ferromagnet with spin

S and deformed YM theory with θ angle:

dYM at θ = 0 (mod 2π) ⇐⇒ AF at 2S = 0 (mod 4)

dYM at θ = π (mod 2π) ⇐⇒ AF at 2S = 2 (mod 4) (5.9)
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Spin in the AF is discrete, whereas the θ angle is continuous. Nonetheless, by inspecting

(5.7), we may identify13

θ ⇐⇒ πS (5.10)

There is a sense in which the θ angle in YM theory may be seen as a continuous version of the

discrete spin variable in the quantum spin system. The topological phase in Yang-Mills theory

can be identified with the Berry phase induced topological term in the MN,m(C) NLσ-model.

Note that the deformed YM theory does not capture the half-integer spin cases. For that,

one needs four different types of monopole instanton events, while dYM has only two types.

5.1 Berry phase versus 4d topological phase

It may sound surprising that Berry phase in the AF spin-system and topological phase in 4d

gauge theory may actually be identified. Both systems, in their long distance descriptions,

can be formulated on R3 in a Euclidean space.

However, it is well-known on R3 that an analog of the topological term of the 4d theory

does not exists. There is a 3d Chern-Simons term, but that does not play a role in our

problem; in fact, it would have been detrimental for the survival of long-range interactions

between monopoles. Then, it is crucial to understand, from a 3d long distance point of view,

how the compactified theory generates a topological phase for monopole-instantons. This

helps us to see why the effect of Berry phase induced action and the effect of the topological

phase are actually the same thing.

Ref. [4] shows, in some detail, that in the long-distance description of the quantum anti-

ferromagnets on bi-partite lattice, there exist a Berry phase induce term in the effective action

given by

SB =
∑
s

i
ncπ

2
ζs ×ms ms =

1

4π

∫
S2
∞

B.dS =
1

4π

∫
R3

∇B . (5.11)

We will not repeat their derivation here, and refer the reader to Ref. [4] for details.

The topological term in the locally four-dimensional Yang-Mills action, formulated on

R3 × S1, is the second Chern number. How does it relate to Berry phase induced term SB,

and more specifically, how does the first Chern number, the magnetic flux, even appear in the

long-distance description? Below, we will demonstrate the following statement connecting

the two.

The second Chern-number on R4, upon compactification on R3 × S1 and in a

background of a center-symmetric gauge holonomy, gives a contribution propor-

tional to first Chern-number (magnetic flux) of the topological configuration times

(±1
2) depending on the type of the topological defect. In other words, the center-

symmetric ‘dimensional reduction’ of the 4d topological θ term is the Berry phase

induced action (5.11) in anti-ferromagnets.

13The identification for the one dimensional spin chain (1+1 dimensional field theory) would be θ ⇔ 2πS,

and in that case, the difference is between the integer and half-integer spin. Gauge theory, however, is related

to spin systems in two spatial dimensions.
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The steps necessary to demonstrate this statement are already present in my work with

Poppitz in Ref. [16] on index theorem on R3×S1. Consider the topological charge contribution

in the action.

Q =
1

16π2

∫
R3×S1

trFµνF̃µν =
1

32π2

∫
R3×S1

∂µK
µ , (5.12)

The topological charge density is a total derivative and can be written as the divergence of

the topological current Kµ:

Kµ = 4εµνλκtr

(
Aν∂λAκ +

2i

3
AνAλAκ

)
. (5.13)

Consider the M1 monopole. Using the fact that for the static BPS background Kµ is a

periodic function of the compact coordinate y, we may re-write∫
R3×S1

∂µK
µ =

∫
d3x

∫ L

0
dy (∂4K4 + ∂mKm) = L

∫
R3

∂mKm .

Km is the spatial component of Kµ, given by

Km = 4εmijtr (A4Fij −Ai∂4Aj − ∂i(A4Aj)) . (5.14)

The only contribution to topological charges comes from the first term, which, using εijkFjk =

2Bi, can be written as 8trA4Bm. This is the gauge invariant magnetic field in the dimension-

ally reduced theory. This means that we can replace the spatial component of the topological

current with the magnetic field under the integral sign, namely
∫
Km =

∫
4vBm. Using the

explicit form of the gauge holonomy and the asymptotic form of the magnetic field, we obtain

8trA4Bm
∣∣
∞ = 4π

L
r̂m

r2 . Thus, the topological charge contribution reduces to

Q(M1) =
1

2

1

4π

∫
R3

∇B =
1

2

1

4π

∫
S2
∞

B.dS = +
1

2
(5.15)

Similar calculation for the M2 anti-monopole (or twisted anti-monopole) is more technical

due to twist. The magnetic charge of M2 is also +1. Using the result of Section 2.2 of

Ref. [16], we find the phase associated with M2-event as

Q(M2) = −1

2

1

4π

∫
R3

∇B = −1

2

1

4π

∫
S2
∞

B.dS = −1

2
(5.16)

As noted in (4.4), despite the fact that M1 and M2 have the same magnetic charge, they

acquire opposite topological phases upon introducing the θ angle. We obtain

exp

[
iθ

32π2

∫
R3×S1

F aµνF̃
a
µν

]
= exp

[
±iθ

2

1

4π

∫
R3

∇B
]

= exp

[
±iθ

2

1

4π

∫
S2
∞

B.dS

]
= exp

[
±iθ

2

]
, (5.17)
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respectively, for M1 (+) and M2 (−). This relation underlies the topological interference

effects. It is also the reason why the topological phase in gauge theory on R3×S1 and Berry

phase induced action in quantum anti-ferromagnets on R2,1 (R3 in Euclidean formulation)

coincides for certain values of θ, and that the phenomena that we have uncovered are a

generalization of the physics of Berry phases of spin systems.

Eq. (5.17) also instructs us that the sign problem in simulations of quantum anti-ferromagnets

and Yang-Mills theory with θ angle are equivalent problems in their respective semi-classical

regimes.

6 Discussion and prospects

As an end note, we would like to mention few ways to generalize this work and a new problem

in gauge theory.

Generalization: Deformations and continuity can be used to generalize our work to all

gauge groups. A more accessible theory is SU(N) QCD(adj) with light fermions endowed

with periodic (not anti-periodic) boundary conditions. This theory automatically satisfies

our continuity criterion. Moreover, by dialing the fermion mass term, it can be continuously

connected to Yang-Mills theory.

Mapping field theory θ-angle to Aharonov-Bohm effect: One direction that we find inter-

esting is a more direct link between the Aharonov-Bohm effect in ordinary quantum mechanics

and SU(N) gauge theory with θ angle. A certain modification of the TN (θ) model is related

to quantum field theory by using compactification on asymmetric three-torus. On torus, the

study of zero mode dynamics and magnetic flux sectors reduce to a basic quantum mechanics

problem with an Aharonov-Bohm flux [6]. Mapping the θ angle dependence of Yang-Mills

theory (in a semi-classical domain) to Aharonov-Bohm effect, the effects of a changing θ

and CP-symmetry breaking can be emulated through (superselection sectors) in quantum

mechanics.

What is the θ-angle in 4d gauge theory? Our construction also suggests that the θ

parameter of Yang-Mills theory may have a more interesting topological interpretation. Recall

the topological terms in 4d gauge theory and in quantum mechanics of a charged particle on

a circle,
iθ

16π2

∫
trFµνF̃µν , and

iθqm

2π

∫
q̇ (6.1)

In quantum mechanics, the presence of the theta term be reformulated as a “hole” in the

topology of the configuration space q(t), and

θqm ≡ |e|Φ
~c

=
|e|
~c

∫
~Bemd~S =

|e|
~c

∫
~Aemd~l (6.2)

where Bem and Aem are the magnetic field and gauge potential of electromagnetism. This

term follows from the usual minimal coupling, e~q. ~Aem. We can re-write the topological term
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in quantum mechanics as

i

2π
θqm

∫
q̇ =

i

2π

(
|e|
~c

∫
~Bemd~S

)
×
∫
q̇ (6.3)

We can see the tiny solenoid which supports the ~Bem flux as drilling a hole in the configuration

space and turning it a non-simply connected space. This gives θ angle a physical meaning in

quantum mechanics.

The question we are curious about is the analog of the (6.3) in quantum field theory. Per-

haps, θ angle in Yang-Mills can be reformulated as a “hole” in the topology of the configuration

space A(~x), much like the Aharonov-Bohm effect. It would be interesting to understand the

change in the topology of the configuration space of gauge theory which would induce the 4d

θ term. At another layer of abstraction, it would also be useful to understand the origin of

the θ-“flux” in gauge theory.
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