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Abstract

We develop a theoretical model of a clathrin protein lattice on a flexible cell membrane. The

clathrin subunit is modeled as a three-legged pinwheel with elastic deformation modes and inter-

subunit binding interactions. The pinwheels are constrained to lie on the surface of an elastic sheet

that opposes bending deformation and is subjected to tension. Through Monte Carlo simulations,

we predict the equilibrium phase behavior of clathrin lattices at various levels of tension. High

membrane tensions, which correspond to suppressed membrane fluctuations, tend to stabilize large,

flat crystalline structures similar to “plaques” that have been observed in vivo on cell membranes

that are adhered to rigid surfaces. Low tensions, on the other hand, give rise to disordered, defect-

ridden lattices that behave in a fluid-like manner. The principles of two-dimensional melting theory

are applied to our model system to further clarify how high tensions can stabilize crystalline order

on flexible membranes. These results demonstrate the importance of environmental physical cues

in dictating the collective behavior of self-assembled protein structures.
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I. INTRODUCTION

The assembly of biological subunits into larger, useful structures is a vital function within

all organisms. The protein-complex clathrin is one example of a component that assembles

to serve a necessary function in eukaryotes [1–4]. Clathrin facilitates inter- and intra-cellular

transport by assembling into cage-like structures [5, 6] that coat and stabilize cargo-laden

vesicles [7–9]. This process is central in clathrin-mediated endocytosis—an essential trans-

membrane cellular transport mechanism [10–12] that also relies on a collection of ancillary

proteins [3, 13, 14]. Coated membrane buds and vesicles have also been observed in vitro

without these additional components [15], demonstrating clathrin’s robust tendency to form

ordered structures on flexible membranes.

The attributes of clathrin structures in vivo are highly dependent on physical and bio-

logical conditions, with various sizes, shapes and lifetimes exhibited depending on cell type

and environmental conditions [16–20]. A fluorescence microscopy study by Saffarian et al.

has parsed through these structural variations to identify two distinct classes within which

they fall [21]. Small, curved “pits” are the canonical structures that coat membrane buds,

whereas large, flat “plaques” are internalized at a much slower rate than pits and only with

the help of a reorganizing actin cytoskeleton [20–22]. No evidence has been found of a

unique advantage of slow cargo internalization via plaques, suggesting that such structures

arise incidentally as a result of environmental factors and that any prevalence of plaques

corresponds to hindered cellular transport [21]. Furthermore, plaques are almost exclusively

observed on cell membranes that are adhered to a rigid substrate (e.g. a glass coverslip),

while pits exist on both the adherent and the free cell surface [21]. This raises the question:

which physical or chemical properties make plaques achievable on adhered membranes but

not on free, unadhered ones?

In this manuscript, we develop a physical model for clathrin self-assembly on a flexible

membrane. Through simulations of our model system, we show that a simple modification

of the physical behavior of a cell membrane is sufficient to stabilize plaque assemblies.

Specifically, when the out-of-plane membrane fluctuations are suppressed by an elevated

membrane tension, the clathrin lattice adopts an ordered crystalline structure. Alternatively,

a highly fluctuating membrane at low tension destabilizes the crystalline structure in favor of

a disordered, fluid-like phase. We supplement numerical simulations with arguments based
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FIG. 1 Schematic of two model clathrin triskelia bound to one another and coupled to a

deformable membrane. Clathrin and membrane deformation modes are labeled.

on two-dimensional defect-mediated melting theory to delineate a transition between the

crystalline and fluid phases at a critical tension, which is greater than typical physiological

values and perhaps brought about by anomalous environmental conditions such as adherence

to a solid substrate. These predictions highlight the important role that subtle changes in

environmental conditions play in altering the collective behavior of biological assemblies.

II. MODEL DESCRIPTION

In this section, we describe the components of our theoretical model, reserving some

mathematical details for the Appendix. Our simplified representations of clathrin subunits as

elastic pinwheels and the cell membrane as an elastic sheet enables us to address biologically

relevant behavior without enduring intractably long computation times, which would arise

from models with atomic-level detail.

A. Clathrin Model

A clathrin subunit has a total molecular weight of approximately 645 kDa and adopts a

three-legged “triskelion” structure [23]. Each of the three flexible legs consists of one “heavy

chain” and one “light chain” [24], extending outward from a central hub in a puckered

pinwheel configuration that is approximately 50 nm in diameter [25]. We model a clathrin

triskelion as a puckered pinwheel consisting of three straight legs emanating from a central

hub, as shown in Fig. 1.
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The model legs are capable of forming and breaking bonds with one another, represented

as struts between pairs of hubs. This is a simplification from the physiological scenario. In

real clathrin assemblies, each flexible clathrin leg not only binds to the legs of its nearest

neighbor hub with its proximal domain, but its distal domain extends past the near neighbor

along an adjacent edge of the assembled structure to interact with additional clathrin legs.

In this manner, each edge of a clathrin assembly includes four interwound legs [26]. Also,

experiments have shown that the multiple coordinated weak interactions between trimer-

ized legs are essential for assembly, as individual leg-leg affinities are too weak to stably

dimerize. This would lead to cooperative dynamics within the clathrin lattice assembly,

but the omission of these features in the model assembly mechanism will not affect our

conclusions on equilibrium condensed lattice phase behavior. We choose a singular leg-leg

affinity ε = 6.5kBT that results in consistently condensed assemblies. This value exceeds

a predicted minimum binding strength for stabilizing vesicles in vivo [27] and is half as

strong as an estimate based on fitting a thermodynamic model to cage-size distributions

in vitro [28]. It is also close to an order-of-magnitude estimate of 10kBT based on atomic

force measurements of triskelion removal from assembled structures [29]. Given the approx-

imations inherent in each of these experimental fits and the dependence of the affinity on

environmental conditions, our chosen value of 6.5kBT is within a realistic range.

Displacement of hubs when they are bound to each other causes the legs to deviate from

their minimum-energy configuration, incurring elastic stresses on the pinwheels through

four harmonic modes. The stretching modulus ks gives the resistance to elongation or

compression of the inter-hub bonds relative to their equilibrium length r0, and the twisting

modulus kt governs the resistance to torsion of these bonds. The in-plane bending modulus

kb governs the resistance to distortion of the legs away from an in-plane angle of 120o, and

the out-of-plane bending modulus ko gives the resistance to deformation of the triskelion

pucker angle away from an intrinsic value α0.

In our simulations, we assign ks = 85kBT/r
2
0 and kb = ko = kt = ksr

2
0/10, where kBT

is the thermal energy. Our previous work shows these elasticities result in a crystalline

lattice on a flat membrane [30]. Studies of clathrin conformations using electron micro-

graphs [31, 32] indicate that the subunit elastic moduli ks, kb, ko, and kt are slightly larger

than our chosen values (see Ref. [33] for details). The fundamental physical phenomena

presented in this manuscript are not affected by this discrepancy. We set α0 to be 101◦,
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giving the equilibrium angle between the normal of the hub (defined in A) and the leg. This

value is slightly smaller than those compatible with measurements of lone triskelia radii

through dynamic light scattering [34], as well as electron cryomicroscopy measurements of

triskelia shape in certain in vitro cages [35, 36]. However, 3D self-assembly simulations of

rigid subunits geometrically similar to ours (α0 = 101◦) have shown aggregation into cages

that include approximately 50-70 triskelia [37], which is fewer than in most experimentally

observed cages [17]. This indicates that α = 101◦ is a greater degree of puckering than is

observed in most self-assembled cages, suggesting that α0 may in fact be smaller than 101◦.

Our choice of the clathrin natural pucker angle is therefore within this range of experimen-

tally based estimates.

Unbound legs are assumed to adopt the minimum energy configuration, allowing us to

fully define the state of our clathrin assemblies by the position and orientation of each central

hub and the connectivity of each leg. The clathrin deformation energies are quadratic

in the deviation from the undeformed state (i.e. Hookean deformation energy). A full

mathematical description of our model appears in A.

This formulation builds upon our 2-dimensional model [30] by adding a 3-dimensional

position and orientation to the triskelion degrees of freedom. A variation of this model

is also employed to study in vitro assembly in the absence of cell membranes [38]. Other

researchers have developed alternative models for clathrin that provide insight into experi-

mental findings [37, 39–41]. These models rely largely on patchiness of the individual legs,

which are modeled explicitly. Unbound individual legs do not contribute to large-scale

lattice stiffness, so we do not treat them as separate degrees of freedom, reducing the com-

putational load while still predicting experimentally observed structures, as shown in our

previous publications [30, 38].

B. Membrane Model

The clathrin triskelia self-assemble on a cell membrane, which is modeled as a continu-

ous, elastic sheet of size Lx and Ly in the x and y coordinates, with periodic boundaries.

This representation is a valid approximation for studying undulations over length scales

significantly greater than the membrane thickness [42, 43]. We use the Canham-Helfrich

Hamiltonian [44–46] and assume the membrane locally exhibits small height fluctuations
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that are single-valued in the x -y plane, thus employing the Monge representation. The

membrane configuration is characterized by a height field h (~ρ) that quantifies its deviation

in the z -direction from the neutral plane at the x -y coordinate ~ρ. The bending modulus

κ gives the resistance to bending curvature, and the tension σ endues a resistance to the

generation of area. The membrane energy for a projected area A = LxLy is given by

Emem =

∫∫
A

d~ρ

{
κ

2

[
∇2h(~ρ)

]2
+
σ

2

[
~∇h (~ρ)

]2}
. (1)

We discretize the membrane as a rectangular mesh. The distance between mesh points in

the x-direction is equal to r0/2, and we set the number of uniformally-spaced mesh points in

the y-direction equal to that in the x-direction. This discretization is fine enough to represent

short-length membrane deformations that influence clathrin assemblies. First- and second-

order central difference formulas are used to compute the gradient and Laplacian terms,

respectively, in Eq. 1.

The importance that κ and σ play in dictating the response of h (~ρ) to thermal fluctu-

ations and other external forces (e.g. from associated protein lattices) can be understood

by considering the sizes of out-of-plane fluctuations as predicted by the equipartition theo-

rem [46],

〈|h~q|2〉 =
kBTA

κq4 + σq2
, (2)

where h~q is the 2D Fourier transform of h (~ρ) as a function of the discrete allowable wave

vectors ~q in our periodic system, and q = |~q|. As shown in Eq. 2, the short wavelength (i.e.

high q) undulations of membranes are dictated by κ, while the long wavelength undulations

are dictated by σ. The length scale at which the contributions from both properties are

approximately equal is Lc =
√

κ
σ
. This is an important length scale to consider when

adjusting model membrane properties. Undulations with a characteristic wavelength much

shorter than Lc are not sensitive to changes in tension, whereas long wavelength undulations

are insensitive to the bending modulus.

In our simulations, we examine a range of 6 finite tensions spaced logarithmically be-

tween 0.19kBT/r
2
0 to 19, 000kBT/r

2
0. Using the estimate of r0 = 16 nm from electron mi-

crographs [17], this range includes some of the lowest measured physiological tension values

(0.003pN/nm in neuronal growth cones [47]) and exceeds the higher values by more than an
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order of magnitude [48]. We also examine a perfectly flat membrane, representing infinite

tension.

The bending modulus of all simulated membranes is kept constant throughout our simu-

lations at a value of 4.7kBT , which is on the lower end of the physiological spectrum [49, 50].

These membrane parameters result in values of Lc in our simulations ranging between 0.02r0

to 5r0 at our finite tensions (Lc = 0 at infinite tension). Therefore, across our set of chosen

parameters, the membrane undulations separating two neighboring clathrin hubs range from

bending-dominated (Lc > r0) to tension-dominated (Lc < r0). The decision to vary tension

but not bending modulus is based on the fact that resistance to curvature is an inherent

physical property, while effective tension can be externally modulated. For example, tension

is altered by pressure differences across the membrane or by attachment to rigid surfaces [51]

such as the glass coverslips used in the observations made by Saffarian, et al. [21].

C. Clathrin-Membrane Coupling

The final component of our model system is the constraint that clathrin assemblies are

attached to the membrane surface. We achieve this in our simulations by fixing the position

of each clathrin hub in the z-direction to be equal to the height of the membrane mesh point

to which it is closest. In this way, membrane conformations directly influence the elastic

strain of clathrin lattices by dictating the orientations and positions of the hubs.

The geometric coupling between the membrane shape and the clathrin deformation leads

to two important effects that impact the thermodynamic behavior of our clathrin-membrane

model. The clathrin lattice may have a local honeycomb structure that adopts a flat confor-

mation that is commensurate with the energetically preferred flat membrane conformation,

thus increasing the effective rigidity of the membrane. If the local clathrin lattice has defects

associated with five- and seven-member ring structures, the clathrin locally prefers to form

curved regions that impart a deformation on the membrane. The resulting membrane shape

is therefore determined by the local clathrin lattice structure and the balance of deforma-

tion energies of the clathrin and membrane. These effects are explored further in Sec. III

and IV of this manuscript and discussed in the context of the thermodynamic behavior of

our model.

The physiological mechanism by which clathrin attaches to a cell membrane is in fact very
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complex and involves dozens of auxillary proteins (e.g. adaptor protein 2) to both form the

reversible membrane-clathrin linkages and localize other endocytic machinery [3, 13]. Direct

linkages between clathrin and these membrane-bound adaptor proteins are formed through

weak multivalent interactions, the most typical of which exhibit dissocation constants on

the order of 10µM (10kBT binding affinity) [52, 53]. Clathrin in membrane-bound pits

in vivo have been observed to exchange regularly with those in the cytoplasm through an

ATP-dependent process (e.g. the activity of the ATPase Hsc70) that may be essential for

full pit invagination [54].

The ability of clathrin to reversibly associate and dissociate with the membrane will

likely affect dynamic predictions of pit or vesicle assembly. In this manuscript, we address

the equilibrium behavior of our clathrin model for a fixed number of clathrin on the mem-

brane. A clathrin-binding model can be developed that includes a clathrin reservoir with a

fixed chemical potential, effectively converting our equilibrium model to an open ensemble.

Results from both the closed and open ensembles would give the same prediction for the

equilibrium behavior, so we focus on the more easily implemented closed ensemble in this

work. Future work addressing the dynamics of pit formation will incorporate binding and

unbinding as part of the assembly process.

D. Simulation Methodology

We use Monte Carlo simulations to determine the equilibrium phase behavior of clathrin

lattices on membranes at various tensions. The initial configuration is chosen to be a flat,

periodic honeycomb lattice of 1972 pinwheels (N = 1972) with perfectly satisfied bonds and

nearly square 2D dimensions of 51r0 × 50.23r0. A lattice of this size is sufficiently large

to avoid size-dependent results, as the observed phase behavior over our tested range of

tensions is no different than test cases on a lattice of significantly larger size (N = 2508).

Within each MC step, three types of moves are attempted. The Metropolis algorithm

is used to determine the probability of acceptance of each move using Boltzmann-weighted

acceptance criteria [55]. Specifically, if the resulting total energy change from each individual

move ∆E = ∆Eclath + ∆Emem is negative, then the move is accepted; while if ∆E > 0, the

acceptance probability Paccept is given by Paccept = exp (−β∆E).

The first move selects a randomly chosen membrane mesh point to move up or down in
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the z-direction, shifting the locally attached clathrin hubs with it so that each hub remains

coupled to the membrane in the manner described in Section II C. The orientations of nearby

hubs are also adjusted according to the convention described in Appendix A. The second

move translocates a randomly chosen hub in the x -y plane while adhering to the z-position

of the membrane and updating the orientations of other associated hubs. The third move

alters the binding state of a randomly chosen clathrin leg. If it is bound to another hub,

that bond is broken. Alternatively, if the leg is unbound, a new bond is formed with a free

leg of another hub that is randomly chosen from the collection of hubs located within a

distance of 1.5r0 from the original hub. The selection probabilities of all membrane moves

are influenced by the resulting adjustments to the clathrin lattice configuration, and clathrin

moves are influenced by the membrane configuration. Thus, this process ensures that the

membrane and clathrin are thermodynamically coupled to each other.

On our system of 1972 triskelia, we carry out 4 billion total Monte Carlo steps, for an

average of approximately 2 million steps per hub. We deem this procedure to be adequate

to reach the equilibrium behavior for our model systems, as no discernible changes in the

ensemble-averaged clathrin phase behavior occur beyond this many steps. An adaptive-

step algorithm is employed to ensure rapid convergence to equilibrium, in which attempted

displacement of the membrane grid points and the clathrin hubs are independently adjusted

after every 1000 steps if the ratio of accepted moves to total moves over that simulated time

frame is less than 0.45 or more than 0.55. This ensures a roughly 50% overall acceptance

ratio, so the hubs are effectively probing both thermodynamically improbable configurations

and the varied configurations energetically close to the ground state. Each parameter set is

tested by 10 independent MC simulations.

III. RESULTS

We use our clathrin-membrane model to explore the phase behavior of clathrin lattices

on a fluctuating membrane. Clathrin assemblies on membranes exhibit relatively small local

out-of-plane fluctuations, resulting in an effectively 2D system capable of possessing long-

range crystalline order. Such crystalline order is seen in large clathrin plaques on adhered

membrane surfaces [21]. These structures are also predicted in our 2D clathrin model [30].

Alternatively, a disordered fluid phase would enable the topological reorganization of sub-
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FIG. 2 Example images of a crystalline (top) and fluid (bottom) clathrin lattice, with portions

magnified to highlight the differences in local order and defect structure. The 7-sided clathrin

rings are highlighted with yellow circles, and the 5-sided rings are highlighted with cyan circles.

The 8-sided rings are only observed in the fluid example here and are highlighted with white

circles. Red and green clathrin legs are respectively bound and unbound to other legs.

units that can dynamically coat endocytic pits.

To predict the equilibrium phases of clathrin lattices, we examine at our systems through

the lens of 2D defect-mediated melting theory. This theory states that phase behavior in

2D is governed by the creation and interaction of topological defects [56–58]. Essentially,

systems with high densities of defects that are uncoupled to one another are in a fluid phase,

while fewer, coupled defects are the trademark of a crystalline phase. A detailed discussion

of this theory’s application to our simulated results is presented in Sec. IV.

Our clathrin model adopts a perfect lattice of hexagons in the ground state. Defects,

induced by thermal excitation, include non-6-sided rings, which are typically pentagons or

heptagons. We analyze our results by examining the density and arrangement of these

shapes in our lattices. Visualizations of the different macroscale lattice structures, as well as

zoomed-in images highlighting lattice structure, are shown in Fig. 2. The crystalline phase

contains a few defects that are closely coupled to each other in groups of two heptagons and

two pentagons, allowing the bulk of the lattice to adopt an ordered, honeycomb structure.
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FIG. 3 Snapshots of our simulations after 4 billion total MC steps (approximately 2 million MC

steps per hub), at different membrane tensions. Defects and free legs are colored as in Fig. 2.

In contrast, the fluid phase contains many more defects that are apparently not arranged in

any definitive structures, and the lattice only exhibits order over short length scales.

The identification of defects allows us to visually discern a systematic effect of tension on

our model systems. Representative snapshots of our equilibrated simulations with different

tensions are shown in Fig. 3. When the membrane tension is very high relative to most

physiological values (σ = 190kBT/r
2
0 and above), the associated lattice includes only a few
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defects, many of which exist as closely coupled sets of 2 pentagons and 2 heptagons. Overall,

it resembles a honeycomb crystalline state with a few small deviations. As tension decreases

and membrane fluctuations increase in magnitude, the prevalence of defects also increases.

At σ = 19kBT/r
2
0, there are defect-ridden patches within a mostly connected bulk honey-

comb lattice, as well as a greater number of void spaces and free legs. Tensions of 1.9kBT/r
2
0

or lower result in lattices that are significantly different from the ground state. Small patches

of regular hexagons appear immersed in a larger population of pentagons, heptagons, other

ring structures, and void spaces. These visual observations make it clear that our model

clathrin assemblies are qualitatively altered by the size of underlying membrane fluctuations.

To gain insight into the length-scale dependent membrane fluctuations, Fig. 4 shows the

effect that a lattice has on the underlying membrane behavior. For σ = 19kBT/r
2
0 and

1.9kBT/r
2
0, we show the simulated average values of the squared difference in membrane

height 〈[∆h (P )]2〉 between two membrane points separated by a distance P in the x -y

plane with and without associated clathrin lattices. An analytical prediction based on bare

membrane parameters (given in Ref. [59]) is also shown for comparison.

As analytically predicted, the size of membrane fluctuations at all length scales are larger

at the low tension than at the high tension. Simulations without clathrin match the analyt-

ical predictions at separations greater than several leg lengths. The slight small-separation

discrepancy is due to the discretization of our membrane, which is limited to roughly two

gridpoints per leg length for ease of computation. When clathrin is associated to the mem-

brane, the simulated fluctuations are smaller than the analytical predictions, due to the

stiffening effect that associated clathrin lattices have on membrane elastic parameters. This

effect is clearly demonstrated in Fig. 4 at a tension of 1.9kBT/r
2
0 (orange data set), and is

discussed in more detail in Sec. IV B.

We are also able to quantify the increase in defect density that is caused by reducing

membrane tension. A histogram of the types of topological structures existing at equilibrium

for all our simulated tensions is shown in Fig. 5. At infinite tension, nearly all rings within

the lattice are 6-sided, with minimal 5- and 7-sided rings that are characteristic of defect

population. As tension is decreased, resulting in larger membrane fluctuations, the number

of 5- and 7-sided rings steadily increases at the expense of the 6-sided rings, signifying a

decay in the regular structure of the lattice.

In addition to visual assessment of the state of clathrin lattices based on defect population
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FIG. 4 Plot of squared difference in membrane height versus separation in x -y plane. The light

orange and dark orange data are for σ = 1.9kBT/r
2
0, and the light green and dark green data are

for σ = 19kBT/r
2
0. The dark-colored dots are results of simulations with no clathrin attached to

the membrane, and light-colored dots indicate simulation results with clathrin. The lines are

analytical predictions of the equilibrium height fluctuations in the absence of clathrin, as given in

Ref. [59] and averaged across all orientations between locations in the x -y plane separated by a

distance P . Error bars give the standard error of the mean. Simulated data is averaged over 10

independent samples (with clathrin) or 5 independent samples (without clathrin). Insets show

fluctuating portions of the membrane with and without clathrin at the two tensions shown in the

plot.

and arrangement, we also can quantify the degree of orientational order of our clathrin

assemblies. The orientational-order correlation function is often used to determine if a 2D

system is in a crystalline or fluid state, and we apply it to our quasi-2D system for this

purpose.

Calculating the orientational-order correlation function requires us to map our honey-

comb clathrin lattices onto an equivalent hexagonal Bravais lattice, which is constructed

of points separated by linear combinations of repetitive primitive vectors. To make this

transformation, we first create a Voronoi diagram of the equilibrium lattice configuration

projected on the x -y plane [60]. The vertices of this diagram are clustered in the centers

of the rings of the original clathrin lattice. We delineate the boundaries between clusters

by performing an agglomerative heirarchical cluster analysis [61]. The dissimilarity between
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FIG. 5 Histogram of the average distribution of ring-sidedness normalized to the number of

6-sided rings in a perfect lattice. Simulated tensions include ∞ (black), 19, 000kBT/r
2
0 (purple),

1, 900kBT/r
2
0 (blue), 190kBT/r

2
0 (turquoise), 19kBT/r

2
0 (lime), 1.9kBT/r

2
0 (orange), and

0.19kBT/r
2
0 (red). Error bars are standard errors of the mean over 10 simulations per parameter

set. Rings of fewer than 5 sides or greater than 7 sides are too infrequent to compare on this

scale, but are more numerous at lower tensions.

points in this analysis is measured using a Euclidean distance that is normalized to the

square root of half the distance between hexagon centers in each dimension in a perfect

lattice. Linkages between clusters are made using the average linkage method. Creating a

lattice point at the centers of mass of each of these clusters results in a new array, which is

six-fold symmetrical in the undeformed state. Note that this new Bravais lattice is called

“hexagonal” owing to the fact that each lattice point is in the center of a hexagon formed by

other points, in contrast to our “honeycomb” lattice that lacks such symmetry. The lattice

spacing in this new system is also increased from r0 to
√

3r0.

The local orientational order ψ (~ρj) at the 2D location of the jth point in this new lattice

~ρj is given by

ψ (~ρj) =
1

nj

nj∑
k=1

exp[6iθjk (~ρj)] , (3)

in which θjk is the angle between the line connecting points j and k and a fixed reference

plane, and nj is the number of near neighbors to point j in the new Bravais lattice. The

orientational-order correlation function C6 (P ) between points separated by a distance P is

given by an average over all points separated by that amount within each system and across
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FIG. 6 The orientational order correlation function of simulated clathrin lattices, at different

membrane tensions. The colors correspond to the same tensions as in Fig. 5, with higher tensions

on the violet end of the visual spectrum and lower tensions on the red end.

an ensemble of simulations, such that

C6 (P ) = 〈ψ( ~ρf )ψ
∗(~ρi)〉, (4)

where |~ρf − ~ρi| = P .

2-dimensional melting theory shows that C6 of a crystalline phase tends to a constant at

large separation P , while fluid phases exhibit either power-law or exponential decays with

P [57, 58]. The behaviors of C6 with P for our simulated systems at different degrees of

membrane fluctuations are plotted in Fig. 6.

In agreement with the visual observations shown in Fig. 3, our calculated structural order

correlation functions demonstrate a marked effect of membrane fluctuations on clathrin

lattices. Membrane tensions greater than or equal to 190kBT/r
2
0 suppress fluctuations and

yield long-range orientational order, shown by the levelling off of C6, which is consistent

with a crystalline phase. Short length-scale oscillations are a natural result of measuring C6

at points that are displaced from the undeformed lattice points. As the tension decreases,

C6 behavior transitions from staying constant with separation to decaying with separation.

At the lowest tested tensions of σ = 1.9kBT/r
2
0 and 0.19kBT/r

2
0, the power law decay of

the orientational-order correlation function signifies a fluid phase. The intermediate tension

of σ = 19kBT/r
2
0 shows a distinctly intermediate degree of long-range orientational order,

which appears to level off in a crystalline-type trend, but our limited simulation length scales
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do not ensure that this function does not exhibit a power law decay either.

IV. DISCUSSION

Our computational results demonstrate the important role of membrane fluctuations on

a system that is ubiquitous in biology. Experiments and simulations of quasi-2D colloidal

systems (i.e. confined to a surface with small deviations) show that out-of-plane fluctuations

destabilize the crystalline phase, expanding the range of conditions where a fluid phase pre-

vails [62–64]. Out-of-plane fluctuations are modulated in our simulations by the membrane

tension. In this section, we show how analytical predictions of quasi-2D defect-mediated

melting theory support the existence of a phase transition at some critical tension σf , and

that our computational estimate of σf is within the range expected from this theory. We

also discuss alternative mechanisms for clathrin plaque assembly.

A. Defect-Mediated Melting in 2D

The theory of 2D defect-mediated melting developed by Kosterlitz, Thouless, Nelson,

Halperin and Young (KTHNY) [56–58] states that the crystalline-to-fluid transition in 2D

arises from defect formation and motion within the assembled lattice. The most common

defect within a crystal is a dislocation, which is characterized by an insertion of a half

lattice-line into an otherwise perfect surrounding lattice. Dislocations can arise in two-

dimensional crystals due to thermal excitation, but they only exist in tightly coupled pairs,

as the elastic cost of separation outweighs the entropic benefit of defect mobility. Above

some finite temperature that is dictated by the elastic properties of the crystal, the entropic

benefit of dislocation separation overcomes the elastic cost, and dislocations decouple from

one another. This decoupling marks a continuous, second-order phase transition from a

crystalline phase to a fluid phase. The predictions of KTHNY theory for 2D melting have

been borne out through numerous computational [65, 66] and experimental [67, 68] systems.

A dislocation pair in our model system consists of 2 heptagons sandwiched by two pen-

tagons. Two examples of this configuration are shown in the top right image of Fig. 2. A

dislocation pair can be generated by the rotation of a single bond, and subsequent bond

rotations lead to decoupling of the pentagon-heptagon (“5-7”) dislocations from each other
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(see Figs. 4 and 5 in Ref. [30]). Lone dislocations are confirmed to exist in clathrin lattices in

vivo through electron microscopy studies [69]. On a flat membrane, dislocation decoupling

results in an elastic energy of separation

Esep =
Y b2

4π

(
log

r

a0
+ c

)
. (5)

that scales logarithmically with separation distance r relative to the dislocation core radius

a0 [56, 57, 70]. The 2D Young’s modulus Y , dictates the energetic cost of dislocation

separation and can be directly related to our model’s in-plane elastic parameters ks and kb

through [30]

Y =
2ks

3
√

3

6 + η

2 + η
, (6)

where η = r20ks/kb. The magnitude of the dislocation Burger’s vectors b in the present case

is related to the lattice constant as b =
√

3r0. The constant c depends on the angle between

the Burger’s vector and the line connecting the two dislocations [56, 57, 70]. The in-plane

elastic moduli in our simulations correspond to Y ≈ 131kBT/b
2 ≈ 44kBT/r

2
0.

This interaction energy can be used to find a critical Young’s modulus Ydissoc below which

entropic benefits overcome Esep and a dislocation pair dissociates [71], given by

Ydissoc =
16πkBT

b2
. (7)

However, this expression for Ydissoc does not give the true elasticity at which a phase tran-

sition occurs, because this analysis so far neglects fluctuations that give rise to surrounding

dislocations at finite temperature. In fact, these fluctuations affect large-scale lattice rigidity.

The KTHNY recursion relations give the renormalized Young’s modulus YR (a) as a func-

tion of renormalized dislocation core radius a. YR is coupled to the renormalized dislocation

fugacity yR (a), given by

yR (a) ≡ exp [−EcR (a) /kBT ] . (8)

The renormalized dislocation core energy EcR (a) also depends on YR [56–58]. As a is

increased from a0 to ∞, the KTHNY recursion relations map the bare properties y and Y

to large-scale yR and YR. While yR may increase or decrease with a depending on the bare

properties, YR is always lower than Y , and vanishes completely below YR = 16πkBT/b
2,

corresponding to the crystalline-fluid transition. So while any ordered 2D system with a

Y < Ydissoc melts into a fluid phase, many systems with Y > Ydissoc are also fluid. Even with
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fluctuations, our simulated systems exist well within the crystalline region in purely 2D, as

Y
(2D)
R > 2Ydissoc.

B. Melting with Membrane Deformations

When an otherwise 2D system allows for out-of-plane deformation, as with clathrin on

a cell membrane, the interaction energy of defects is altered, changing the melting criteria

significantly. Consider a membrane’s behavior at length scales much less than Lc, a regime

that is large at low tension. The membrane may buckle around a dislocation in a way that

incurs a bending energy cost, but benefits from a reduction in in-plane elastic strain of the

2D crystal. Seung and Nelson have shown that such buckling around an isolated dislocation

can confine the 2D strain to a region characterized by a “buckling length” that scales as [72]

Lb ∼
κ

Y b
. (9)

In other words, Esep of a dislocation pair on a flexible tensionless membrane adopts the

same form as Eq. 5 for separations less than Lb, but is constant above that separation. At

sufficiently large system size and no tension, membrane fluctuations enable buckling at any

finite temperature, screening dislocations from one another and leading to the destruction

of crystalline order with any elastic parameters Y and κ [72, 73].

At length scales greater than Lc, tension contributions to membrane behavior overwhelm

bending contributions, and the dislocation interactions are altered further. Buckling around

a dislocation is resisted by the tension, which seeks to minimize surface area. Morse and

Lubensky have shown that the membrane flattens out around a lone defect, counteracting

any potential buckling, at some “flattening length” that scales as [74]

Lf ∼
Y b

σ
. (10)

Membrane buckling is therefore enabled at low tension, where Lc ≥ Lb, and suppressed

at high tension, where Lc ≤ Lf . These two inequalities are essentially the same condition,

as Lc/Lb ∼ Lf/Lc ∼ Y b/
√
κσ. Ignoring in-plane lattice fluctuations, buckling occurs and

dislocation pairs dissociate when the value

g ≡ Y b/
√
κσ (11)
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exceeds some critical value gc. Morse and Lubensky have numerically estimated gc ≈ 80 in

the continuum limit [74]. Because fluctuations further soften defect interactions, gc can be

considered the largest possible ratio of in-plane rigidity to out-of-plane rigidity that allow

a stable flat crystalline phase when Y
(2D)
R > Ydissoc. If g > gc, melting is certain, but it

is also possible for cases when g < gc if YR < Ydissoc. At our lowest simulated tension,

σ < 0.19kBT/r
2
0, our system has g = gc, so melting at that tension is expected, as well as

at higher tensions when considering fluctuations. This prediction is confirmed in Sec. III.

As is found in 2D melting, the presence of in-plane fluctuations significantly effects the

melting transition on a flexible membrane. When dislocation-induced buckling is accounted

for, the KTHNY recursion relations only apply on length scales shorter than Lb or longer

than Lf , the regimes in which effects of buckling are outweighed by the 2D interactions

between defects. It is therefore necessary to use recursion relations for yr and YR within

the regime Lb < a < Lf developed by Morse and Lubensky to bridge the renormalization

flow [74]. Unlike in 2D, the dislocation fugacity yR monotonically increases in this regime

along with a monotonically decreasing YR, because lattice stress does not increase with

increasing a around a buckled dislocation for Lb < a < Lf . As a result, many systems that

would reach a stable crystalline phase with finite YR in 2D but have Lf > Lb are driven into

a fluid phase when out-of plane deformation is allowed (see Fig. 5 of Ref. [74] for further

illustration of this effect).

In addition to in-plane lattice fluctuations at finite temperature, the membrane also

exhibits out-of-plane fluctuations, which cause the elastic parameters κ and Y to become

renormalized as a function of the membrane wavenumber q. These adjustments are only

significant on a fluctuating crystalline surface when q−1 is above some “non-linear” length

Lnl ∼ κ/
√
Y kBT that is at least several times larger than Lb [73, 74], and are weak when

q−1 > Lc [75]. Therefore, any membrane that has significant renormalization of elastic

parameters due to undulations is also subject to buckling around dislocations, as Lb < Lc.

Within the regime Lnl < q−1 < Lc, the effective bending modulus κR (q) is stiffened at

larger wavelength, following κR (q) ∼ q−0.82, and the Young’s modulus YR (q) deteriorates

as YR (q) ∼ q0.36. [76, 77] While the divergence of the bending modulus at large q−1 resists

membrane buckling around dislocations, the renormalization of the Young’s modulus still

lowers the energetic threshold for dislocation decoupling, the hallmark of melting from a

crystalline phase to a fluid phase.

19



Given these effects of membrane flexibility, in-plane fluctuations, and out-of-plane fluctu-

ations, we predict that our systems will exhibit a crystalline-to-fluid phase transition at some

finite tension σf . Ignoring membrane fluctuations, this transition is expected when g ≈ gc

and lone dislocations are stabilized by buckling. Because membrane buckling enhances the

softening effect of in-plane fluctuations on the renormalized Young’s modulus YR, g (YR)

exceeds g (Y ), and σf is higher than that which would give g ≈ gc using bare parameters.

The presence of membrane undulations reduce YR even more, elevating σf further.

Our Monte Carlo simulations have predicted a value of σf that is consistent with the

theory presented in this section. The lowest simulated tension (σ = 0.19kBT/r
2
0) decayed to

a fluid phase, as expected from the prediction that buckling would occur based on the bare

elastic moduli (g = gc). At tension 10 times higher, fluctuations soften the in-plane elasticity

and a fluid phase is once again achieved. While increasing the tension yet another ten times

appears to restore some order to the system, a crystalline state clearly emerges when tension

is raised yet again, to σ = 190kBT/r
2
0. This leads us to the conclusion that the value of σf

lies somewhere between 1.9kBT/r
2
0 and 190kBT/r

2
0. This range encapsulates the upper end

of measured values in normal, resting cells [48, 78], which is consistent with the absence of

crystalline plaques on freely fluctuating biological membranes. It is also noteworthy that

simulations with Lc ≥ r0 prefer a fluid phase, and simulations with Lc � r0 have crystalline

phases. In other words, when height undulations of wavelength equal to the lattice spacing

are dominated by bending as opposed to tension, the crystalline phases are stabilized.

Our estimate of σf would be altered for a system in which physical properties differ signif-

icantly from the parameter set chosen. For instance, if the membrane bending modulus κ is

larger than 4.7kBT , as is the case in most cells [50], this will inhibit the ability of the lattice

to screen defect interactions through buckling, effectively decreasing σf . Different estimates

of the clathrin subunit stiffness would also affect the phase boundary, with the out-of-plane

bending and twisting moduli (ko and kt) of the model clathrin pinwheels supplementing the

membrane bending modulus by resisting out-of-plane deformation. Other elastic proper-

ties of the subunits affect the phase boundary in a less simple manner. While increasing

their stretching and in-plane bending moduli (ks and kb) increases the bare Young’s modu-

lus Y , which stabilizes the crystalline phase in 2D, such adjustments have the potential to

broaden the buckling window between Lb and Lf if membrane parameters are sufficiently

soft, thereby also increasing the likelihood that out-of-plane deformations stabilize a fluid

20



phase. The exact affect of ks and kb on σf therefore varies based on the membrane properties.

One difference between our model and physiological conditions is the irreversible nature

of clathrin-membrane associations. Our treatment fixes the number of clathrin on the mem-

brane, resulting in a density that is sufficiently large to have a single percolated clathrin

network in either a fluid or crystalline phase. However, large membrane fluctuations that

are shown to induce lattice disorder may also be strong enough to strain the bonds link-

ing adaptor proteins to clathrin and cause their dissociation, resulting in lower density of

membrane-bound clathrin. Reducing density is a definitive way to induce a phase transition

from a crystal to a fluid [62]. These effects could be addressed by either performing a range

of simulations with different densities or by performing simulations with clathrin binding

and unbinding, i.e. exchanging with a clathrin reservoir with a fixed chemical potential.

Fluctuation-induced depletion of clathrin at a fixed chemical potential (i.e. fixed concentra-

tion of clathrin in the cytoplasm) would amplify the lattice destabilization from membrane

fluctuations that we discuss in this manuscript.

C. Alternative Explanations for Clathrin Plaques

The stabilization of clathrin plaques due to the suppression of membrane fluctuations

suggests that these structures may arise incidentally as a result of experimental conditions,

but it does not necessarily rule out their potential to serve a biological function. Plaques have

been conjectured as a possible intermediate step on the way to pit formation [79, 80], possibly

due to frequent electron micrographs showing localization of the two structures neighboring

each other on membranes [69, 81], and the fact that changes in the cytoplasmic acidity can

induce curvature in otherwise flat lattices [18]. Computational models of clathrin assembly

have shown how a subtle change in the triskelion’s pucker angle could drive the transition

from plaques to pits [40]. However, live cell imaging has not provided any evidence for this

dynamic configurational change, and the extensive molecular rearrangement required for

such a transition is considered unlikely [2]. Our simulations show that membrane fluctuations

are capable of destabilizing plaques without dynamically altering the subunit properties.

Alternative explanations of plaque assembly may be biochemical in nature. For example,

the depletion of cholesterol in the plasma membrane [82, 83] or interference with intracellular

cholesterol trafficking ability [84] has been shown to foster large plaques of clathrin that are

21



resistant to internalization, though the mechanism of this effect is unclear. In the case of

cells adhered to solid surfaces, there may be yet unspecified cytoskeletal adjustments made

upon adhesion that enable plaque assembly over pit assembly [21]. While such biochemical

pathways are not disproven, they are not as simple as membrane properties physically al-

tering the clathrin lattice to determine its preferred phase. In fact, experiments have shown

that decreasing membrane tension is correlated with increased endocytosis activity [85], a

condition that seems to indicate a prevalence of pits over rigid plaques. Recent numerical

computations have also shown that membrane bending rigidity influences the morphology

of clathrin pits [86]. These examples further demonstrate the principle that membrane

properties have a profound impact on associated clathrin structures.

V. CONCLUSIONS

In this work, we show that membrane fluctuations are a critical determinant of whether a

clathrin lattice exists in a crystalline structure or a fluid phase. Qualitative visual inspection

and quantitative structural order calculations demonstrate a systematic decay of crystalline

order as tension is decreased and membrane fluctuations increase, until the point at which

crystalline lattices are completely destabilized and enter the fluid phase. Our computations

show that crystalline clathrin lattices on a flexible membrane are only stabilized at ten-

sions above normal physiological values. Predictions from quasi-2D defect-mediated melting

theory align with these findings.

Experimental observations in vivo [21] also show agreement with our results, as two

distinct phases of biological clathrin assemblies are identified, corresponding to distinct

membrane conditions. Large, flat plaques, which slowly internalize with help from the actin

cytoskeleton are much more likely to assemble on membranes that are adhered to solid

substrate surfaces. On the other hand, small, curved pit-like structures with non-hexagonal

facets are able to form on freely fluctuating cell membranes. These observations compare

favorably with our theoretical predictions that membranes restricted in their fluctuations

enable the formation and stability of highly ordered crystalline structures.

Based on our findings, the collective behavior of clathrin can be changed from a crystalline

phase to a fluid phase by modulating membrane tension. This physical effect represents a

simple environmental cue that induces major changes to the properties of a clathrin lattice.
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The complex process of endocytosis requires the lattice to undergo structural rearrangement

to accommodate the specific cargo size and shape with a subsequent stabilization of the

lattice when the desired structure is achieved. Our work represents a simple mechanism

by which such local changes in behavior can be induced through the local suppression of

membrane fluctuations.

APPENDIX A: CLATHRIN MODEL

Clathrin triskelia are represented as three-legged pinwheels, shown in Fig. 1. Each un-

bound leg is capable of forming a bond with an unbound leg of another triskelion, causing

a reduction in energy equal to ε. When an individual leg is unbound to any others, it is

assumed to adopt an extension and orientation relative to its origin hub that minimizes the

triskelion’s elastic energy. However, when two legs are bound together, the position and

orientation of their origin hubs can incur elastic stresses on the resulting structures through

four harmonic modes. The orientation of hub i is characterized by the vector ~ni that is

normal to the plane created by the ends of its three legs. Specifically, if the location of the

end of the mth leg of pinwheel i is given by ~r
(m)
i , then this normal vector is defined by

~ni =

(
~r
(2)
i − ~r

(1)
i

)
×
(
~r
(3)
i − ~r

(1)
i

)
∣∣∣(~r(2)i − ~r(1)i )× (~r(3)i − ~r(1)i )∣∣∣ . (A1)

The state of pinwheel i is fully defined by its hub’s position ~ri, ~ni, and the bond connec-

tivity of its three legs, which is characterized by the link indicators Lij and the leg index

indicators λji for all the hub indices j of the other pinwheels in the model. If hubs i and j

are bound, then Lij = 1, whereas if they are unbound, then Lij = 0. The leg index indicator

λji gives the leg index (between 1 and 3) of the leg on hub i that connects to hub j, and

λji = 0 if Lij = 0.

The total energy of a collection of N pinwheels in our model is given by
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Eclath =− ε
N−1∑
i=1

N∑
j=i+1

Lij + kr

N−1∑
i=1

N∑
j=i+1

H (d− rij)

[(
d

rij

)4

− 1

]

+
ks
2

N−1∑
i=1

N∑
j=i+1

(rij − r0)2 Lij +
kt
2

N−1∑
i=1

N∑
j=i+1

γ2ijLij

+
kb
2

N∑
i=1

N−1∑
j=1

N∑
k=j+1

χjki
(
λji , λ

k
i , λ

l
i

)
LijLik

+
ko
2

N∑
i=1

N∑
j=1

(
αji − α0

)2
Lij.

(A2)

A hard core potential is modulated by the repulsive strength kr, which is set to 1kBT . It

imposes steric limitations on the locations of the hubs, and is activated between hubs i and

j by the Heaviside step function H(x) only when the separation between the two |~rj −~ri| =

|~rji| = rji is less than a cutoff distance d, which is set to 0.8r0. The stretching modulus, ks,

resists elongation or compression of the inter-hub bonds relative to their equilibrium length,

r0, and the twisting modulus kt, resists torsion of these bonds. The twisting angle between

hubs i and j, γij, is based on the misalignment of the components of ~ni and ~nj that are

orthogonal to the unit vector defining their connecting bond ~tji =
~rji
rji

, as given by

γij = cos−1

((
~ni × ~tji

)
·
(
~nj × ~tji

)
|~ni × ~tji||~nj × ~tji|

)
. (A3)

The in-plane bending modulus kb resists distortion of the legs beyond a uniform radial

distribution when projected onto their normal plane, i.e. it resists deviation of the in-plane

angle θjik between legs on hub i that are connected to hubs j and k from a value of 2π
3

.

Because the configuration of unbound legs is assumed to minimize the elastic energy, the

value of the in-plane bending metric χjki depends on the binding state of all three legs on

hub i. Specifically, χjki =
(
θjik − 2π

3

)2
if there exists a hub l for which λli is non-zero, and

χjki = 3
2

(
θjik − 2π

3

)2
otherwise. To prevent re-ordering of the legs around the central hub,

we measure the angles between them in a counter-clockwise fashion from leg 1 to leg 2, leg

2 to leg 3, or leg 3 to leg 1. Therefore, defining ~τji to be the projection of ~tji in the plane

orthogonal to ~ni, and with the example λji = 1 and λji = 2, the in-plane angle is calculated

to be θjik = cos−1 (~τji · ~τki) if ~τji × ~τki ≥ 0, or θjik = 2π − cos−1 (~τji · ~τki) if ~τji × ~τki < 0.

The out-of-plane bending modulus, ko resists deformation of the triskelion’s pucker angle
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away from an intrinsic value, α0. An unpuckered, planar clathrin structure corresponds to

α0 = 90◦. The pucker angle contribution αji to hub i from its leg connecting to hub j is

given by αji = cos−1
(
~ni · ~tji

)
.
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