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A novel coupling of the transverse betatron motion to the longitudinal microwave instability is studied. Besides the 
radial coherent dipole mode space charge field, simulation and theoretical studies in this paper show that the 
longitudinal coherent dipole mode space charge field due to centroid wiggles also plays an important role in the 
isochronous regime, it induces betatron oscillation frequencies in temporal evolutions of spectra of longitudinal charge 
densities, radial centroid offsets and coherent energy deviations of local centroids. 
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I. INTRODUCTION 
 
In recent years, high power isochronous cyclotrons have been considered for applications in scientific 

research, medical therapy, etc. A bottleneck that limits the operation of a high power isochronous cyclotron 
is the beam instability induced by the space charge force. Gordon [1] explained the physical origin of 
vortex motion and deformation of beam shape in cyclotrons. In the last decade, additional extensive studies 
on the space charge effects in isochronous regime have been done through numerical simulations, 
experiments and analytical models [2-9].   
  Pozdeyev and Bi proposed their own models and theories to explain the mechanisms of microwave 
instability of a coasting long bunch with space charge in circular accelerators operating in the isochronous 
regime [5-7], respectively. The two models only take into account the radial coherent dipole mode space 
charge field due to beam centroid wiggles and longitudinal monopole mode space charge field originating 
from line charge density modulations, none of them discusses the effects of longitudinal coherent dipole 
mode space charge field on evolution of beam instability due to beam centroid wiggles. The perturbation 
wavenumber k in Pozdeyev’s model and growth rate formula [5, 6] is defined in the sinusoidal radial 
centroid offset function of a beam with uniform charge density, while in Bi’s model and growth rate 
formula [7], the perturbation wavenumber k is defined in the line density modulation function. Actually the 
growth rates spectra of the line charge densities and radial centroid offsets are different. The relation and 
interaction between the spectral evolutions of two parameters of different meanings in physics are not 
discussed in the two models. The missing term of unperturbed line density in the calculation of radial 
coherent space charge field in [7] also makes the growth rates formula not compatible with the scaling law 
with respect to beam intensity observed in simulations and experiments [3, 5, 6].  
   Simulation studies in this paper show that the microwave instability in isochronous regime is usually 
characterized by betatron oscillations superimposed on exponential growths. These phenomena cannot be 
explained by the two existing models with conventional 1-dimensional microwave instability growth rate 
formula which can only predict pure exponential growths. A theoretical discussion in this paper explains 
that the above beam behaviors primarily originate from the longitudinal coherent dipole mode space charge 
field of the beam centroid wiggles, the interaction and correlation of temporal spectral evolutions between 
line charge densities, radial offsets and energy deviations of local centroids are also revealed by a set of 
longitudinal and radial equations of motion taking into account both the radial and longitudinal coherent 
dipole mode space charge fields.  
  This paper is organized as follows. Sec. II gives a brief introduction to Small Isochronous Ring (SIR) and 
simulation code used. Simulation and theoretical studies of the temporal spectral evolution of beam 
parameters affected by both longitudinal and radial coherent space charge fields are provided in Sec. III and 
IV, respectively. 
_____________________ 
 
* liyingji@msu.edu     

SLAC-PUB-15748

Work supported in part by US Department of Energy under contract DE-AC02-76SF00515.

Published in arXiv:1309.6670.



2 
 

II.   SMALL ISOCHRONOUS RING AND CYCO 

To simulate and study beam dynamics, especially the space charge effects in high power isochronous 
cyclotrons, a low energy, low beam intensity Small Isochronous Ring (SIR) was constructed at the National 
Superconducting Cyclotron Lab (NSCL) at Michigan State University (MSU) [3, 4]. Its main parameters 
are shown in Table 1.                              

 
                                                  Table 1   Main Parameters of SIR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Small Isochronous Ring consists of a multi-cusp Hydrogen ion source, an injection line and a 

storage ring. The ion source can produce three species of Hydrogen ions, an analyzing dipole magnet under 
the ion source is used to select the H2

+ ions which are usually used in the experiments. The H2
+ ion beam 

with desired bunch length can be produced by a chopper and its Courant-Snyder parameters may be 
matched to the storage ring by an electrostatic quadruple triplet. The storage ring mainly consists of four 
identical flat-field bending magnets with edge focusing; the 26o rotation angle of pole face of each magnet 
provides both vertical focusing and isochronism. There is no RF cavity in the storage ring. After injection 
to the storage ring by a pair of fast-pulsed electrostatic inflectors, the bunch can coast in the ring up to 200 
turns. There is an extraction box located in the drift line between the 2nd and 3rd bending magnets, a pair of 
fast pulsed electrostatic deflectors in the extraction box can kick the beam either up to a phosphor screen 
above the  median ring plane, or down to the Fast Faraday Cup (FFC) below the median ring plane. The 
phosphor screen and FFC are used to monitor the transverse and longitudinal beam profiles, respectively. 
We can also perform energy spread measurement if the FFC assembly is replaced by an energy analyzer 
assembly.   

CYCO [3] is a 3-dimensional Particle-In-Cell (PIC) simulation code that was developed by Pozdeyev to 
study the beam dynamics with space charge in isochronous regime. It can numerically solve the complete 
and self-consistent system of six equations of motion of charged particles in a realistic 3D field map 
including space charge field.  Because of large aspect ratio between the width and height of the vacuum 
chamber of storage ring, the code only includes the image charge effects in the vertical direction. The 
rectangular vacuum chamber is simplified as a pair of infinitely large ideally conducting plates parallel to 
the median ring plane.  

III. SIMULATION STUDIES ON EVOLUTIONS OF BEAM PARAMETERS IN 

ISOCHRONOUS RING 

In order to acquire detailed information and properties of microwave instability in isochronous ring, in 
this section, we will present the simulation methods and results for long-term spectral evolutions of beam 

Parameters Values 
Ion species H2

+ 
Kinetic energy 20 keV 
Beam current 5-25 mA 
Bunch length 15 cm- 5.5 m 
Betatron tunes νx=1.14,  νy=1.11

Slip factor η0= 2ä10-4 
Circumference 6.58 m 

Rev. period 4.77 ms 
Life time ∼ 200 turns 

Beam radius ∼ 0.5 cm 
Chamber width 11.4 cm 
Chamber height 4.8 cm 
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parameters based on Fast Fourier Transform (FFT) technique. Here the term ‘long-term’ denotes a time 
scale of multiple betatron oscillation periods.  

The simulation study of linear stage of long-term microwave instability was carried out for a macro-
particle bunch with initial beam intensity I0 = 10 uA, kinetic Energy Ek0 = 19.9 keV, bunch length τb = 300 
ns (∼40 cm), radial and vertical emittance εx,0 = εy,0 = 50 p mm*mrad using CYCO. The bunch has a 
uniform initial distribution in both 4-dimensional transverse phase space (x, x’, y, y’) and longitudinal 
charge density. Figure 1 shows the evolution of top views of beam profiles. The beam moves from left to 
right. We can observe the beam shape is deformed and amplitudes of line charge density modulations 
increase with turn number due to space charge force.  

 

FIG. 1. (Color) Evolution of top views of beam profiles. 

FFT analysis was performed for spectral evolutions of line charge densities, radial offsets and energy 
deviations of centroids with respect to longitudinal coordinate z. Considering the strong nonlinear beam 
dynamics in bunch head and tail, only the beam profiles of central half of the bunch is used in FFT analysis. 
The analysis results of some chosen perturbation wavelengths are shown in Figure 2 - Figure 4, 
respectively.   

  It is clearly shown that there are many oscillations superimposed on the exponential growth curves in 
these figures. Because the radial betatron tune of SIR beam is 1.14, the betatron oscillation period is about 
1/0.14 ≈7 turns, it is easy to judge that these oscillations are induced by the coupling of betatron 
oscillations.  Figure 2 shows coupling from transverse betatron oscillations to longitudinal line charge 
densities. It is the first time to clearly observe this coupling to our knowledge. Actually, an indication of 
similar oscillations can be found in Figure 9 of [6], where there is a fast instability growth due to high beam 
intensity.  

The betatron oscillations in Figure 2 cannot be explained by the existing models and theories of 
microwave instability in [6-7], which can only predict pure exponential growth of perturbed line charge 
densities. In fact, they are induced by the longitudinal coherent dipole mode space charge field due to 
centroid wiggles which will be explained in Sec. IV.  
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FIG. 2. (Color)   Evolution of harmonic amplitudes of normalized line charge densities.   

 

FIG. 3. (Color)  Evolution of harmonic amplitudes of radial centroid offsets.  

 

FIG. 4. (Color)   Evolution of harmonic amplitudes of energy deviations.  
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IV. THEORETICAL STUDIES OF EVOLUTIONS OF BEAM PARAMETERS IN 

ISOCHRONOUS RING 

  

  In isochronous ring, the gradient of longitudinal line charge density of a coasting bunch may induce 
longitudinal space charge fields, coherent energy deviations and the associated centroid offsets. For 
simplicity, we assume both centroid offset xc (z, t) and line charge density Λ (z, t) consist of only a single 
harmonic component neglecting the nonlinear coupling between the chosen components and other 
components. For general purpose, we also assume there is no correlation between wavenumbers kc of xc (z, 
t) and k of Λ(z, t). Using the relation of phase Φ = ks - ωt + φ0 = k (z + v0t) - ωt + φ0 = kz - ωt + kv0t + φ0, 
where φ0 is initial phase at t = 0 and s = 0, v0 = βc is the velocity of on-momentum particles, then the local 
beam centroid xc (z, t), line charge density Λ (z, t) and beam intensity I (z, t) can be expressed as:  

                                                          
)(ˆ),( ccc tzki

cc eatzx φω +−=                                                               (1) 

                                            )(
010

ˆ),(),( φω +−Λ+Λ=Λ+Λ=Λ tkzietztz                                                 (2)   

                                                
)(

010
ˆ),(),( φω +−+=+= tkzieIItzIItzI                                                 (3)   

where φc (t) = kcv0t + φ0,c, φ(t) = kv0t + φ0, cI βΛ= ˆˆ , and amplitudes câ , Λ̂ , Î are all real numbers. ω and 

ωc are perturbation frequencies of line charge densities and radial centroid offsets, respectively.  

A. Longitudinal coherent  dipole mode space charge field and impedance  

  The centroid wiggles produce not only the radial coherent dipole mode space charge field Ex as pointed 

out by [6], but also its longitudinal counterpart )1(
sE as shown in Figure 5.  

 

FIG. 5.  (Color) Space charge components on local centroid with coordinate (xc, z) at time t.  

The total longitudinal coherent space charge field on a local beam centroid can be approximated as: 

                                                        ),(),(),( )1()0( tzEtzEtzE sss +=                                                         (4) 

 where the first and second terms in Eq. (4) are longitudinal coherent space charge fields of monopole  and 
dipole modes generated by line charge density modulations and centroid wiggles, respectively. If we adopt 
Pozdeyev’s  circular beam model of radius r0 in free space [6], the first term of Eq. (4) can be approximated 
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by on-axis value of space charge field of circular beam in free space, which can be calculated by setting r = 
0 and radius of chamber wall rw = ∞ in Eq. (17) of [7] as:  

                                                   
)](1[

ˆ
),( 0102

00

)(
)0( krKkr

kr
eitzE

tkzi

s −Λ−=
+−

πε

φω

                                             (5) 

Where ε0 = 8.85×10-12 F m-1 is the permittivity of free space, r0 is beam radius, k is line charge density 

perturbation wavenumber,  K1(x) is the modified Bessel function of the second kind. 

The corresponding longitudinal monopole mode space charge impedance in low energy and short 
wavelength limit is [6]: 
 

)](1[2)()( 0102
0

0||
,0 krKkr

rk
RZikZkZ sc −==

β                                          (6) 

Where Z0 = 377 Ω is the impedance in free space, R is average ring radius, β is relativistic speed factor.

 

 
When a beam has centroid wiggles induced by longitudinal space charge field, according to Eq. (4) of [6], 
the radial space charge field on a particle with coordinate (x, z) can be estimated in SI unit system as:          

 

                                              
)](),([

2
),,( 0102

00

0 rkKrktzxx
r

tzxE cccx −Λ=
πε                                   (7) 

Where Λ0 is the unperturbed part of line charge density, xc (z, t) is the time-dependent local radial centroid 
offset.  
Let x = xc (z, t) in Eq. (7), the radial coherent dipole mode space charge field on local centroid becomes: 
 

),()](1[
2

),( 0102
00

0 tzxrkKrk
r

tzE cccx −Λ=
πε                                      (8) 

Because the curl of electric field is 0, the longitudinal coherent dipole mode space charge field on a particle 
can be calculated as: 

z
tzxxrkKk

rz
tzxEx

x
tzxExtzxE c

cc
xs

s ∂
∂Λ−=

∂
∂=

∂
∂= ),()(

2
),,(),,(),,( 01

00

0)1(

πε   
                 (9) 

Let x = xc (z, t) in Eq. (9),   with Eq. (1), the longitudinal coherent dipole mode space charge field on local 
centroid becomes: 

),()(
2

)(
2

ˆ
),( 2

01
2

00

0)(2
01

2

00

2
0)1( tzxrkKk

r
ierkKk

r
aitzE ccc

tzki
cc

c
s

ccc

πεπε
φω Λ−=Λ−= +−

                    (10) 

Eq. (8) and Eq. (10) show the radial and longitudinal coherent dipole mode space charge fields on local 
centroid are proportional to xc and xc

2, respectively. This property is determined by the paraxial electric 
field potential as shown in Eq. (3.33) of [10].  

Eqs. (4)(5)(10) give the total longitudinal coherent space charge field on a local beam centroid as: 

                           
)](1[

ˆ
),( 0102
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)(

krKkr
kr

eitzE
tkzi
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πε

φω
)(2

01
2

00

2
0 )(

2
ˆ
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πε
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                  (11)                                     
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  The longitudinal dipole mode space charge wake potential over ring circumference C0 [11, 12] is: 

                                                ),(),( 2
0

||
,10

)1( tzxIZCtzEV cscs −==                                                 (12) 

where ||
,1 SCZ is the longitudinal dipole mode space charge impedance with a unit of Ωm-2, which can be 

calculated from Eq. (10) and Eq. (12) as: 

                 )( 01
2

0

0||
,1 rkKk

r
RZiZ ccsc β

=                                                      (13) 

Figure 6 shows the calculated longitudinal monopole and dipole modes space charge impedances  of a 
circular H2

+ beam with emittance of 50 π mm*mrad and kinetic energy of 19.9 keV in SIR. 

 
FIG. 6.  (Color) Longitudinal monopole and dipole modes 

space charge impedances.  

B. Radial and longitudinal equations of motion  

  According to Eq. (5) of [6], Eq. (1.45) of [11] and Eq. (11), the radial and longitudinal equations of 
motion of local beam centroid are:  

                                                             R
x

R
kvx c

c
ccoh

c
δ=+ 2

2
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                                                         (14) 

                                                                       cz ηδ−='                                                                       (15) 
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                         (16) 

Where δc is the fractional momentum deviation of local beam centroid, ncoh(kc) is the coherent radial 
betatron tune taking to account the coherent linear radial space charge field due to centroid wiggles with 
modulation wavenumber kc as expressed in Eq. (7), η is slip factor, e is unit charge, E is total energy of 
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single particle. The prime stands for differentiation with respect to path length s. If δc (s = 0) = 0 for the 
beam used in the simulations, then δc can be calculated by integration as: 

)(2
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00

2
0

010222
00
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Accordingly, Eq. (14) becomes: 
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In the first order approximation, if centroid offset amplitude is small, the second term on RHS of Eqs. 
(17)(18) induced by longitudinal coherent dipole mode space charge field can be neglected, then Eqs. (17) 
(18) become:   

                                                           
)](1[
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                                        (20) 

We can see Eq. (20) describes a forced harmonic oscillation which results in k ≈ kc, ω ≈ ωc and Im(ω) ≈ 
Im(ωc), because the instability growth rates 1/τ = Im(ω), then in the first order approximation, the growth 
rate

 

spectra of line charge densities and local centroid offsets are approximately the same. For k ≈ kc, if the 
second terms on RHS of Eqs. (11)(17)(18) are comparable to the first terms thus cannot be neglected, then 
Eqs. (17)(18) will become nonlinear equations and will not be discussed in this paper due to their 
complexity. 
 
  The above analyses and discussions are based on the assumptions of single harmonic component in 
longitudinal profiles of both centroid offset xc(z, t) and line charge density Λ(z, t). In reality, the 
distribution functions of the centroid offset xc (z, t) and line charge density Λ(z, t) of a coasting long bunch 
in SIR have rich spectrum of modulation wavenumbers kc and k, respectively. For a given wavenumber k 
of Λ(z, t), besides the harmonic component of centroid offset xc(z, t) with wavenumber kc = k as we 
discussed above, another important harmonic component of xc(z, t) is the one with wavenumber kc = k/2,  
in this case the second terms on RHS of Eqs. (11)(17)(18) may have perturbation wavenumber 2kc = k, they 
can linearly superimpose on the first terms of the RHS of the above equations and induce betatron 
oscillations in the spectral evolutions of line charge densities, radial centroid offsets and energy deviations. 
This special case will be discussed further below. 
 

C. Betatron oscillations in evolution of beam parameters  

  Assume a beam of rich spectrum of k in Λ(z, t) and kc in xc(z, t), respectively. For each given k, if the 
longitudinal coherent dipole mode space charge field is taken into account, then we may define a time-
dependent equivalent longitudinal monopole mode space charge field eqs tzE )],([ )0( and associated 
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equivalent longitudinal monopole mode space charge impedance  eqsc tkZ )],([ ||
,0  by Eq. (21) -Eq. (24) as 

below:   
                                     ),(),()],([ )1()0()0( tzEtzEtzE sseqs +=                                               (21)             

                                        )(||
,00

)0( ˆ)(),( φω +−=− tkzi
scs eIkZCtzE                                                 (22) 

                     )(22
0

||
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2
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||
,10

)1( ˆ)(),()(),( ccc tzki
csccscs eaIkZtzxIkZCtzE φω +−==−                                     (23) 

                                   )(||
,00

)0( ˆ)],([)],([ φω +−=− tkzi
eqsceqs eItkZCtzE                                     (24) 

Eq. (21) - Eq. (24) give: 

                                  
)]2()2Re()2[()2Im(02||

,1
||
,0

||
,0 ˆ

ˆ)()()],([ φφωωωω −+−−−−+= cccc tzkkit
cscsceqSC ee

I
I

akZkZtkZ                               (25)        

In the case of kc  ≠  k /2, eqsc tkZ )],([ ||
,0  will depend on longitudinal coordinate z, the beam dynamics is 

nonlinear, this complicated case of coupling will not be discussed in this paper.  

In the case of kc = k/2, eqsc tkZ )],([ ||
,0  will be independent of longitudinal coordinate z, the coupling of 

longitudinal space charge field induced by line charge density modulation of wavenumber k and centroid 
offsets modulation of wavenumber kc is linear. This special case of kc = k/2 is determined by the property 
that longitudinal coherent dipole mode space charge field of a beam with centroid wiggles is proportional 
to xc

2. Usually, Re(ωc) ≈ ωβ, Re (ω) ≈ 0, where ωβ  is the angular betatron frequency. Then Eq. (25) can 
be simplified as: 

                                               ]1)[()],([ 2)(||
,0

||
,0

tittB
sceqsc eAekZtkZ βω−+=                                        (26) 

where 

              )2(0
||
,0

2||
,1 0,0

ˆ)(
ˆ)( φφ −= ci

sc

csc e
I
I

kZ
akZ

A                                                    (27) 

                                          )]()(2Im[)( tttB c ωω −=                                                     (28) 

Note A is a time-independent complex number, while B (t) is real and function of time t.  

According to Eq. (2), the amplitude of perturbed line charge density can be expressed as: 

                                                 )()](Im[
1

ˆˆ|)(| t
t

tt eet τω Λ=Λ=Λ                                                       (29) 

When energy spread, local centroid offsets are small, modulation wavelengths of line charge densities are 
greater than beam diameter, the instability growth rates can be estimated by the conventional 1D 
microwave instability formula [6]: 
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  E
kkRZeI

ik 2
0

0
1

0 2
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)(
πβ

ηωτ −=−                                                                (30) 

Where ω0 is the angular revolution frequency of on-momentum particles, I0 is unperturbed beam intensity. 

For bunch in SIR, η(kc) is the coherent slip factor induced by the sinusoidal radial centroid offsets with a 

wavenumber  kc, while Z (k) is the longitudinal monopole mode space charge impedance with longitudinal 

charge density perturbation wavenumber k and can be expressed by Eq. (6). Because k ≈ kc as discussed in 

Sec. IV.B, we can use the same k in expressions of η(k) and Z(k) in Eq. (30)  just as treated in [6] (please 

check Eqs. (2)(12)(13)(14) in [6]). 
  If )(kZ  of Eq. (30) is replaced by eqsc tkZ )],([ ||

,0  of Eq. (26), the time-dependent growth rates become:  

                                       }]1Re{[)(),( 2
1

2)(1
0

1 tittB eAektk βωττ −−− +=                                      (31) 

The amplitude of line charge density perturbation in Eq. (29) becomes: 

                        
}2

1

]
2)(1Re{[

)(0ˆ|)(| 1

ti
ettBAe

k
t

et
βω

τ
−

+

Λ=Λ                                                  (32) 

If 0ˆ =ca , then 0|| =A , )(),( 1
0

1 ktk −− = ττ , )(
1

0ˆ|)(| k
t

et τΛ=Λ , it is a pure exponential growth as 

predicted by the conventional 1D microwave instability growth rate formula Eq. (30).  But for a coasting 
long bunch in SIR, since there are always radial centroid offsets induced by longitudinal space charge 
forces and the associated energy deviations, the condition 0ˆ =ca  does not hold. 

If 0ˆ ≠ca , 0|| ≠A  and if 1|| )( <<ttBAe , because )()Im()]()(2Im[)( 1
0 ktttB c
−=≈−= τωωω , 

Eq. (32) can be approximated as:  

                     )]
2

cos(||1[ˆ|)(| ,0
02

1
0

0

c

t

teAet
t

φφωβ
ττ

−++Λ≈Λ                                  (33)  

Eq. (33) is an exponential growth function modulated by betatron frequency ωβ, which can explain the 
betatron oscillations in spectral evolutions of normalized line charge density in Figure 2. For the same 
reason, the second terms on RHS of Eq. (18) and Eq. (17) induce the betatron oscillations in spectral 
evolutions of centroid offsets in Figure 3 and energy deviations in Figure 4, respectively. From Eq. (31) 
and Eq. (27), we can see the instantaneous microwave instability growth rates τ-1(k, t) at time t depend on 
the current modulation strength 0/ˆ II , the centroid offset amplitude câ , the phase angles 0，cφ  and 0φ .  

  Now we can fit the curves of evolution of line charge densities in Figure 2 to get the simulated instability 
growth rates. Eq. (33) may be expressed as a general fitting function below: 

                                                )cos(ˆ|)(| 0
0 /

1 Φ++Λ≈Λ tPeet TQt
t

ω
τ

                                            (34) 



11 
 

 where Λ̂ , P, Q, ω, Φ, τ0 are fit coefficients, T0 is the revolution period of H2
+ ion, t = NtT0, Nt is the turn 

number, 1/τ0  is just  the long term instability growth rates in the first order approximation.  

      

           

FIG. 7.  (Color)  Curve fitting results for growth rates of line charge densities  

(a). λ = 1.0 cm; (b). λ = 2.0 cm; (c). λ = 2.857 cm; (d). λ = 5.0 cm; 

The curve fitting results for growth rates of line charge densities of some chosen modulation wavelengths 
are show in Figure 7. For beam energy of 19.9 keV, the nominal angular betatron frequency is ωβ = 1.499 ä 
106 radian/second. We can see these curves can mainly be decomposed into exponential growths and 
betatron oscillations. This result is consistent with the theoretical prediction deduced from the mechanism 
of longitudinal coherent dipole mode space charge field discussed in this section. Figure 7 also shows that 
for λ r 1.0 cm, the linear coupling effects of the centroid offset modulation with wavenumber kc = k/2 (or 
wavelength λc = 2λ) on line charge density modulation with wavenumber k dominate over the other 
nonlinear coupling effects with wavenumber kc ∫ k/2 (or wavelength λc ∫ 2λ). The special coupling mode 
between kc = k/2 and k is linear since longitudinal coherent dipole mode space charge field Es

(1) is 
proportional to xc

2 which has a wavenumber of 2kc = k. This field may directly superimpose on and couple 
with the conventional longitudinal monopole mode space charge field Es

(0) induced by line charge density 
modulation with wavenumber of k. For all other cases of coupling between k and kc ∫ k/2, for example kc = 
k, 2k, 3k, 4k…., etc, since xc

2 has a wavenumber of 2kc ∫ k, then Es
(1) induced by these kc cannot linearly 

superimpose on Es
(0) of wavenumber k, the coupling between Es

(0) and  Es
(1) for these modes is nonlinear.   
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Note that if perturbation wavelengths are comparable to or less than the beam radius,  λ ≤0.5 cm, because 
of the Landau damping effects due to beam emittance and energy spread, the exponential growths of 
microwave instability for these short perturbation wavelengths are strongly suppressed, the curves of 
evolution of line charge densities have more jitters with short perturbation wavelengths, then besides the 
wavenumber kc = k/2,  the nonlinear coupling effects on the field  Es

(1) induced by other wavenumbers kc 
are strong and must be taken into account too, especially the wavenumber of  kc = k, in this case, the Eqs. 
(31)(33)(34) do not hold.   

Now we can see the three components of space charge field in Figure 5 play different roles in microwave 
instability in isochronous ring: Ex raises the working point above transition and enhances the microwave 
instability [6], Es

(0) together with Ex mainly induce exponential growth of amplitudes of perturbed line 
charge densities [6], and Es

(1) with kc = k mainly induces betatron oscillations in the evolution of perturbed 
line charge densities, sometimes it enhances the instability growth, sometimes it suppresses the instability 
growth, it depends on if Es

(0)  and Es
(1)  are in phase or out of phase. This effect can be observed clearly in 

Figure 7. If we average the effects of Es
(1)  on spectral evolution of line charge densities over a large time 

scale, we will see usually the time-integrated effects are small compared with the exponential growth 
components, thus can be neglected in the long-term instability growth.   

When the instability growth rates are calculated by the method of FFT and curve fitting, special care 
should be paid on the second order effects induced by Es

(1), especially when the width of time window used 
in the curve fitting is shorter than the betatron oscillation period. The conventional 1D growth rate formula 
Eq. (30) is only valid for prediction of long-term instability growth rates of mono-energetic beams or 
beams with small energy spread neglecting Landau damping effects and the second order effects due to 
Es

(1). 
In summary, in the first order approximation, the effects of Es

(1)
 are neglected, the microwave instabilities 

in isochronous ring demonstrate pure exponential growths as predicted by Eq, (30), because the line charge 
densities are the driving forces for the resonant growths of modulation amplitudes of centroid offsets and 
energy deviations as shown in Eq. (20) and Eq. (19), respectively, the modulation amplitudes of centroid 
offsets and energy deviations have the same growth rates as those of the line charge densities. In the second 
order approximation, the effects of Es

(1) induced by centroid wiggles of various wavenumber kc should be 
taken into account, then the growths of microwave instability are not  pure exponential functions of time 
any more. In this paper, a wavenumber of kc = k/2 is used as a special example of liner coupling, then the 
microwave instabilities in isochronous ring are characterized by betatron oscillations superimposed on pure 
exponential growths as predicted by Eq, (31). By this way, we can see how the betatron oscillations and 
growth rates of modulation amplitudes of line charge densities, centroid offsets and energy deviations of 
coasting long bunch couple and interact with each other in isochronous regime.  

 
V. CONCLUSION 

In this paper we explored beam dynamics with space charge in isochronous regime. By simulation 
studies, the betatron oscillations in spectral evolutions of line charge densities, radial centroid offsets and 
coherent energy deviations are discovered. These phenomena were explained by longitudinal coherent 
dipole mode space charge field with the concept of time-dependent equivalent longitudinal space charge 
impedance for the case of kc= k/2. A real coasting long bunch in SIR usually have rich spectrum of 
modulation wavenumbers kc of centroid offset xc (z, t) and k of line charge density Λ (z, t), respectively. 
For each given k, there are two special values of kc: kc = k and kc = k/2. In the first order approximation, the 
former case excites the resonant exponential growths of amplitudes of line charge density Λ (z, t), centroid 
offset xc (z, t), and coherent energy deviation ΔEc (z, t). In the second order approximation, the latter case 
induces the betatron oscillations in spectral evolutions of these parameters. This paper shows that for a long 
coasting bunch with space charge in isochronous regime, both the radial and longitudinal coherent dipole 
mode space charge fields should be taken into account in the beam dynamics. The spectra of line charge 
densities, local centroid offsets and energy deviations may interact with each other and evolve in a self-
consistent way.  

   An accurate prediction of instability growth rates in isochronous regime requires a more complicated 
2D dispersion relation incorporating Landau damping effects. This will be discussed in the future works. 
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FIG. 1. (Color)  Evolution of top views of beam profiles. 

FIG. 2. (Color)  Evolution of harmonic amplitudes of normalized line charge densities.   

FIG. 3. (Color)  Evolution of harmonic amplitudes of radial centroid offsets. 

FIG. 4. (Color)  Evolution of harmonic amplitudes of energy deviations.  

FIG. 5.  (Color) Space charge components on local centroid with coordinate (xc, z) at time t.  

FIG. 6.  (Color) Longitudinal monopole and dipole modes space charge impedances.  

FIG. 7.  (Color)  Curve fitting results for growth rates of line charge densities  

(a). λ = 1.0 cm; (b). λ = 2.0 cm; (c). λ = 2.857 cm; (d). λ = 5.0 cm. 


