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We investigated the mechanism of the spin-reorientation transition (SRT) in the Ni/Fe/Ni/W(110) 
system using in situ low-energy electron microscopy, x-ray magnetic circular dichroism measurements, 
and first principles electronic structure calculations. We discovered that the growth of Fe on a flat Ni film 
on a W (110) crystal resulted in the formation of nanosized particles, instead of a uniform monolayer of 
Fe as commonly assumed. This interfacial nanostructure leads to a change of the system’s dimensionality 
from two-dimensional- to three dimensional-like, which simultaneously weakens the dipolar interaction 
and enhances the spin-orbit coupling in the system and drives the observed SRT. 
 
 
 
 
I. INTRODUCTION 

 

Ultrathin magnetic structures are one of the best examples of nanoscience and technology. The 

basic magnetic properties of the individual constituents in the system, such as magnetic moment and 

anisotropy, and the interactions among them are extremely sensitive to their atomic structure, size, and 

dimensionality. This extraordinary sensitivity has led to the discovery of many new physical phenomena 

and device concepts in magnetic storage over the past two decades.1–4 However, the origin of this 

sensitivity is still not fully understood and presents one of the major challenges in nanomagnetism today. 

As an example, one of the most actively researched areas in the field of ultrathin magnetic structures is to 

understand and control the magnetic easy axis in ultrathin magnetic structures with the aim to meet the 

needs of high-density magnetic storage and magneto-optics recording. This effort has led to the 

development of many novel ultrathin magnetic film structures.5,6 On the other hand, our understanding of 

magnetic anisotropy in these systems is still incomplete, in particular with regards to the connection 

between complex interfacial atomic structures and macroscopic magnetic behavior, which is due to the 

difficulty in characterizing these interfaces.  

In this work, we focus on the physics of the spin-reorientation transition (SRT) behavior 

discovered in the Ni(1 ML)-Fe(1 ML)-Ni(8 ML) system; where ML denotes a monolayer.7–9 Specifically, 

at room temperature, the easy axis of the entire system changes from in-plane (8ML Ni) → out-of-plane 

(1ML Fe/ 8ML Ni) → in-plane (1ML Ni/ 1ML Fe/ 8ML Ni) with successive deposition of additional 
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MLs of Fe and Ni. This observation has attracted considerable interest because it provides a new 

controlling parameter to engineer magnetic anisotropy in magnetic nanostructures.8–10 More importantly, 

it challenges our understanding of magnetic anisotropy in ultrathin magnetic structures.  

The observed exotic SRT is attributed to the interface term in the magnetocrystalline anisotropy 

(MCA) since Meyerheim et al.10 recently demonstrated with in situ surface x-ray scattering that the 

change in the lattice strain of an entire Ni/Fe/Ni/W(110) film is insufficient to generate the observed SRT. 

Within the current theoretical framework, SRT in ultrathin magnetic films is understood in terms of 

competition between bulk and interface components, and the effect of lattice strain through 

magnetoelastic (ME) coupling in the phenomenological model of total magnetic anisotropy energy (i.e., 

effective magnetic anisotropy Keff ):11,12 

Kefft = 2(KI + BIe+ DIe2 ) + (BBe + DBe2 )t − 2πM2t. 

Here, BI(B) is the first-order interface (bulk) ME coupling constant and DI(B) is the second-order interface 

(bulk) ME coupling constant. These can be derived from reported structural parameters of Ni13–15 while a 

variation of the in-plane strain (e) is negligible in the Ni-Fe-Ni/W system.10 Hence, an adjustable 

parameter for this SRT is only the interface MCA, KI—the reported KI for Ni(111) film is −0.22 

erg/cm2.14,15 However, the following analysis shows that one has to assume unphysically large 

enhancement of spin-orbit coupling energy after the deposition of Fe layer to account for the observed 

SRT.  

Figure 1(a) shows the variation of Kefft as a function of KI with the fixed thickness of Ni (t = 8 

ML). For thick Ni film case, the estimated Keff was to be estimated about −0.762 erg/cm2, leading to the 

in-plane easy axis. Moreover, we simulated the spatial distribution of this anisotropy energy as shown in 

Fig. 1(b). The minimized surface area is in-plane when KI = −0.22 erg/cm2. Even with KI = 0, both Keff 

and the shape of the magnetic surface still point to an in-plane direction. Considering the SRT after 

deposition of 1 ML of Fe and a change in coercivity,10 the total anisotropy energy must vary ∼40%, 

while the sign changes from negative to positive, resulting in Kefft = +0.418 erg/cm2. This leads to KI = 

+0.96 erg/cm2 and the minimum surface area pointing in the out-of-plane direction. However, this change 

in KI is unphysical because the corresponding enhancement of the spin-orbit coupling energy (Esoc)11–13 

after Fe growth would have to be ∼500% — a value that is far too large. 

In the following, we present a combined experimental and theoretical study of the spin-

reorientation transition in Ni/Fe/Ni/W(110). The in situ low-energy electron microscopy (LEEM) 

measurements unambiguously revealed that the growth of the Fe ML does not form a wetting layer, but 

rather comprises a layer of nanoparticles. The x-ray magnetic circular dichroism (XMCD) results 

demonstrate a strong enhancement of SOC along the out-of-plane direction at the Fe-Ni interface due to 



the symmetry-breaking boundary caused by the nanoparticles. Therefore, after the growth of the Fe ML, 

we can consider the magnetic anisotropy as having undergone a dimensional crossover; a two-

dimensional- (2D-) →three-dimensional- (3D-) like system that entails a reduced dipolar interaction, 

thereby significantly contributing to the interface MCA of the entire system. Furthermore, our state of the 

art electronic structure calculations for these systems agree well with the experimental findings. 

 

II. SAMPLES AND EXPERIMENTS 

 

The single crystalline W(110) substrate was cleaned through cycles of oxidation at around 1500 
oC and flash heating at 2000 oC. Subsequently, epitaxial films of Ni(8 ML), Fe(1 ML)/Ni(8 ML), and 

Ni(1 ML)/Fe(1 ML)/Ni(8 ML) were deposited on the W(110) substrate at T = 300 K, maintaining the 

background pressure at ∼2 × 10−10 Torr. Low-energy electron diffraction patterns confirmed the epitaxy 

of the films. The XMCD was measured with 95% circularly polarized incident light at the elliptically 

polarized undulator beamline 2A at the Pohang Light Source; spectra were collected in the total electron 

yield mode at 300 K. Dichroic signals via 2p → 3d dipole transitions represent the parallel (ρ+) and 

antiparallel alignment (ρ−) of the magnetization direction with respect to the photon helicity. At each data 

point, a 0.5-T pulse magnet switched along the easy-axis–in-plane case (30◦) and out-of-plane (90◦) 

incident angles. Figures 2(a) and 2(b) show the dichroic signals (ρ+ and ρ−) on the thick Ni and Fe films, 

respectively. The ρ+ and ρ− spectra resulting from 2p → 3d dipole transitions are divided roughly into L3 

(2p3/2) and L2 (2p1/2) regions.  

 

III. RESULTS AND DISCUSSION 

 

To explore microscopically the magnetic influence of the Fe ML, we collected XMCD 

measurements at the Ni and Fe L2,3 edges to obtain quantitative information about the element-specific 

spin and orbital magnetic moments.16 Figures 2(c) and 2(d) show the XMCD(∆ρ) and its integration for 

each film. The Σ(∆ρ) over the entire L2,3 region is proportional to the orbital magnetic moment. Using the 

sum rule,16 we estimated the spin (ms) and orbital (mo) magnetic moments of Ni or Fe ions for each film. 

The total Ni moment (ms + mo) is similar to that of bulk Ni (∼0.7µB/Ni). For Fe/W, the Fe spin moment 

is smaller than that in a thick Fe film, while all mo values are similar to the bulk value. Since the Fe layer 

is very thin, the alignment of the spin shows characteristics of an ultrathin film (i.e., the temperature 

effect of magnetization). In this fashion, the spin fluctuates somewhat at the room temperature.17 On the 

other hand, relatively all orbits are fully polarized, thereby increasing the moment ratio (mo/ms); we 



represent this enhancement from the bulk ratio as δmo/ms|ion = [(mo/ms)ion − (mo/ms)bulk]/(mo/ms)bulk. 

Interestingly, after depositing Fe(1 ML), the change in the δmo/ms is remarkable. We recorded a ∼220% 

enhancement for δmo/ms|Fe while, for Ni, the increase is about ∼25%. This signifies that the strongly 

increased Fe Esoc after the growth of Fe (1 ML) affects Ni Esoc along the out-of-plane direction. 

Furthermore, we note a possible intermixing at the Fe-Ni interface. Since the ground state of bulk Ni can 

be represented as multiplet configuration states,18 the absorption and its XMCD spectra additionally 

exhibit the so-called eV and 4-eV satellites above the higher-energy region of the L2,3 main features, 

respectively. In particular, this satellite feature is regarded as a good indicator of the alloy or intermixing 

effect.19,20 In these systems, the spectral shapes are the same as for thick films (i.e., there is no change in 

the spectral shapes). In this fashion, we could rule out the possibility of intermixing as an origin of the 

enhancement of the orbital moment.  

Based on these XMCD results, the enhanced SOC after Fe growth is around 120%. Since the 

structural modifications (i.e., strain) after Fe growth are negligible,10 this SOC enhancement seemingly is 

associated only with the interface-MCA effect. Although the change in KI via Esoc is pronounced, however, 

this heightening is clearly insufficient to account for the observed SRT behavior (i.e., ∼500%), as we 

estimated. Accordingly, there must be an additional mechanism operating. One possible scenario 

proposes a major modification in the dipolar interactions in the whole system associated with the 

deposition of Fe. For example, if there is a 2D → 3D (or 1D) transition, the contribution of dipolar 

interaction energy (Edip) to the total magnetic anisotropic energy might be lowered dramatically.5 Since 

the primary effect of the in-plane magnetic anisotropy in the 2D system reflects Edip, then Kefft also may 

be significantly affected should there be a dimensional alteration. To examine this possibility, we carried 

out in situ LEEM observations of each stage of the growth of the Ni/Fe/Ni/W(110) structure. LEEM 

measurements were undertaken with the Elmitec system (LEEM III) at beamline U5UA at the National 

Synchrotron Light Source (NSLS). LEEM is well suited for this task because it supports in situ 

monitoring of the change of surface morphology with a lateral resolution of a few nanometers and a 

single-atomic-layer resolution in the direction normal to the substrate surface.  

Figure 3 shows series of the LEEM images obtained from consecutive layers in the 

Ni/Fe/Ni/W(110) structure (top), and their corresponding schematic topological map and spin 

configurations (bottom). We note that the images were taken at 1.0 eV. The nonmagnetic W(110) 

substrate is clean, as evidenced by the array of monolayer-high steps visible in Fig. 3(a). Consecutively, 

to assure a flat, well-ordered surface of Ni(8 ML), we followed a well-known procedure:21 (i) we 

deposited only Ni(1ML) on W(110); (ii) the film was annealed to ∼900 K for several minutes to promote 

formation of a well-ordered c-(1 × 7) structure, as monitored by the in situ LEED pattern; and (iii) we 



deposited the remaining 7ML of Ni, obtaining a flat surface [Fig. 3(b)]. At that time, the magnetic easy 

axis was in-plane, and the dominant magnetic behavior in the flat Ni(8 ML) film was along the in-plane 

direction via Edip, including the negative KI.  

After depositing Fe(1 ML), the LEEM image changed dramatically. Figure 3(c) shows the many 

sizable spots that became evident. The mosaic-like contrast features indicate the presence of nanosized Fe 

particles (FePar), signifying that there was a 2D- → 3D-like change in dimension of this system. Since the 

mosaic-like LEEM contrast may also originate from the misoriented grains forming a continuous film, we 

checked the LEED measurement, showing 1 × 1 hexagonal pattern, and ruled out the possibility of any 

domains or grains. The shapes of the particles, including their size, are somewhat random (represented by 

the distributions of circles and squares in the figure, and the average size ∼100 nm). These features point 

to a break in symmetry at the boundary between Ni and FePar, generating the pronounced Esoc between 

them along the out-of-plane direction that reinforces the interface MCA of the entire system. 

Concomitantly, the Edip along the in-plane direction weakens because of the gap between FePar neighbors. 

Consequently, the combination of both magnetic energies is responsible for the SRT (i.e., in-plane → out-

of-plane) after the deposition of a ML of Fe. Furthermore, the small spin moment on the Fe(1 ML) in the 

XMCD findings might reflect the disordered spin state around the particle surfaces.  

LEEM images [Fig. 3(d)] taken from the Ni(1 ML)/Fe/Ni/W film shows that the surface has 

become smooth again. This observation indicates that adding the Ni(1 ML) fills the gaps between 

neighboring Fe particles, with only small deposits of Ni on top of FePar, entailing a reverse 3D-like → 2D 

transition. Accordingly, Edip becomes dominant again, and the magnetic easy axis naturally changes from 

the out-of-plane direction into the in-plane direction. We also note that further investigations using a kind 

of microsimulation may support the size effect of the particles.  

Aside from the change is shape anisotropy as discussed above, an important contribution to SRT 

is the change of interfacial bonding. Finally, we performed first-principles calculations with the all-

electron full-potential linearized augmented plane wave (FLAPW) method.22 To shed light on this aspect, 

magnetocrystalline anisotropy energies (EMCA) of Ni(111), Fe/Ni(111), and Ni/Fe/Ni(111) films were 

calculated with the torque approach,23 and results are presented in Fig. 4. A flat Fe ML on Ni(111) 

depicted in model A has the highest total energy, 0.62 eV. This means that the flat Fe formation is very 

unstable on top of Ni(111), which is consistent with LEEM results. The value of uniaxial EMCA (i.e., the 

energy difference for magnetization pointing along the z and x axes) is −0.67 erg/cm2 for a 13 ML 

Ni(111), in excellent agreement with our experiment. Note that the formation of rough morphology in Fig. 

3(c) is schematically represented by a little bit of Fe diffusion. For Fe/Ni(111), both B and C models have 

positive EMCA, leading to the SRT as we observed. Hence, the effect of the rough morphology of Fe on 



the SRT is twofold: reducing the shape anisotropy through morphology change and also promoting 

EMCA. In contrast, we obtained negative EMCA for models D, E, and F, indicating that the magnetization 

direction of Ni/Fe/Ni(111) film becomes in-plane again with the presence of a Ni adlayer. It appears that 

positive EMCA results from Fe-Fe and Fe-Ni bonding in the two outermost layers. The interesting aspect of 

this calculation is that such twofold effects are coherent for both Fe/Ni and Ni/Fe/Ni. To show if one can 

manipulate EMCA, we also give curves of EMCA versus the change in the Fermi level, calculated using a 

rigid-band approximation. Overall, these curves are very smooth in a broad energy range, indicating the 

quality of our theoretical results. It is striking that a change of EMCA sign is variable if the Fermi level is 

shifted by ±0.06 eV. This indicates a good opportunity to tune the magnetization of Fe/Ni(111) with 

electric field.  

 

IV. SUMMARY 

 

In summary, we verified that the presence of Fe nanoparticles determine and control the stability 

of the magnetic anisotropy in an Ni/Fe/Ni system. The growth and formation of the Fe nanoparticles 

modulates the dimensions of the thin-film system. Due to the subsequent induced symmetry breaking at 

the boundary of the particle layer and the gaps between the particles, both spin-orbit coupling and dipolar 

interactions are strongly modified, resulting in the spin-reorientation transitions in Ni/Fe/Ni/W system. 

Our results demonstrate a role of the magnetic properties of these finite-size particles. Further 

investigation, such as magnetic imaging, is underway to investigate the correlation of the magnetic 

domain motions.  
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FIG. 1. (Color online) (a) Simulation of the effective magnetic anisotropy (Kefft) versus the interface 

magnetic anisotropy (KI) on Ni(8 ML)/W(110). (b) Simulation of magnetic anisotropy energy surface for 

KI = −0.22, = 0, and= +0.96 erg/cm2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
FIG. 2. (Color online) Dichroism (ρ+ and ρ−) of thick Ni (a) and Fe (b) films. (c), (d) ∆ρ = ρ+ − ρ− and 

its integration, Σ(∆ρ), for Ni (black), Fe/Ni (blue), and Ni/Fe/Ni (red) films. The vertical bars in Ni 

spectra denote 4- and 6-eV satellites.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
FIG. 3. (Color online) (top) Series of LEEM images obtained from consecutive layers in the 

Ni/Fe/Ni/W(110) structure, and (bottom) the scheme of magnetic interactions via spin-orbit coupling (Esoc) 

or dipolar interactions (Edip) on each film: (a) W(110), (b) Ni(8 ML)/W, (c) Fe(1ML)/Ni(8 ML)/W, and (d) 

Ni(1 ML)/Fe(1 ML)/Ni(8 ML)/W. Green and blue arrows denote the spin direction in the film. The dotted 

line represents the magnetic interaction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
FIG. 4. (Color online) (a) Surface models for Fe/Ni(111), with light blue and purple balls for Ni and Fe 

atoms, respectively. The total energies, Etot (in eV) are measured from the reference system, model F. The 

MCA energies (in erg/cm2) are for the energy differences between the z and x axis. (b) First-principles 

calculations with the all electron FLAPW method on the models and bulk Ni(111) reference. 


