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In the present paper, we investigate the kaon twist-3 distribution amplitudes (DAs) φK
p,σ within

the QCD background field approach. The SUf (3)-breaking effects are studied in detail under a sys-
tematical way, especially the sum rules for the moments of φK

p,σ are obtained by keeping all the mass
terms in the s-quark propagator consistently. After adding all the uncertainties in quadrature, the
first two Gegenbauler moments of φK

p,σ are a1K,p(1GeV) = −0.376+0.103
−0.148 , a

2
K,p(1GeV) = 0.701+0.481

−0.491 ,

a1K,σ(1GeV) = −0.160+0.051
−0.074 and a2K,σ(1GeV) = 0.369+0.163

−0.149 , respectively. Their normalization

parameters µp
K |1GeV = 1.188+0.039

−0.043 GeV and µσ
K |1GeV = 1.021+0.036

−0.055 GeV. A detailed discussion on

the properties of φK
p,σ moments shows that the higher-order s-quark mass terms can indeed provide

sizable contributions. Furthermore, based on the newly obtained moments, a model for the kaon
twist-3 wavefunction ΨK

p,σ(x,k⊥) with a better end-point behavior is constructed, which shall be
useful for perturbative QCD calculations. As a byproduct, we make a discussion on the properties
of the pion twist-3 DAs.

PACS numbers: 12.38.Aw, 14.40.Df, 11.55.Hx
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I. INTRODUCTION

Meson distribution amplitude (DA), which describest
he momentum fraction distribution of the parton in me-s
on, is an important component for the QCD light-cones
um rule (LCSR) and the QCD factorization theory [1–5
]. In dealing with the exclusive processes, it is conve-n
ient to arrange the meson’s DA by its different twists
tructures. The leading-twist DA shows the momentumd
istribution of the valence quarks in the meson, whichu
sually provides major contribution to the QCD exclu-s
ive processes. The higher-twist DAs describe either thec
ontributions from the higher Fock states with additionalg
luons and / or quark-antiquark pairs or the contribu-t
ions from the transverse motion of quarks (antiquarks)
in the leading-twist components. Usually, the contribu-t
ions from the higher-twist DAs are power suppressed tot
hat of the leading-twist in the large Q2-region. How-e
ver, the twist-3 DAs may provide sizable contributionsf
or certain cases, so it arouses people’s more and more
interests, c.f. Refs.[6–15].
Kaon twist-3 DAs are important input parameters fort

he kaon electromagnetic form factor, the B → K tran-s
ition form factor and etc., whose properties have been
investigated within the QCD sum rules and the kT fac-t
orization approach accordingly [12–18]. More precised
ata are coming at LHC, it would be useful to studyt
he higher-order and higher-power suppressed contribu-t
ions so as to provide a deeper understanding of standard
model parameters. For example, it has been pointed outt
hat the SUf(3)-breaking effect is about 10% for B → K
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transition form factors, so a careful study on K meson
distributions shall lead to a better estimation of these
form factors.

We have studied the QCD sum rules for the pionic
twist-3 DAs in Ref.[11], which are based on the frame-
work of the QCD background field theory [19–24]. In the
present paper, we shall improve our technology adopted
there and then investigate the twist-3 DAs of K meson
by carefully dealing with its SUf(3)-breaking effect. Such
an effect is responsible for the different behaviors between
kaon and pion DAs.

Basic assumption of the QCD sum rules is the in-
troducing of the nonvanishing vacuum condensates such
as the quark condensate 〈q̄q〉 and the gluon condensate〈
G2
〉
. Different to the conventional SVZ sum rules [25],

the background field approach provides a systematic de-
scription for these vacuum condensates from the view-
point of field theory. And, it is convenient to derive use-
ful relations among different non-perturbative matrix el-
ements. Under the background field approach, it assumes
that the quark and gluon fields are composed of the back-
ground fields and the quantum fluctuations around them.
Nonperturbative effects can be described by the vacuum
expectation values of these background fields, while the
calculable perturbative effects are expressed by quantum
fluctuations. Then to take the background field theory as
the theoretical foundation for the QCD sum rules, it not
only has distinct physical picture, but also can greatly
simplify the calculation due to its capability of adopting
different gauge conditions for quantum fluctuations and
background fields respectively.

Because of the influence from background fields, the
quark and gluon propagators shall include nonperturba-
tive component inevitably. For the SVZ sum rules, one
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usually takes the following quark propagator formula [26]

S(x, 0) =
i 6x

2π2x4
−

1

12
〈q̄q〉 −

x2

192
〈gsq̄σTGq〉 −

m

4π2x2

+
im

48
〈q̄q〉 6x+

imx2

1152
〈gsq̄σTGq〉 6x+ · · · , (1)

where · · · stands for even higher-dimensional terms and
higher-order mass terms. Note that the above quark
propagators in configuration space are given as an ex-
pansion in quark mass, and the mass terms are kept only
up to first order. For the light-quark propagators, it is
enough. However, the omitted higher-order mass terms
may lead to sizable contributions to the meson or baryon
with heavy quark(s). Even for the case of K meson, the
contributions from higher-order s-quark mass terms, ei-
ther positive or negative, are sizable. Hence to obtain
a better understanding of SUf(3)-breaking effect for K
meson, one needs to take the sizable mass terms into
consideration in a more proper way.

The remaining parts of the paper are organized as fol-
lows. In Sec.II, we present the calculation technology for
deriving the sum rules for the moments of the kaon twist-
3 DAs. And a model for the kaon twist-3 wave functions
is also presented. Numerical results are given in Sec.III,
where the properties of kaon twist-3 DAs are discussed.

Sec.IV is reserved for a summary. In the Appendix, we
give useful formulas for simplifying the matrix elements〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)

∣∣∣ 0
〉
and

〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣∣ 0
〉
.

II. CALCULATION TECHNOLOGY

A. Sum rules for the pseudoscalar twist-3 DAs

Under the background field theory, the quark and
gluon propagators satisfy the following equations [24]:

(i 6D −m)SF (x, 0) = δ4(x) (2)

and
(
gµν(D̃2)ab + 2fabcGcµν

)
Sbd
νρ(x, 0) = δadgµρδ

4(x), (3)

where Dµ = ∂µ− igT
aAa

µ and (D̃µ)
ab = δab∂µ− gf

abcAc
µ

are gauge covariant derivatives in the fundamental and
adjoint representations respectively. Aa

µ is the back-

ground gluon field, Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

is the gluon field strength tensor and fabc(a, b, c =
1, 2, · · · , 8) is the structure constant of SU(3) group. Fix-
ing the gauge freedom of the background field by the
fixed-pointed gauge [27, 28], xµAa

µ = 0, we obtain

SF (x, 0) = i

∫
d4q

(2π)4
e−iq·x

{
−

m+ 6q

m2 − q2
+
γν(6q −m)γµ

(m2 − q2)2
b0νµ − i

[
2
γν(6q −m)qρ

(m2 − q2)3
+

gνρ

(m2 − q2)2

]
γµb1νµ|ρ + · · ·

}
(4)

for the quark propagator and

Sab
µν(x, 0) = i

∫
d4q

(2π)4
e−iq·x

{
−
gµν
q2

δab + · · ·

}
(5)

for the gluon propagator, where b0νµ = i
2Gνµ(0) and

b1νµ|ρ = i
3 [Gνµ;ρ(0) +Gρµ;ν(0)]. Here Gνµ(x) =

gsT
aGa

νµ(x), the gauge invariant function Gνµ;ρ(0) =

gsT
aD̃ab

ρ G
b
νµ(x)|x=0, and the symbol · · · stands for the

irrelevant terms for our present analysis that will lead to
higher-order operators over dimension-six. To use a prop-
agator in momentum-space form as Eq.(4) has been sug-
gested in the literature already, e.g. it has been suggested
to deal with the D∗Dπ and B∗Bπ couplings in Ref.[29].
However in these discussions, usually the first two terms
in the quark-propagator are kept only. For the present
case, one may find that the third term should be kept to
provide a more accurate sum rules up to dimension-six
operators. As a special case, by taking only the first-
order mass term, we can obtain the quark propagator in
the coordinate space,

S(x, 0) =
i 6x

2π2x4
−
γα 6xγβ

16π2x2
Gαβ(0) +

ln(−x2)

48π2
γµG α

αµ; (0)

−
xαγν 6xγµ

48π2x2
[Gνµ;α(0) +Gαµ;ν(0)]−

m

4π2x2
+ · · · .(6)

Since the quark propagator in momentum space keeps the
mass terms naturally, so we shall adopt (4) other than (6)
to do the following calculation. In fact, as will be shown
later, the high-order mass terms are indeed important for
giving a more sound SUf(3)-breaking effect in φKp,σ.

The pseudoscalar twist-3 DAs φPp and φPσ are defined
as,

〈0 |q̄1(z)iγ5q2(−z)|P (q)〉 = fPµ
p
P

∫ 1

0

duφPp (u)e
iξ(z·q),

〈0 |q̄1(z)σµνγ5q2(−z)|P (q)〉 =

−i(qµzν − qνzµ)
1

3
fPµ

σ
P

∫ 1

0

duφPσ (u)e
iξ(z·q),

where ξ = 2x − 1, q1 = d and q2 = u for pion, q1 = s
and q2 = u for kaon, respectively; the parameters fP
and µp,σ

P stand for the decay constant and the normal-
ization parameter of the pseudoscalar, respectively. The
DA moments are defined as

〈
ξnp
〉
P
=

∫ 1

0

dx(2x− 1)nφPp (x), (7)
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〈ξnσ 〉P =

∫ 1

0

dx(2x− 1)nφσp (x), (8)

which satisfy
〈
0
∣∣∣q̄1(0)γ5(iz ·

↔
D)nq2(0)

∣∣∣P (q)
〉
= −ifPµ

p
P

〈
ξnp
〉
P
(z · q)n

and
〈
0
∣∣∣q̄1(0)σµνγ5(iz ·

↔
D)n+1q2(0)

∣∣∣P (q)
〉
=

−
n+ 1

3
fPµ

σ
P 〈ξ

n
σ 〉P (qµzν − qνzµ)(z · q)

n

respectively. In deriving the sum rules for the moments,
we adopt the following correlation functions:

(z · q)nI
(n,0)
P,p (q2) ≡ −i

∫
d4xeiq·x

〈
0
∣∣∣T
{
q̄1(x)γ5(iz ·

↔
D)nq2(x), q̄2(0)γ5q1(0)

}∣∣∣ 0
〉

(9)

−i(qµzν − qνzµ)(z · q)
nI

(n,0)
P,σ (q2) ≡ −i

∫
d4xeiq·x

〈
0
∣∣∣T
{
q̄1(x)σµνγ5(iz ·

↔
D)(n+1)q2(x), q̄2(0)γ5q1(0)

}∣∣∣ 0
〉
. (10)

FIG. 1. Feynman diagrams for the pseudoscalar DA moments,
where the background gluon fields are included in the Fermion
propagators implicitly and the background quark fields are
depicted as crosses. The left big dot stands for the vertex

γ5(iz ·
↔

Dn) and σµνγ5(iz ·
↔

D(n+1)) for φP
p and φP

σ respectively.

Fig.(1) shows the Feynman diagrams for the pseu-
doscalar DA moments, where the background gluon fields
are included in the Fermion propagators implicitly and
the background quark fields are depicted as crosses.

Following the standard QCD sum rule technology, the
sum rules of the moments can be derived. And we obtain

1

M2

〈
ξnp
〉
P
f2
P (µ

p
P )

2e−
m2

P

M2

=

∫ 1

0

dxe
−

m2
1

M2(1−x)

{
3

4π2
(2x− 1)n

[
(n+ 3)M2x(1 − x) +m2

1x
]
+
〈
αsG

2
〉(n+ 1

M2
+

m2
1

M4(1− x)

)

×

[
n(n− 1)

12π
(2x− 1)n−2x(1 − x) +

1

8π
(2x− 1)n

]
−
〈
g3sfG

3
〉 n(n− 1)

96π2
(2x− 1)n−2 1

M4

}

−
3

4π2

∫ 1

0

dx(2x− 1)n
[
(n+ 3)M2x(1 − x)

(
1 +

spP
M2

)
+ (n+ 2)m2

1x

]
e−

s
p

P

M2

+ 〈q̄1q1〉

[
(n+ 1)m1

2M2
+
n(2n+ 1)

6

m3
1

M4

]
+ (−1)n 〈q̄2q2〉

[
−
m1

M2
+
m3

1

M4

]
+ 〈gsq̄1σTGq1〉

n(5− 8n)m1

36M4

+(−1)n 〈gsq̄2σTGq2〉

[
18(n− 1)m1

36M4
+

(3− 2n)m3
1

4M6

]
+
[
〈gsq̄1q1〉

2
+ (−1)n 〈gsq̄2q2〉

2
] 2n2 + 7n− 12

81M4

−(−1)n 〈gsq̄2q2〉
2 2n2 + 7n− 15

81

m2
1

M6
+ 4παs 〈q̄1q1〉 〈q̄2q2〉

{
−
2

9

m2
1

M6
+

2

9
[1 + (−1)n]

(
1

M4
−

m2
1

2M6

)}
(11)

and

1

3M2
〈ξnσ 〉P f

2
P (µ

σ
P )

2e−
m2

P

M2

=

∫ 1

0

dxe
−

m2
1

M2(1−x)

{
3

4π2
(2x− 1)nM2x(1 − x) +

〈
αsG

2
〉 [n(n− 1)

12π

(2x− 1)n−2x(1 − x)

M2
+

(2x− 1)n

24πM2

]}

−
3

4π2

∫ 1

0

dx(2x− 1)n
[
M2x(1− x)

(
1 +

sσP
M2

)
+m2

1x

]
e−

sσ
P

M2 + 〈q̄1q1〉

[
m1

2M2
+

(2n+ 1)m3
1

6M4

]
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−〈gsq̄1σTGq1〉
(8n+ 1)m1

36M4
− (−1)n 〈gsq̄2σTGq2〉

[
m1

6M4
−

m3
1

6M6

]
+
[
〈gsq̄1q1〉

2
+ (−1)n 〈gsq̄2q2〉

2
] 2n− 5

81M4

−(−1)n 〈gsq̄2q2〉
2 (2n− 3)m2

1

81M6
. (12)

Because the current quark mass of u(d)-quark is quite
small, we have set m2 = mu ≃ 0, m1 = md ≃ 0 for
pion and m1 = ms for kaon accordingly. M stands for
the Borel parameter, mP is the pseudoscalar mass, and
sp,σP are continuum threshold. The non-perturbative ma-
trix elements:

〈
αsG

2
〉
=
〈
αsG

A
µνG

Aµν
〉
, 〈gsq̄σTGq〉 =〈

gsq̄σµνT
AGAµνq

〉
,
〈
g3sfG

3
〉
=
〈
g3sf

ABCGA
µνG

BνρGCµ
ρ

〉
1. If setting n = 0 in Eqs.(11,12), one can obtain the
sum rules of the normalization parameters. In deriving
the sum rules (11,12), we have implicitly adopted the
following Borel transformation formulas

L̂M (AQ2 + B)k ln(AQ2 +B)

= (−1)k+1k!(AM2)k exp

(
−

B

AM2

)
(k ≥ 0),

L̂M
1

(m2 +Q2)k
=

1

(k − 1)!

1

M2k
exp

(
−
m

M2

)
(k ≥ 1),

and we have used the simplified matrix elements〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)

∣∣∣ 0
〉

and
〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣∣ 0
〉
, whose

detailed derivations are presented in the Appendix.
From the sum rules (11,12), it is found that their

perturbative parts and the dimension-four gluon con-
densate part come from Fig.(1a); the dimension-three
quark-antiquark condensate part and the dimension-
five quark-gluon condensate part come from Fig.(1b);
and the dimension-six four-quark condensate part comes
from Figs.(1b,1c,1d). Numerically, it can be found that
the contribution for φPp from Fig.(1c) is very small (∼

m2
1/M

6). But if one adopts the quark propagator (6),
the contribution of φPp from Fig.(1c) should be twice than

that of Fig.(1d) (∼ 1/M4) and is sizable. This shows
that by keeping the mass-terms properly, one can obtain
a correct estimation of the relative importance among
different Feynman diagrams. To show the s-quark mass
effects more clearly, we shall discuss the different conse-
quences caused by the using of the propagators (4) and
(6) in the next section. And we shall find the importance
of using the propagator (4), which keeps the higher order
mass-terms in a more consistent way.
It is well-known that the kaon twist-3 DAs can be ex-

panded in Gegenbauler polynomials as

φKp (µf , x) = 1 +
∞∑

n=1

anK,p(µf )C
1/2
n (2x− 1), (13)

1 Note in the condensate 〈gsq̄q〉
2, whose the coupling constant gs

comes from the gluonic background field, so we should treat the

condensate as a whole.

φKσ (µf , x) = 6x(1− x)

[
1 +

∞∑

n=0

anK,σ(µf )C
3/2
n (2x− 1)

]
,(14)

where C
1/2,3/2
n (2x − 1) are Gegenbauler polynomials,

anK,p(µf ) and a
n
K,σ(µf ) are Gegenbauler moments at the

factorization scale µf .
With the help of the above sum rules (7, 8) for the DA

moments, we can obtain the kaon twist-3 DAs, e.g.

a1K,p = 3
〈
ξ1p
〉
K
, a2K,p =

15

2

(〈
ξ2p
〉
K
−

1

3

)
,

a1K,σ =
5

3

〈
ξ1σ
〉
K
, a2K,σ =

35

12

(〈
ξ2σ
〉
K
−

1

5

)
. (15)

And the Gegenbauler moments at any scale µ can be
obtained from the renormalization group equations from
an initial factorization scale [16]:

anK,p(σ)(µ) = anK,p(σ)(µf )

(
αs(µ)

αs(µf )

)γn/β0

, (16)

where γn = CF

(
1− 2

(n+1)(n+2) + 4
∑n+1

m=2
1
m

)
and β0 =

(11Nc − 2Nf)/3 with CF = 4/3.

B. kaon twist-3 wavefunctions

The kaon wave function and its DA can be related with
the following equation,

φKp,σ(x, µf ) =

∫

|k⊥|<µf

d2k⊥

16π3
ψK
p,σ(x,k⊥), (17)

where µf ∼ O(1GeV ) is the factorization scale. Due to
the renormalization group equation (16), the distribution
amplitudes under different choice of µf ∼ O(1GeV ) can
be related with each other through evolution, which shall
result in the same behaviors at the present considered
accuracy [30]. Hereafter for definiteness, we set µf =
1GeV .
Following the same idea of Refs.[10, 17, 18, 30–33]

where its transverse momentum dependence is con-
structed on the BHL-prescription [34], the kaon twist-3
wave functions can be constructed as

ψK
p (x,k⊥) =

[
1 +BK

p C
1/2
1 (2x− 1) + CK

p C
1/2
2 (2x− 1)

]

×
AK

p

x(1 − x)
exp

[
−

1

8βK2
p

(
m̃2

q + k
2
⊥

x
+
m̃2

s + k
2
⊥

1− x

)]
(18)
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TABLE I. The normalization parameters and the first two moments of φK
p,σ.

M2(GeV2) [0.875, 1.103] M2(GeV2) [0.800, 1.198] M2(GeV2) [1.088, 1.094]

(µp
K)2(GeV2) 1.287 − 1.517

〈
ξ1p
〉
K

−0.126 ± 0.010
〈
ξ2p
〉
K

0.425 ± 0.001

M2(GeV2) [0.968, 1.034] M2(GeV2) [1.103, 1.267] M2(GeV2) [0.825, 1.117]

(µp
Kµ

σ
K)(GeV2) 1.178 − 1.247

〈
ξ1σ
〉
K

−0.094 ± 0.001
〈
ξ2σ
〉
K

0.329 ± 0.013

and

ψK
σ (x,k⊥) =

[
1 +BK

σ C
3/2
1 (2x− 1) + CK

σ C
3/2
2 (2x− 1)

]

×
AK

σ

x(1 − x)
exp

[
−

1

8βK2
σ

(
m̃2

q + k
2
⊥

x
+
m̃2

s + k
2
⊥

1− x

)]
. (19)

m̃q,s indicate the constituent quark mass, and their stan-
dard values are m̃q ≃ 0.30 GeV and m̃s ≃ 0.45 GeV.
The parameters AK

p,σ, B
K
p,σ, C

K
p,σ and βK

p,σ can be deter-
mined by the average value of the transverse momentum〈
k
2
⊥

〉K
p,σ

(≈ (0.350GeV)2 [35]),

〈
k
2
⊥

〉K
p,σ

=

∫
dxd2k⊥|k

2
⊥||ψ

K
p,σ(x,k⊥)|

2

∫
dxd2k⊥|ψK

p,σ(x,k⊥)|2
, (20)

the wave function normalization
∫ 1

0

dx

∫

k⊥<µf

d2k⊥

16π3
ψK
p,σ(x,k⊥) = 1, (21)

and the first two DA moments

anK,p(µf ) =

∫ 1

0
dxφKp (x, µf )C

1/2
n (2x− 1)

∫ 1

0 dx
[
C

1/2
n (2x− 1)

]2 , (22)

anK,σ(µf ) =

∫ 1

0
dxφKσ (x, µf )C

3/2
n (2x− 1)

∫ 1

0 dx6x(1 − x)
[
C

3/2
n (2x− 1)

]2 . (23)

III. NUMERICAL ANALYSIS

A. input parameters

From the Particle Data Group [36], we take the cur-
rent s-quark mass as ms(2GeV) = 100+30

−20 MeV; π and

K meson masses mπ = 139.57018 ± 0.00035 MeV and
mK = 493.677 ± 0.016 MeV; the pion and kaon decay
constants fπ = 130.41± 0.20 MeV and fK = 156.1± 0.8
MeV. The vacuum condensates have been calculated and
updated since 1979 [25], c.f. Refs.[26, 37–42]. We take
the dimension-four and dimension-six condensates to be
[42]:

〈
αsG

2
〉

= (7.5 ± 2.0) × 10−2GeV4,
〈
g3sfG

3
〉

=

(8.3±1.0)GeV2×
〈
αsG

2
〉
. And for the quark condensate

and quark-gluon condensate we take [41]: 〈ūu〉 (2GeV) =
−(0.254±0.015)3GeV3,

〈
d̄d
〉
= 〈ūu〉, 〈s̄s〉 / 〈ūu〉 = 0.74±

0.03, 〈gsq̄σTGq〉 = m2
0 〈q̄q〉 with m

2
0 = 0.80± 0.02GeV2,

and 〈gsq̄q〉
2
= (2.7+0.5

−0.4) × 10−3GeV6. The continuum
threshold parameter is taken to be around the mass
square of the first exciting state of the meson. Consider-
ing the first exciting states are π(1300) and K(1460) for
pion and kaon respectively [36], we take sp,σπ = 1.69±0.10
GeV2 and sp,σK = 2.13 ± 0.10 GeV2. The leading order
αs is fixed by αs(MZ) = 0.1184 ± 0.0007 [43] and the
renormalization scale is taken as M .

B. φK
p,σ(x,µf ) and ψK

p,σ(x,k⊥)

To derive proper Borel windows for the sum rules of
φKp,σ(x, µf ), the criteria are to suppress the unwanted
continuum contribution and the higher-dimensional con-
tribution as much as possible so as to obtain more accu-
rate results.

First, we determine the normalization parameters µp,σ
K .

In Refs.[7, 12], it is calculated by using the idea of the
quark equation of motion (QEM). While it has been
pointed out that the quarks inside the meson is not ex-
actly on-shell [14], so the results in Refs.[7, 12] is only an

approximation. As a notation, it is found that the three-
particle twist-3 distributions φ3π,3K can be related with
φPp,σ through the QEM [7, 12]. However due to the simi-
lar reason, we do not discuss the three-particle distribu-
tions with those relations in the present paper. A simple
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FIG. 2. The first and second moments of kaon twist-3 DAs versus the Borel parameter M2, where the shaded bands are the
uncertainties caused by varying all the input parameters within their reasonable regions.

TABLE II. Main uncertainties for the normalization parameters and the first two moments of φK
p,σ, where the uncertainty of a

particular parameter is obtained by fixing other parameters to be their center values.

(µp
K)2 (µp

Kµ
σ
K)

〈
ξ1p
〉
K

〈
ξ2p
〉
K

〈
ξ1σ
〉
K

〈
ξ2σ
〉
K

ms
−0.014
+0.003

−0.077
+0.044

−0.045
+0.029

−0.025
+0.014

−0.038
+0.024

−0.009
+0.003

s
p,σ
K

+0.049
−0.051

+0.050
−0.053 ±0.000 ±0.014 ±0.000 +0.007

−0.008〈
αsG

2
〉

±0.041 ±0.039 ∓0.002 ±0.044 ∓0.001 ±0.033

〈s̄s〉 −0.004
+0.003

−0.023
+0.019

−0.011
+0.009

−0.013
+0.011

−0.017
+0.015

−0.020
+0.017

〈ūu〉 +0.018
−0.016 ∓0.001 −0.011

+0.010
+0.012
−0.011 ±0.000 −0.001

+0.000

〈gss̄σTGs〉 ±0.000 +0.002
−0.001 ±0.001 +0.006

−0.005
+0.008
−0.006

+0.022
−0.018

µ
p,σ
K − − +0.008

−0.010
−0.027
+0.033

+0.006
−0.009

−0.021
+0.032〈

g3sfG
3
〉

− − − −0.017
+0.014 − −

discussion on this point can be found in Ref.[14], where
compatible results for ≪ α3 ≫ and f3π with those de-
rived from QEM [6] have been obtained through proper
consideration. At the present, by setting n = 0 in the
sum rules (11,12), we can obtain the sum rules for µp,σ

K .
To set the Borel window for µp,σ

K , we take the continuum
contribution to be less than 40%, and the dimension-
six condensate contribution to be less than 2% for µp

K
and 4% for µσ

K . The values of (µp
K)2 and (µp

Kµ
σ
K) and

the their corresponding Borel windows are collected in
Tab.I, which is obtained by setting all the input parame-
ters to be their center values. Main uncertainties caused
by the current quark mass ms, the continuum threshold
sp,σK , the dimensional operators and etc. are collected

in Tab.II. Other smaller uncertainties caused by the pa-
rameters as 〈gsūσTGu〉, 〈gss̄s〉

2
, 〈gsūu〉

2
, fK and etc.

are not presented. By taking all uncertainty sources into
consideration, we obtain,

µp
K |1GeV = 1.188+0.039

−0.043 GeV, (24)

µσ
K |1GeV = 1.021+0.036

−0.055 GeV, (25)

where the renormalization group equation of µp
K and µσ

K

[44, 45] has been adopted to run its value from the scale
M to 1 GeV. Note our value of µp

K |1GeV is different
from the value obtained by the on-shell condition (i.e.
µp
K |1GeV ≃ 1.424 GeV [12]) by about (17± 3)%.

Second, we calculate the first two moments of kaon
twist-3 DAs. The Borel window for the second moment
of
〈
ξ2p,σ

〉
K

is determined by setting the continuum con-

tribution to be less than 35% and the dimension-six con-
densate contribution to be less than 3%. The Borel win-
dow for the first moment of

〈
ξ1p,σ

〉
K

is determined by

setting the continuum contribution to be less than 5%
for

〈
ξ1σ
〉
K

and to be less than 3% for
〈
ξ1p
〉
K
; while the

dimension-six condensate contribution is set to be less
than 1% for

〈
ξ1p
〉
K

and less than 3% for
〈
ξ1σ
〉
K
. The re-

sults together with the corresponding uncertainties are

presented in Tab.I and Tab.II. To show the uncertain-
ties more clearly, we draw the first two moments of the
kaon twist-3 DAs versus M2 in Fig(2), where the shaded
bands are the uncertainties caused by varying all the
input parameters within their reasonable regions. By
adding these uncertainties in quadrature, and with the
help of the relation between different moments (15) and
the scale running relation (16), we can obtain the cor-
responding Gegenbauler moments at the scale µf = 1
GeV:

a1K,p(1GeV) = −0.376+0.103
−0.148, (26)
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TABLE III. Wavefunction parameters for ψK
p (x,k⊥) with typical DA moments at µf = 1 GeV.

a1K,p −0.524 −0.376 −0.273

a2K,p 0.210 0.701 1.182 0.210 0.701 1.182 0.210 0.701 1.182

AK
p (GeV−2) 163.047 139.472 126.284 168.526 143.459 129.680 172.755 146.721 132.586

BK
p −0.249 −0.188 −0.137 −0.063 −0.019 0.021 0.064 0.096 0.129

CK
p 1.133 1.559 1.968 1.168 1.583 1.986 1.194 1.601 1.999

βK
p (GeV) 0.506 0.549 0.581 0.503 0.546 0.578 0.501 0.544 0.575

TABLE IV. Wavefunction parameters for ψK
σ (x,k⊥) with typical DA moments at µf = 1 GeV.

a1K,σ −0.234 −0.160 −0.109

a2K,σ 0.220 0.369 0.532 0.220 0.369 0.532 0.220 0.369 0.532

AK
σ (GeV−2) 194.004 150.888 116.789 199.642 154.708 119.355 203.549 157.461 121.467

BK
σ −0.080 −0.062 −0.049 −0.007 0.010 0.026 0.043 0.059 0.075

CK
σ 0.114 0.225 0.349 0.129 0.237 0.360 0.138 0.246 0.367

βK
σ (GeV) 0.442 0.479 0.519 0.440 0.477 0.516 0.438 0.475 0.514

a2K,p(1GeV) = 0.701+0.481
−0.491, (27)

a1K,σ(1GeV) = −0.160+0.051
−0.074, (28)

a2K,σ(1GeV) = 0.369+0.163
−0.149. (29)

Based on the above moments and the formulas pre-
sented in Sec.II, we can obtain the kaon twist-3 wave
function parameters, which are collected in Tabs.(III,IV).
Here Tabs.(III,IV) correspond to the factorization scale
µf = 1 GeV. With the help of Eq.(17), we can obtain
the kaon twist-3 DAs φKp and φKσ , which are presented

in Fig.(3). Our φKp (Left diagram) or φKσ (Right dia-
gram) are drawn by the solid lines which are defined by
Eq.(17), and the dash-dot lines are for Eqs.(13,14) with
µf = 1 GeV, respectively. As a comparison, we also give
the DAs of Ref.[13] under µf = 1 GeV, which are drawn

by the dashed lines. Here, in doing the comparison, we
need to replace φKp,σ(x) in Ref.[13] to be φKp,σ(1− x), be-
cause in Ref.[13] x stands for the momentum fraction of
s-quark; while in the present paper, x is taken as that
of u (or d) quark. These two figures indicate that the
kaon twist-3 DAs, especially φKp , have a better end-point
behavior. Such a BHL-improved behavior shall be help-
ful to obtain a reasonable result for kaon related pro-
cesses, such as the kaon electromagnetic form factor and
the B → K transition form factor with kT factorization
approach or LCSR. Some previous calculations can be
found in Refs.[17, 18, 33].

TABLE V. Contributions of the higher order quark mass terms to various vacuum condensate parts for the moments of φK
p,σ.

For estimation of the contribution of higher order quark mass terms to every vacuum condensate, the percentage of which is
obtained by calculating the ratio of higher order mass terms (mn, n ≥ 2) before each vacuum condensate with those of (mn,
n ≤ 1).

〈
ξ1p
〉
K

〈
ξ2p
〉
K

〈
ξ1σ
〉
K

〈
ξ2σ
〉
K〈

αsG
2
〉

4.3% ∼ 2.8% 2.3% ∼ 2.2% − −

mq 〈q̄q〉 −0.7% ∼ −0.4% 17.6% ∼ 17.5% 1.2% ∼ 1.0% 2.8% ∼ 1.9%

mq 〈gsq̄σTGq〉 7.2% ∼ 4.4% −8.0% ∼ −7.9% 11.7% ∼ 10.0% −0.6% ∼ −0.4%

〈gsq̄q〉
2 −16.5% ∼ −9.1% −0.5% −1.6% ∼ −1.3% 1.0% ∼ 0.7%
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FIG. 3. Kaon twist-3 DAs φK
p (x, µf ) (Left) and φK

σ (x,µf )
(Right), where the solid and the dash-dot lines are for our
DAs defined by Eq.(17) and Eqs.(13,14) with µf = 1 GeV
respectively. As a comparison, the DA of Ref.([13]) at µf = 1
GeV is shown by a dashed line.

As has been argued in the Introduction in order to
provide a more sound estimation on the SUf(3)-breaking
effect in the K-meson involved processes, we need to use
the much more complex Eq.(4) other than Eq.(6) as the
quark propagator. To show this point clearly, we show
in Tab.V how the higher order mass terms contribute to
the corresponding vacuum condensates for the first two
moments of φKp,σ. For estimation of the contribution of
higher order quark mass terms to every vacuum conden-
sate, e.g.

〈
αsG

2
〉
, mq 〈q̄q〉, mq 〈gsq̄σTGq〉 or 〈gsq̄q〉

2, the
percentage of which is obtained by calculating the ratio of
higher order mass terms (mn, n ≥ 2) before each vacuum
condensate with those of (mn, n ≤ 1). Tab.V indicates
that because the s-quark mass is not small, it shall lead
to sizable contributions. For example, its contribution to
mq 〈q̄q〉 for

〈
ξ2p
〉
K

can be up to 17%.

IV. SUMMARY

The background field approach provides a systematic
description for the vacuum condensates from the view-
point of field theory and it provides a convenient way
to derive the QCD sum rules. We have made an in-
vestigation over the kaon twist-3 DAs φKp,σ within this
approach. Furthermore, the SUf (3)-breaking effects are
studied in detail under a more systematical way, espe-

cially the quark propagator (4) that keeps the mass terms
consistently is adopted. As have been shown by Tab.V,
higher-order mass terms can indeed provide sizable con-
tributions to the kaon DA moments. For example, its
contribution to mq 〈q̄q〉 for

〈
ξ2p
〉
K

can be up to 17%. So

to obtain a sound estimation for the SUf (3)-breaking ef-
fect, we need to take these higher-order mass terms into
consideration. Moreover, such a propagator shall also be
helpful for deriving information on the meson or baryon
with heavy quarks. Some more works on its application
to the heavy meson/baryon properties are in progress.

As for the kaon twist-3 DAs φKp and φKσ , we have
studied their normalization parameters and moments
within the QCD sum rules under the background field
approach. For its normalization parameters, we obtain
µp
K |1GeV = 1.188+0.039

−0.043 GeV and µσ
K |1GeV = 1.021+0.036

−0.055

GeV. As for the moments of φKp,σ, around µf ≃ 1GeV,

we obtain
〈
ξ1p
〉
K

= −0.126+0.034
−0.050,

〈
ξ2p
〉
K

= 0.425+0.063
−0.064,〈

ξ1σ
〉
K

= −0.094+0.030
−0.044 and

〈
ξ2σ
〉
K

= 0.329+0.057
−0.052. Basing

on these moments, we further calculate the Gegenbauler
moments, and establish a model for kaon twist-3 wave-
functions ΦK

p,σ with the help of BHL prescription, which
have a better endpoint behavior and shall be helpful for
estimating the kaon involved inclusive or exclusive pro-
cesses.
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TABLE VI. The normalization parameters and the first two moments of φπ
p,σ and their corresponding Borel windows.

M2(GeV2) [0.799, 0.976] M2(GeV2) [0.895, 1.066] M2(GeV2) [0.833, 1.109]

(µp
π)

2(GeV2) 1.068 − 1.280
〈
ξ2p
〉
π

0.539 ± 0.012
〈
ξ4p
〉
π

0.580 ± 0.010

M2(GeV2) [0.974, 1.052] M2(GeV2) [0.831, 1.163] M2(GeV2) [1.095, 1.340]

(µp
πµ

σ
π)(GeV2) 1.229 − 1.316

〈
ξ2σ
〉
π

0.313 ± 0.012
〈
ξ4σ
〉
π

0.248 ± 0.004

As a final remark, by setting the current quark mass
ms = 0, we can obtain the sum rules for the pion distri-
bution amplitudes φπp,σ , whose normalization parameters
and the first two non-zero moments together with their
corresponding Borel windows are presented in Tab.VI.
By adding all the uncertainties in quadrature, we obtain
µp
π|1GeV = 1.104+0.046

−0.050 GeV and µσ
π|1GeV = 1.149+0.033

−0.034

GeV. If taking the αs correction into consideration, which
increases the leading-order results by 15%−20% [46], we
shall obtain µp

π|1GeV ∈ [1.20, 1.38] GeV and µσ
π|1GeV ∈

[1.28, 1.42] GeV.
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Appendix A: Details for the formulas of〈
0
∣∣ψ̄a

α(x)ψ
b
β(y)

∣∣0
〉
and

〈
0
∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣ 0
〉

Under the background field approach, ψ̄(x) can be ex-
panded around x = 0 [24],

ψ̄(x) = ψ̄(0) + ψ̄(0)
←−
D

α
xα +

1

2
ψ̄(0)
←−
D

α←−
D

β
xαxβ +

1

3!
ψ̄(0)
←−
D

α←−
D

β←−
D

γ
xαxβxγ + · · · .

Then, the matrix element
〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(0)

∣∣∣ 0
〉
can be ex-

panded around x = 0 as
〈
0
∣∣ψ̄a

α(x)ψ
b
β(0)

∣∣ 0
〉

=
〈
0
∣∣ψ̄a

α(0)ψ
b
β(0)

∣∣ 0
〉
+ xµ

〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ
ψb
β(0)

∣∣∣ 0
〉

+
1

2!
xµxν

〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ←−
D

ν
ψb
β(0)

∣∣∣ 0
〉

+
1

3!
xµxνxρ

〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ←−
D

ν←−
D

ρ
ψb
β(0)

∣∣∣ 0
〉
. (A1)

The results for the first and the second terms are well
known,

〈
0
∣∣ψ̄a

α(0)ψ
b
β(0)

∣∣ 0
〉
=

1

12

〈
ψ̄ψ
〉
δabgαβ

and

〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ
ψb
β(0)

∣∣∣ 0
〉
=
im

48

〈
ψ̄ψ
〉
δab(γµ)βα .

As for the third term
〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ←−
D

ν
ψb
β(0)

∣∣∣ 0
〉
, basing

on its color and Dirac-gamma structures, it can be rewrit-
ten as

〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ←−
D

ν
ψb
β(0)

∣∣∣ 0
〉
= Cgµνgβαδ

ba+D(σµν)βαδ
ba.

Utilizing the equation of motion of the background

quark field and the equation [
←−
D

µ
,
←−
D

ν
] = −igsT

AGAµν ,

we obtain C = −m2

48

〈
ψ̄ψ
〉

+ 1
96

〈
gsψ̄σTGψ

〉
and

D = − i
288

〈
gsψ̄σTGψ

〉
, where

〈
gsψ̄σTGψ

〉
is the ab-

breviation of
〈
gsψ̄σµνT

AGAµνψ
〉
. The fourth term〈

0
∣∣∣ψ̄a

α(0)
←−
D

µ←−
D

ν←−
D

ρ
ψb
β(0)

∣∣∣ 0
〉
can be treated similarly,

〈
0
∣∣∣ψ̄a

α(0)
←−
D

µ←−
D

ν←−
D

ρ
ψb
β(0)

∣∣∣ 0
〉

= δba(Eγµgνρ + Fγνgνρ +Gγρgµν)βα

with E = G = − im3

96×3

〈
ψ̄ψ
〉
+ im

96×9

〈
gsψ̄σTGψ

〉
and

F = − im3

96×3

〈
ψ̄ψ
〉
+ 4im

96×9

〈
gsψ̄σTGψ

〉
. Taking use of

translation invariance of matrix element, we finally ob-
tain

〈
0
∣∣ψ̄a

α(x)ψ
b
β(y)

∣∣ 0
〉
= δba

{〈
ψ̄ψ
〉 [ 1

12
gβα +

im

48
(6x− 6y)βα −

m2

96
(x − y)2gβα −

im3

96× 6
(x− y)2(6x− 6y)βα

]

+
〈
gsψ̄σTGψ

〉 [ 1

96× 2
(x − y)2gβα +

im

96× 9
(x− y)2(6x− 6y)βα

]}
. (A2)
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The matrix element
〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣∣ 0
〉

can also

be expanded it around x = 0,

〈
0
∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣ 0
〉
=

〈
0
∣∣ψ̄a

α(0)ψ
b
β(0)G

A
µν

∣∣ 0
〉
+ xρ

〈
0
∣∣∣ψ̄a

α(0)
←−
D

ρ
GA

µνψ
b
β(0)

∣∣∣ 0
〉

+yρ

〈
0
∣∣∣ψ̄a

α(0)G
A
µν
−→
D

ρ
ψb
β(0)

∣∣∣ 0
〉
. (A3)

Obviously,

〈
0
∣∣ψ̄a

α(0)ψ
b
β(0)G

A
µν

∣∣ 0
〉
=

1

192

〈
ψ̄σTGψ

〉
(σµν )βα(T

A)ba.

Utilizing the equation [TAGA
µν ,
←−
D

ρ
] = TAGA ρ

µν; , one can
derive

〈
0
∣∣∣ψ̄a

α(0)
←−
D

ρ
GA

µνψ
b
β(0)

∣∣∣ 0
〉
=

−
〈
0
∣∣∣ψ̄a

α(0)G
A
µν
−→
D

ρ
ψb
β(0)

∣∣∣ 0
〉
−
〈
0
∣∣ψ̄a

α(0)ψ
b
β(0)G

A ρ
µν;

∣∣ 0
〉
.

Using the equation of motion of the background quark
field together with the following equation [47]:

〈
0
∣∣ψ̄a

α(0)ψ
b
β(0)G

A ρ
µν;

∣∣ 0
〉
=

1

432
gs
〈
ψ̄ψ
〉2

(gρµγν − gρνγµ)βα(T
A)ba,

we obtain,
〈
0
∣∣∣ψ̄a

α(0)
←−
D

ρ
GA

µνψ
b
β(0)

∣∣∣ 0
〉
=

−
1

864
gs
〈
ψ̄ψ
〉2

(gρµγν − gρνγµ)βα(T
A)ba +

[
im

384

〈
ψ̄σTGψ

〉
+

i

864
gs
〈
ψ̄ψ
〉2
]
(ǫρµνσγ5γ

σ)βα(T
A)ba

and
〈
0
∣∣∣ψ̄a

α(0)G
A
µν
−→
D

ρ
ψb
β(0)

∣∣∣ 0
〉
=

−
1

864
gs
〈
ψ̄ψ
〉2

(gρµγν − gρνγµ)βα(T
A)ba −

[
im

384

〈
ψ̄σTGψ

〉
+

i

864
gs
〈
ψ̄ψ
〉2
]
(ǫρµνσγ5γ

σ)βα(T
A)ba.

Then, we finally have

〈
0
∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣ 0
〉
=

1

192

〈
ψ̄σTGψ

〉
(σµν )βα(T

A)ba +

{
−

1

864
gs
〈
ψ̄ψ
〉2

(gρµγν − gρνγµ)βα(x+ y)ρ

+i(x− y)ρ
[
m

384

〈
ψ̄σTGψ

〉
+

1

864
gs
〈
ψ̄ψ
〉2
]
(ǫρµνσγ5γ

σ)βα

}
(TA)ba. (A4)

It is found that Eqs.(A2,A4) agree with those of Ref.[48]

(Eqs.(22,29) there), except that for
〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)

∣∣∣ 0
〉

there is no dimension-six term and the coefficient before
m
〈
gsψ̄σTGψ

〉
should be i

96×9 other than i
96×12 , and for

〈
0
∣∣∣ψ̄a

α(x)ψ
b
β(y)G

A
µν

∣∣∣ 0
〉
the last term should be (x − y)ρ

other than (y − x)ρ.
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