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We describe the analytic calculation of the fermionic two-loop QCD corrections to the heavy-quark pair production

process in the quark-antiquark channel.

1. INTRODUCTION

The top quark is the heaviest fermion of the Standard Model. Since its discovery at the Fermilab Tevatron [1],

its mass has been measured to within a few percent, while its production cross section and couplings are currently

known with larger uncertainty. With the large number of top quarks expected to be produced at the LHC, the study

of its properties will become precision physics. To interpret these upcoming precision data, equally precise theoretical

predictions are mandatory. These demand foremost the calculation of higher order corrections in perturbative QCD.

At present, the top quark pair production cross section is known to next-to-leading order (NLO) in the QCD

coupling constant [2]. For this process, the resummation of next-to-leading logarithmically enhanced corrections

(NLL) improves upon the fixed-order NLO prediction [3]. Electroweak one-loop corrections to tt̄ production are

equally available [4]. For the top quark pair production cross section, which is expected to be measured to within

a few percent accuracy, the currently available theoretical prediction is not sufficiently precise. Recent studies [5]

indicate a scale uncertainty on these predictions of 7%, and a parton distribution uncertainty of 6%. While the latter

may be improved upon by more precise determinations of the parton distribution functions at HERA and LHC, the

former requires the calculation of perturbative corrections at next-to-next-to-leading order (NNLO) in QCD.

The calculation of the full NNLO corrections to the top quark pair production cross section requires three types of

ingredients: two-loop matrix elements for qq̄ → tt̄ and gg → tt̄, one-loop matrix elements for hadronic production of

tt̄+(1 parton) and tree-level matrix elements for hadronic production of tt̄+(2 partons). The latter two ingredients

were computed previously in the context of the NLO corrections to tt̄+jet production [6]. They contribute to the tt̄

production cross section through configurations where up to two final state partons can be unresolved (collinear or

soft), and their implementation thus may require further developments of subtraction techniques at NNLO.

Both two-loop matrix elements were computed analytically in the small-mass expansion limit s, |t|, |u| ≫ m2 in [7],

starting from the previously known massless two-loop matrix elements for qq̄ → q′q̄′ [8] and gg → qq̄ [9]. An exact

numerical representation of the two-loop matrix element qq̄ → tt̄ has been obtained very recently [10]. In [11]

we computed all two-loop contributions to qq̄ → tt̄ arising from closed fermion loops in a compact analytic form,

providing also a first independent validation of the results of [7, 10]. Our results allow for a fast numerical evaluation

and permit the analytical study of the cross section near threshold. In the rest of this proceeding we briefly discuss

the structure of the two-loop fermionic corrections and the calculational techniques employed to evaluate them.

2. STRUCTURE

The scattering process we consider is q(p1)+q(p2) → t(p3)+t(p4) in Euclidean kinematics, where p2
i = 0 for i = 1, 2

and p2
j = −m2 for i = 3, 4. The Mandelstam variables are defined as follows: s = − (p1 + p2)

2
, t = − (p1 − p3)

2
,

u = − (p1 − p4)
2
. Conservation of momentum implies that s + t + u = 2m2. The squared matrix element (averaged

over the spin and color of the incoming quarks and summed over the spin of the outgoing ones), calculated in
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d = 4 − 2ε dimensions, can be expanded in powers of the strong coupling constant αS as follows:

|M|2(s, t, m, ε) =
4π2α2

S

N2
c

[

A0 +
(αs

π

)

A1 +
(αs

π

)2

A2 + O
(

α3
s

)

]

. (1)

The tree-level amplitude involves a single diagram and its contribution to Eq. (1) is given by

A0 = 4Nc CF

[

(t − m2)2 + (u − m2)2

s2
+

2m2

s
− ε

]

, (2)

where Nc is the number of colors and CF = (N2
c − 1)/2Nc.

The NLO term A1 in Eq. (1) arises from the interference of one-loop diagrams with the tree-level amplitude [2].

The NNLO term A2 consists of two parts, the interference of two-loop diagrams with the Born amplitude and the

interference of one-loop diagrams among themselves: A2 = A
(2×0)
2 + A

(1×1)
2 . The latter term A

(1×1)
2 was studied

extensively in [12]. A
(2×0)
2 can be decomposed according to color and flavor structures as follows:

A
(2×0)
2 = NcCF

[

N2
c A + B +

C

N2
c

+ Nl

(

NcDl +
El

Nc

)

+ Nh

(

NcDl +
El

Nc

)

+ N2
l Fl + NlNhFlh + N2

hFh

]

, (3)

where Nl and Nh are the number of light- and heavy-quark flavors, respectively. The coefficients A, B, . . . , Fh in

Eq. (3) are functions of s, t, m, and ε. These quantities were calculated in [7] in the approximation s, |t|, |u| ≫ m2.

For a fully differential description of top quark pair production at NNLO, the complete mass dependence of A
(2×0)
2 is

required. An exact numerical expression for it has been obtained in [10]. In [11], we derived exact analytic expressions

for all the terms in Eq. (3) arising from two-loop diagrams involving at least a fermion loop (i.e. the coefficients

Di, Ei, Fj with i = l, h and j = l, h, lh), providing also an independent confirmation of the results of [7, 10].

3. CALCULATION

The two-loop Feynman diagrams for qq̄ → tt̄ were generated with QGRAF [13]. The interference with the tree-

level amplitude, as well as the color and Dirac algebra, were simplified by using a FORM [14] code. Out of the ∼

200 two-loop diagrams contributing to the amplitude, about 60 are proportional to Nl and/or Nh. There is only

one two-loop box topology contributing to the Nl part of the squared amplitude, and a single other two-loop box

topology proportional to Nh. These two box topologies are very similar to the ones encountered in the evaluation of

the two-loop QED corrections to Bhabha scattering [15, 16], and can be evaluated with the same techniques.

All two-loop integrals appearing in these amplitudes are reduced to a set of master integrals (MIs) using two

independent implementations of the Laporta algorithm [17]. Only part of these MIs were available in the literature [18]

from previous two-loop calculations of the heavy quark form factors [19] and amplitudes for Bhabha scattering

[15, 16, 20]. The remaining MIs were evaluated in [11] by employing the differential equation method [21].

All the MIs were calculated in the non-physical region s < 0. The transcendental functions appearing in the MIs

are one- and two-dimensional harmonic polylogarithms (HPLs) [22] of maximum weight four and three, respectively.

Both sets of functions can be rewritten in terms of conventional Nielsen’s polylogarithms.

Following the procedure outlined in the present section, it was possible to obtain the expression of the bare

squared matrix elements involving diagrams proportional to Nl and/or Nh. The UV divergencies were renormalized

in a mixed scheme described in detail in [11]. In order to cross check our analytical results, we expanded them

in the s, |t|, |u| ≫ m2 limit. The first term in the expansion agrees with the results published in [7]; the second

order term agrees with the results found in the Mathematica files included in the arXiv version of [10]. We also find

complete agreement with the numerical result of Table 3 in [10], corresponding to a phase space point in which the

s, |t|, |u| ≫ m2 approximation cannot be applied.

Acknowledgments

Work supported by the Swiss National Science Foundation (SNF) under contract 200020-117602.



XXXIV International Conference on High Energy Physics (ICHEP08) 29 Jul - 5 Aug 2008, Philadelphia PA, USA

References

[1] F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74 (1995) 2626; S. Abachi et al. [D0 Collaboration], Phys.

Rev. Lett. 74, (1995) 263.

[2] P. Nason, S. Dawson and R.K. Ellis, Nucl. Phys. B 303 (1988) 607; Nucl. Phys. B 327 (1989) 49 [Erratum-ibid. B

335 (1990) 260]. W. Beenakker et al., Phys. Rev. D 40 (1989) 54. W. Beenakker et al., Nucl. Phys. B 351 (1991)

507. M.L. Mangano, P. Nason and G. Ridolfi, Nucl. Phys. B 373 (1992) 295. J.G. Körner and Z. Merebashvili,

Phys. Rev. D 66 (2002) 054023. W. Bernreuther et al., Nucl. Phys. B 690 (2004) 81.

[3] N. Kidonakis and G. Sterman, Nucl. Phys. B 505 (1997) 321. R. Bonciani et al., Nucl. Phys. B 529 (1998) 424.

M. Cacciari et al., JHEP 0404 (2004) 068.
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M. Fücker and Z.G. Si, Phys. Rev. D 74 (2006) 113005; arXiv:0804.1237. W. Beenakker et al., Nucl. Phys. B

411 (1994) 343.

[5] S. Moch and P. Uwer, Phys. Rev. D 78 (2008) 034003. M. Cacciari et al., JHEP 0809 (2008) 127. N. Kidonakis

and R. Vogt, arXiv:0805.3844.

[6] S. Dittmaier, P. Uwer and S. Weinzierl, Phys. Rev. Lett. 98 (2007) 262002; arXiv:0810.0452.

[7] M. Czakon, A. Mitov and S. Moch, Phys. Lett. B 651 (2007) 147; Nucl. Phys. B 798 (2008) 210.

[8] Z. Bern, L.J. Dixon and A. Ghinculov, Phys. Rev. D 63 (2001) 053007; C. Anastasiou et al., Nucl. Phys. B 601

(2001) 318; E.W.N. Glover, JHEP 0404 (2004) 021.

[9] C. Anastasiou et al. Nucl. Phys. B 605 (2001) 486; E.W.N. Glover and M.E. Tejeda-Yeomans, JHEP 0306

(2003) 033; Z. Bern, A. De Freitas and L.J. Dixon, JHEP 0306 (2003) 028.

[10] M. Czakon, Phys. Lett. B 664 (2008) 307.

[11] R. Bonciani et al., JHEP 0807 (2008) 129.

[12] J.G. Körner, Z. Merebashvili and M. Rogal, Phys. Rev. D 73 (2006) 034030; Phys. Rev. D 77 (2008) 094011.

C. Anastasiou and S. M. Aybat, arXiv:0809.1355; B. Kniehl et al., arXiv:0809.3980.

[13] P. Nogueira, J. Comput. Phys. 105 (1993) 279.

[14] J.A.M. Vermaseren, Symbolic Manipulation with FORM, Version 2, CAN, Amsterdam, 1991; math-th/0010025.

[15] R. Bonciani et al., Nucl. Phys. B 681 (2004) 261 [Erratum-ibid. B 702 (2004) 364].

[16] R. Bonciani, A. Ferroglia and A.A. Penin, Phys. Rev. Lett. 100 (2008) 131601; JHEP 0802 (2008) 080; S. Actis

et al., Nucl. Phys. B 786 (2007) 26; Phys. Rev. Lett. 100 (2008) 131602.

[17] S. Laporta and E. Remiddi, Phys. Lett. B 379 (1996) 283; S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087.

F.V. Tkachov, Phys. Lett. B 100 (1981) 65; K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B 192 (1981) 159.

C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046.

[18] J. Fleischer, M. Y. Kalmykov and A. V. Kotikov, Phys. Lett. B 462 (1999) 169. M. Argeri, P. Mastrolia and

E. Remiddi, Nucl. Phys. B 631 (2002) 388. R. Bonciani, P. Mastrolia and E. Remiddi, Nucl. Phys. B 661

(2003) 289 [Erratum-ibid. B 702 (2004) 359]. Nucl. Phys. B 690 (2004) 138. J. Fleischer, A.V. Kotikov and

O.L. Veretin, Nucl. Phys. B 547 (1999) 343; U. Aglietti and R. Bonciani, Nucl. Phys. B 668 (2003) 3; Nucl.

Phys. B 698 (2004) 277. A.I. Davydychev and M.Y. Kalmykov, Nucl. Phys. B 699 (2004) 3. M. Czakon, J. Gluza

and T. Riemann, Phys. Rev. D 71 (2005) 073009. G. Bell, arXiv:0705.3133.

[19] W. Bernreuther, et al., Nucl. Phys. B 706 (2005) 245; Nucl. Phys. B 712 (2005) 229; Nucl. Phys. B 723 (2005)

91; Phys. Rev. D 72 (2005) 096002; Phys. Rev. Lett. 95 (2005) 261802.

[20] R. Bonciani and A. Ferroglia, Phys. Rev. D 72 (2005) 056004.

[21] A.V. Kotikov, Phys. Lett. B 254 (1991) 158; Phys. Lett. B 259 (1991) 314; Phys. Lett. B 267 (1991) 123;

E. Remiddi, Nuovo Cim. A 110 (1997) 1435; T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485;

M. Argeri and P. Mastrolia, Int. J. Mod. Phys. A 22 (2007) 4375.

[22] E. Remiddi and J.A.M. Vermaseren, Int. J. Mod. Phys. A 15 (2000) 725; T. Gehrmann and E. Remiddi, Comput.

Phys. Commun. 141 (2001) 296; Comput. Phys. Commun. 144 (2002) 200. J. Vollinga and S. Weinzierl, Comput.
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