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Abstract

Classification of dark energy models in the plane of w and w′, where w is the dark energy equation

of state and w′ its time-derivative in units of the Hubble time, has been studied in the literature.

We take the current SN Ia, CMB and BAO data, invoke a widely used parametrization of the

dark energy equation of state, and obtain the constraints on the w–w′ plane. We find that dark

energy models including the cosmological constant, phantom, non-phantom barotropic fluids, and

monotonic up-rolling quintessence are ruled out at the 68.3% confidence level based on the current

observational data. Down-rolling quintessence, including the thawing and the freezing models, is

consistent with the current observations. All the above-mentioned models are still consistent with

the data at the 95.4% confidence level.
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I. INTRODUCTION

Compelling evidence from different types of observation shows that the expansion of the

universe is accelerating at late times (see [1] for a review). Within the framework of general

relativity, this indicates that there should exist an energy source with significant negative

pressure, termed dark energy, to drive this acceleration. The nature of dark energy is

generally regarded as one of the most tantalizing problems in cosmology. Many dark energy

models have been proposed and studied (see [1, 2], and references therein). While the

cosmological constant remains the simplest realization of dark energy, current observations

do not rule out the possibility of time-evolving dark energy [1]–[3].

In the pursuit of revealing the nature of dark energy, cosmological observations serve to

constrain the behavior of dark energy. Theoretical studies, on the other hand, should deter-

mine whether dark energy models can be distinguished by their observational consequences.

The ratio of pressure to energy density for dark energy, the equation of state w = p/ρ, is

the characteristic of how the energy density evolves with time. The cosmological constant

relates to the constant equation of state w = −1, while other dark energy models generally

have time-evolving w. The time-derivative of w in units of the Hubble time, w′ = dw/dlna,

characterizes the dynamical behavior of the equation of state. Studies of the dynamical be-

haviors and classification of dark energy models in the w–w′ phase plane have been carried

out [4]–[8]. It is found that different dark energy models are bounded in different sectors in

the w–w′ plane.

In this paper, on the one hand, we gather the bounds for various dark energy mod-

els in the w–w′ plane. On the other hand, we obtain the constraints on the w–w′ plane

in the redshift region 0 < z < 1, by adopting a widely used parametrization [3, 9, 10],

w(z) = w0 + wa(1 − a) = w0 + waz/(1 + z), based on the current observational data. The

data set we use includes the recently compiled “Constitution set” of Type Ia supernovae

(SN Ia) data [11]–[17], the cosmic microwave background (CMB) measurement from the

five-year Wilkinson Microwave Anisotropy Probe (WMAP) [18], and the baryon acoustic

oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS) [19] and the 2dF

Galaxy Redshift Survey (2dFGRS) [20]. We then compare the dark energy models with the

constraints on the w–w′ plane for 0 < z < 1. The work close to ours is that of Barger et

al. [21], in which they used the earlier data set and examined the dark energy models in the
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w0–wa plane only at the redshift z = 1 .

II. CLASSIFICATION OF DARK ENERGY MODELS

Quintessence

The quintessence model [22]–[24], which invokes a time-varying scalar field, generally

allows its energy density and equation of state to evolve with time, and has w > −1. The

equation of motion of the quintessence field is φ̈ + 3Hφ̇ + V,φ = 0, where H = ȧ/a is the

Hubble expansion rate, and V,φ = dV/dφ. In terms of w and w′, the equation of motion can

be written as [25]

∓
V,φ

V
=

√

3(1 + w)

Ωφ(a)

[

1 +
1

6

d ln(xq)

d ln(a)

]

, (1)

where the minus sign corresponds to φ̇ > 0 and the plus sign to the opposite, Ωφ(a) is

the dimensionless energy density of the quintessence field, and xq = (1 + w)/(1 − w). For

the down-rolling quintessence field (V̇ < 0), the left-hand side of Eq. (1) is positive, and

the bound of w and w′ can be obtained as w′ > −3(1 − w)(1 + w) [5, 6]. The up-rolling

quintessence field (V̇ > 0) takes the other side, w′ < −3(1 − w)(1 + w). The bound of

the tracker quintessence [26] is obtained in [5, 6]. However, strong acceleration today, with

w . −0.7, requires the breakdown of tracking [7]. The bound should only apply to the

high redshift [7], z ≫ 1, which is not the region of interest in this paper. A conjectured

limit of quintessence has been proposed in [7] as V/(−V,φ) < MP , where MP is the Plank

mass. However, the physical origin of this limit is not clear [7]. We therefore do not impose

this constraint on the quintessence model. Caldwell and Linder identified two categories of

quintessence models, “thawing” and “freezing”, based on their dynamical behavior [4]. For

the thawing models, the equation of state is w ≈ −1 at early times, but grows less negative

with time as w′ > 0. The bounds of the thawing models are (1 + w) < w′ < 3(1 + w). For

the freezing models, initially the equation of state is w > −1 with w′ < 0, but the field is

frozen at late times where w → −1 and w′ → 0. The bounds of the freezing models are

3w(1 + w) < w′ < 0.2w(1 + w). Note that the upper bound for the freezing models is only

valid for z < 1.

Phantom

The phantom model has negative kinetic energy and the equation of state w < −1 [27].
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The equation of motion of the phantom field is φ̈ + 3Hφ̇ − V,φ = 0. In terms of w and w′,

the equation of motion can be written as [28]

±
V,φ

V
=

√

−3(1 + w)

Ωφ(a)

[

1 +
1

6

d ln(xp)

d ln(a)

]

, (2)

where the plus sign corresponds to φ̇ > 0 and the minus sign to the opposite, Ωφ(a) is the

dimensionless energy density of the phantom field, and xp = −(1 + w)/(1 − w). For the

up-rolling phantom field (V̇ > 0), the left-hand side of Eq. (2) is positive, and the bound

of w and w′ can be obtained as w′ < −3(1 − w)(1 + w). The down-rolling phantom field

(V̇ < 0) takes the other side w′ > −3(1−w)(1 + w). Note that Eq. (2) and the bounds are

different from those obtained in [6].

Barotropic fluids

Barotropic fluids are those for which the pressure is an explicit function of the energy

density, p = f(ρ) (see [8] and references therein). The expression for w′ can be written

as [5, 8]

w′ = −3(1 + w)

(

dp

dρ
− w

)

. (3)

The sound speed for a barotropic fluid is given by c2
s = dp/dρ. To ensure stability, we

must have c2
s ≥ 0, which gives the bound w′ ≤ 3w(1 + w) for non-phantom (w > −1)

barotropic fluids [5, 8]. For causality, we further require c2
s ≤ 1 [29], which gives the bound

w′ ≥ −3(1 + w)(1 − w) for w > −1 [8].

The classification of the above-mentioned dark energy models in the w–w′ plane is shown

in Fig. 1. Note that all of the bounds are valid at late times for 0 < z < 1.

III. CONSTRAINTS ON THE w–w′ PLANE

A. Observational data

We use the combined data set from three types of observations including the SN Ia

observation, the CMB measurement, and the BAO measurement. We assume that the

universe is flat in this paper.

We use the Constitution set of SN Ia data compiled by Hicken et al. [11]–[17], which

provides the information of the luminosity distance and the redshift. The SN Ia samples lie
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in the redshift region 0 < z < 1.55. The luminosity distance-redshift relation is given by

dL(z) = (1 + z)

∫ z

0

dz′

H(z′)
. (4)

We use the CMB shift parameter measured by the five-year WMAP observation [18],

R =
√

ΩmH2
0

∫

1090.04

0

dz

H(z)
= 1.710 ± 0.019, (5)

where H0 is the Hubble constant and Ωm is the dimensionless matter density at present. We

use the BAO measurement from the joint analysis of the SDSS and 2dFGRS data [19, 20],

which gives DV (0.35)/DV (0.2) = 1.812 ± 0.060, where

DV (zbao) =

[

(1 + zbao)
2D2

A(zbao)
zbao

H(zbao)

]1/3

, (6)

and DA(z) is the angular diameter distance,

DA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
. (7)

To obtain the constraints on the w–w′ plane, we invoke a broadly used form of

parametrization of the equation of state [3, 9, 10],

w(z) = w0 + wa(1 − a) = w0 + waz/(1 + z) . (8)

The constraint of w0, wa and Ωm is obtained by fitting the three parameters to this com-

bined data set. The estimate of the parameters are found to be w0 = −0.89+0.12
−0.14, wa =

−0.18+0.71
−0.74, Ωm = 0.25+0.03

−0.02. The two-dimensional constraint of w0–wa is obtained and

shown in Fig. 2.

B. Results of the constraints on the w–w′ plane

We reconstruct the the w–w′ plane via Eq. (8) and

w′(z) = −awa = −wa/(1 + z), (9)

at late times for 0 < z < 1. At each redshift, the two-dimensional constraint is obtained by

converting the points on the boundaries of the confidence regions in the w0–wa plane to the

corresponding points in the w–w′ plane, following Eq. (8) and Eq. (9), for the 68.3% and
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the 95.4% confidence regions respectively.1 Since the transformation between (w, w′) and

(w0, wa) is linear, each point inside a confidence region in the w0–wa plane gives a distinct

point inside the corresponding confidence region in the the w–w′ plane.

In the w–w′ plane, we find that the cosmological constant, the phantom models, the

up-rolling quintessence models, and the non-phantom barotropic fluids lie outside the 68.3%

confidence region in the redshift regions 0 < z < 1, 0.18 < z < 0.22, 0.4 < z < 1 and 0.7 <

z < 1, respectively. This shows that the four models are ruled out at the 68.3% confidence

level. On the contrary, the down-rolling quintessence models, including the thawing and the

freezing models, overlap with the 68.3% confidence region for 0 < z < 1. All of the models

overlap with the 95.4% confidence region for 0 < z < 1. Samples of the constraints on the

w–w′ plane at redshifts z = 0, 0.2, 0.7 and 1, together with the models, are shown in Fig. 3.

IV. TEST OF THE METHOD

In Sec. III B, we invoked a criterion that a model is ruled out at the 68.3% confidence

level if for some redshift the model’s corresponding sector in the w–w′ plane does not overlap

with the confidence region at all. To test the validity of this criterion and to address the

concern about the inherent bias of the parametrization against certain models, we perform

a Monte Carlo test of our method. The criterion is invalid if for some redshift the resulting

68.3% region from the Monte Carlo realization of the fiducial model does not overlap at all

with the model’s corresponding sector in the w–w′ plane. We pick one or two fiducial models

for each model category to test our method.

The fiducial models used in the test include cosmological constant: w(z) = −1, thawing:

w(z) = −0.82 + 0.23 lna + 0.08 (lna)2, freezing: w(z) = −0.92 − 0.14 lna − 0.05 (lna)2,

up-rolling quintessence: w(z) = −1+0.0003 a−6.4, up-rolling phantom: (a) w(z) = −1.2, (b)

w(z) = −1.16 − 0.2 lna − 0.07 (lna)2, down-rolling phantom: w(z) = −1 − 0.0003 a−7, and

none-phantom barotropic fluids: w(z) = −1 + 0.0035 a−4. For all models, Ωm is 0.25 and

w(z > 1.55) is equal to w(z = 1.55). All models have w(z) < −0.8 for strong acceleration

1 For the one-dimensional error propagation, following the reconstruction equations, the variance propaga-

tion is V ar(w) = 〈(w − 〈w〉)2〉 = 〈[w0 − 〈w0〉 + (1 − a)(wa − 〈wa〉)]
2〉 = V ar(w0) + (1 − a)2V ar(wa) +

2(1 − a)Cov(wa, wa) and V ar(w′) = (−a)2V ar(wa).
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today. The trajectories of the models in the w–w′ plane are shown in Fig. 4 in the redshift

region 0 < z < 1.

In the test, we realize each fiducial model by simulating the SN Ia, the BAO and the CMB

data assuming current data quality. 1000 sets of simulated data are generated and fitted

with the three parameters w0, wa and Ωm. The values of w0 and wa are converted to w and

w′ via Eq. (8) and Eq. (9) at each redshift. The 683 and the 954 of the 1000 Monte Carlo

realizations, representing the 68.3% and the 95.4% region, are selected via their chi-square

from the fiducial model.

As a result, the criterion passes the test for all the models, that is, for each model the

corresponding sector overlap with the 68.3% Monte Carlo realized region in the w–w′ plane

in the redshift region 0 < z < 1. Samples of the test results at redshifts z = 0, 0.4, 0.7

and 1 are shown in Fig. 5. It is seen that applying the criterion up to z = 1 might be

pushing it to the limit, especially for the up-rolling quintessence, down-rolling phantom and

the non-phantom barotropic fluid cases. Yet the conclusion that the three models are ruled

out at the 68.3% confidence level in Sec. III B still holds if we apply the the criterion only

for 0 < z < 0.7.

V. CONCLUSION AND DISCUSSION

Applying the bounds for various dark energy models in the w–w′ plane for redshift 0 <

z < 1, we find that several models including the cosmological constant, phantom, non-

phantom barotropic fluids, and monotonic up-rolling quintessence are ruled out at the 68.3%

confidence level based on the current observational data. On the other hand, down-rolling

quintessence, including the thawing and the freezing models, is consistent with the current

observations. All the models are still consistent with the data at the 95.4% confidence level.

Using the same SN Ia data set, Shafieloo et al. [30] and Huang et al. [31] also found the

cosmological constant inconsistent with the data at the 68.3% confidence level. Barger et

al. [21] found the non-phantom barotropic fluids excluded at the 95.4% confidence level based

on the earlier data set. We notice that there was a time the observations favored w(z = 0) ≤

−1 [13] but now the observations favor w(z = 0) ≥ −1. However, the conclusions are drawn

at the 68.3% confidence level at most. It is hoped that the next-generation observations will

constrain the dark energy equation of state an order of magnitude better [1, 3]. We shall be
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able to identify dark energy at higher confidence in the coming future.
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FIG. 1: Classification of dark energy models in the w–w′ plane. Models are separated by the solid

curves. The symbols “T”, “F”, “B”, and “P” denote the “thawing”, “freezing”, “non-phantom

barotropic”, and “phantom” models, respectively. The quintessence models correspond to the

region for w > −1 . The cosmological constant corresponds to the point (−1, 0). The bold

solid curve is both the lower bound for the non-phantom barotropic models and the bound that

separates the down-rolling and up-rolling quintessence models (down-rolling takes the upper side).

The dotted curve is the bound that separates the down-rolling and up-rolling phantom models

(up-rolling takes the lower side).
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FIG. 2: The two-dimensional constraint of w0–wa based on the combined data set including the

Constitution set of SN Ia data, the CMB measurement from the five-year WMAP, and the BAO

measurement from the SDSS and 2dFGRS. The dark and the light gray areas correspond to the

68.3% and the 95.4% confidence regions, respectively. The black point denotes the best-fit values.
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FIG. 3: Samples of the constraints on the w–w′ plane at redshifts z = 0, 0.2, 0.7 and 1. The dark

and the light gray areas correspond to the 68.3% and the 95.4% confidence regions, respectively. See

the caption in Fig. 1 for the description of the regions to that the models belong. The cosmological

constant lie outside the 68.3% confidence region at all of the redshifts. The down-rolling phantom

models lie outside the 68.3% confidence region at z = 0 and z = 0.2. All the phantom models lie

outside the 68.3% confidence region at z = 0.2. Both the up-rolling quintessence models and the

non-phantom barotropic fluids lie outside the 68.3% confidence region at z = 0.7 and z = 1. The

down-rolling quintessence models including the thawing and the freezing models overlap with the

68.3% confidence region at the four redshifts. All of the models overlap with the 95.4% confidence

region at the four redshifts.
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FIG. 4: Trajectories of the fiducial models for the test in the redshift region 0 < z < 1. See the

text in Sec. IV for the description of the models. The trajectories are shown by the black points

and the black curves.
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FIG. 5: Samples of the Monte Carlo test results of the method. From the first to the eighth row

are the results corresponding to the fiducial models of cosmological constant, thawing, freezing,

up-rolling quintessence, up-rolling phantom (a) and (b), down-rolling phantom and non-phantom

barotropic fluids, respectively. The first column is the w0–wa plane and the rest four are the w–w′

plane at redshifts z = 0, 0.4 0.7 and 1. The 68.3% Monte Carlo realized region is represented by

the black points, while the 95.4% by the black and the dark grey points. The corresponding sectors

of the fiducial models are filled with the light grey color. See Sec. IV for discussion.
14


	Introduction
	Classification of dark energy models
	Constraints on the w – w plane
	Observational data
	Results of the constraints on the w – w plane

	Test of the method
	Conclusion and discussion
	Acknowledgment
	References

