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The radio approach for detecting the ultra-high energy cosmic neutrinos has become a mature
field. The Cherenkov signals in radio detection are originated from the charge excess of particle
showers due to Askaryan effect. The conventional way of calculating the Cherenkov pulses by
making Fraunhofer approximation fails when the sizes of the elongated showers become comparable
with the detection distances. We present a calculation method of Cherenkov pulses based on the
finite-difference time-domain (FDTD) method, and attain a satisfying effeciency via the GPU-
acceleration. Our method provides a straightforward way of the near field calculation, which would
be important for ultra high energy particle showers, especailly the electromagnetic showers induced
by the high energy leptons produced in the neutrino charge current interactions.

PACS numbers:

I. INTRODUCTION

Cosmic neutrinos, as a probe of the universe to the
highest energy regime, are wonderful in many respects.
Due to their extremely small interaction cross section,
they can penetrate through galactic infrared (IR) and
cosmic microwave background (CMB) photons, while
photons of energy above 10 TeV would be attenuated.
Furthermore, being uncharged, they propagate along
straight lines and therefore are able to point directly back
to their sources, while protons or other charged particles
would be deflected by the magnetic field in the universe.

Ultra-high energy cosmic rays (UHECRs) have been
observed up to ≈ 1019.6 eV. The source of such amazingly
energetic events have remained a mystery. Above this en-
ergy scale, UHECRs interact with CMB photons through
the Greisen-Zatsepin-Kuzmin(GZK) processes [1]. The
GZK cut-off of the cosmic ray energy spectrum has been
first observed by the High Resolution Fly’s Eye Exper-
iment [2] and later confirmed by the Pierre Auger Ob-
servatory [3], so the corresponding GZK neutrinos are
almost guaranteed to exist. Nevertheless, none of these
have been observed so far. Detecting the GZK neutrinos
provides critical informations for unraveling the mystery
of the origin and evolution of the cosmic accelerators, and
will be one of the utmost tasks in the coming decade [4].

One promising way of detecting UHE neutrinos is the
radio approach. When an ultra-high energy cosmic neu-
trino interacts with ordinary matters on the Earth, it
would lead to a hadronic debris, either by charged cur-
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rent or neutral current. The former also produces a lep-
ton with corresponding flavor. Both the high energy lep-
tons and the hadronic debris induce particle showers. As
proposed by Askaryan in the 1960’s [5], the high energy
particle shower develops in a dense medium would have
net negative charges. This charge imbalance appears as
a result of the knocked-off electrons being part of the
shower, as well as the positrons in the shower annihilat-
ing with the electrons of the medium. The net charges of
the showers, typically 20% of total shower particles, serve
as a source emitting the Cherenkov radiations when they
travel in the medium. The sizes of the showers are quite
localized (tens of cm in radial and few meters in longi-
tudinal development) compared to those develope in the
air (km scale), and therefore result in coherent radiations
for wavelengths longer than the shower sizes. The cor-
responding coherent wavelength turns out to be in the
radio band, from hundreds of MHz to few GHz. This
Askaryan effect has been confirmed in a series of exper-
iments at Stanford Linear Accelerator Center (SLAC),
using different dense media such as silica sand, rock salt
and ice [6–9].

II. COHERENT CHERENKOV PULSES

In the radio detection experiment, the signals come
from the Cherenkov radiations of the net charges in the
shower. The key concept which makes this technique
possible is the coherent emission. In fact, the Cherenkov
radiation is a broad band emission and the intensity in-
creases as frequency. For a single charged particle, the
Cherenkov signal in the radio band should be the weak-
est in the spectrum. It is the compact size of the shower
that makes radio signal so special. The coherent emission
greatly enhences the signal strength in the radio band.
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The electric field of Cherenkov radiations can be calcu-
lated by solving the inhomogeneous Maxwell equations,
as it has been demonstrated in the paper of Zas, Halzen,
and Stanev [10]. The vector potential can be obtained
by the Green’s function method:

~Aω(~x) =
1

4πε0c2

∫
d3x′

exp (ik|~x− ~x ′|)
|~x− ~x ′|

∫
dt′ exp (iωt′) ~J(t′, ~x ′)

(1)
where k is the wavenumber, ~x the position of the de-

tector, ~x ′ the position of the shower particles, and ~J the
current sources. Adopting the Fraunhoffer approxima-
tion

exp (ik|~x− ~x ′|)
|~x− ~x ′| ≈ exp (ik|~x| − ikx̂ · ~x ′)

R
, (2)

where R is the absolute value of ~x, the integration in
Eq.( 1) can be greatly simplified and therefore enhances
the computational effeciency in the Monte Carlo simula-
tion [10–12, 17]. The validity of this approximation relies
on several length scales: the detection distance (R), the
spatial size of the shower (l) and the wavelengths of in-
terest (λ). The Fraunhoffer approximation works well
under the condition

l2

λR
sin2θ � 1 (3)

where θ is the observational angle between the shower
axis and the observational direction.

However, for the ultra-high energy showers the lon-
gitudinal development is longer, especially for the
electromagnetic showers that suffer from the Landau-
Pomeranchuk-Migdal (LPM) suppression [13, 14]. Elec-
tromagnetic showers can be produced by the charge cur-
rent generated leptons. For a electromagnetic shower
of EeV-scale energy, The impact of LPM effect on the
shower development has been investigated by Monte
Carlo simulations [15–17]. Electromagnetic showers of
primary energies 1020 eV can be extended to about 200-
m long with great fluctuations. In such cases, the far
field condition cannot be satisfied for distance up to sev-
eral kilometers, while the typical detection distance for
ground array detectors is about 1 km due to the attenu-
ation length of radio signals in ice. Under these circum-
stances, the Fraunhoffer approximation is clearly invalid,
and one has to deal with the complicated integration in
Eq.( 1).

In the paper of Buniy and Ralston [18], the correction
has been made by the saddle point approximation, while
it still cannot cope with the extreme cases for R ∼ l, the
near field regime. We handle this problem by a numerical
method based on first principle so that the near field
radiations can effeciently obtained. Although far field
radiations would be more time consuming, it is not our
focus in this paper.

Hadronic showers, on the other hand, are less affected
by LPM effect [19, 20], since the sources of electromag-
netic components in hadronic showers are the decay of
neutral pions, which tend to be interact with matters in-
stead of decay at energy above 6.7 PeV. The far field
condition is well fulfilled for hadronic showers in most
parctical cases.

III. NUMERICAL METHOD

Numerical algorithms for calculating electromagnetic
fields have been existed for decades. However, it was
not until the recent rapid growth of computational power
that this approach became wildly adopted. Among all
the existing algorithms, the finite-difference time-domain
(FDTD hereafter) method has several advantages:

• It is exceptionally simple to be implemented by
computer programs.

• It is a time-domain approach that is well suitable
for an impulse signal. A broad band impulse can
be calculated in one single run.

• The algorithm itself is inherently parallel and the
effeciency can be largely improved via parellel com-
puting.

The idea of FDTD was first proposed by Yee in the
1960’s [21], and has been in use for many years for
the electromagnetic impulse modeling. Like most of the
numerical finite difference methods, the space are dis-
cretized into small grids and fields are calculated on each
grid by solving Maxwell equations. Adopting a special
lattice arrangment (known as the Yee lattice), the E-field
and H-field are staggered in both space and time and can
be calculated in a leapfrog time-marching way.

A. Algorithm

The Maxwell curl equations in differential forms are

∇×E = −µ∂H
∂t

, (4)

∇×H = ε
∂E

∂t
+ σE . (5)

The FDTD method approximates derivatives by finite
differences. The central difference is adopted to achieve
2nd order accuracy in both spatial and temporal deriva-
tives. We assume cylindrical symmetry along the shower
axis (defined as z-axis), and therefore all the derivatives
with respect to φ vanish. In addition, due to the polar-
ization property of Cherenkov radiations, the Hr, Hz, Eφ
components also vanish. This can save large amounts
of computer memories as well as calculation time. Fig-
ure( 1) shows the configuration of the lattice under these
assumptions. Maxwell equtions in a cylindrical coordi-
nate are reduced as:

− ∂Hφ
∂z

= ε
∂Er
∂t

+ σEr (6)

1

r

∂(rHφ)

∂r
= ε

∂Ez
∂t

+ σEz (7)

∂Er
∂z
− ∂Ez

∂r
= −µ∂Hφ

∂t
(8)

We can use Eq.( (6)) and Eq.( (7)) to update the E-
field, and then use Eq.( (8)) to update the H-field. The
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spatial and temporal grid sizes have been chosen such
that the numerical stability is satisfied and the numerical
dispersion is controlled at an acceptable level [22, 23].

FIG. 1: The lattice configuration we adopted.

B. Simulation Setup

In order not to lose the focus on the RF calculation, we
simply assume a shower model for the longitudinal devel-
opment rather than invoking the Monte Carlo packages.
For electromagnetic showers, the well known Nishimura-
Kamata-Greisen (NKG) parametrization formula [24] de-
scribing the number of shower particles is

Ne(X) =
0.31√

lnE0/Ec
exp

[(
1− 3

2
ln s

)
X

XR

]
(9)

where E0 is the energy of the primary particle and Ec
the critical energy, X the slant depth, Xmax depth as
shower reaching its maximum number, s the (dimension-
less) shower age defined as s = 3X/(X + Xmax). The
NKG formula can be fit by a Gaussian distribution as:

Ne(z) = Nmax exp(− z
2

2l2
) (10)

where Nmax is the particle number at shower maximum
and l is the longitudinal shower length. The NKG for-
mula for E0 = 10 TeV has l ∼ 2 m in ice. For charge
distribution in a snapshot, we assume the Gaussian dis-
tribution in both radial (r) and longitudinal (z) direc-
tions:

n(z, r) =
Ne

(2π)1.5σzσ2
r

exp

(
− (z −X)2

2σ2
z

)
exp

(
− r2

2σ2
r

)
(11)

where z and r are the cylindrical coordinates in the unit
of g/cm2, and σz and σr are the standard deviation of the
distribution in z and r direction respectively. We choose
σr = 5 cm in our simulations according to the Moliere
radius in ice. The σz is generally even smaller than the
Moliere radius and thus has no significant effect on the
radiation pattern.

Figire (2) is a cartoon that demonstrates the setup.
The shower travels in the +z direction emitting

Cherenkov radiations. We define a spherical coordinate
whose origin lies on the intersection of the z axis and the
shower maximum. Choosing the desired detector posi-
tions by varying detection angle (θ) and detection dis-
tance (R), and record the electric field values as time
evolves. After one single run, we can have all the simula-
tion results we want. Here one can see the merit of using
a time-domain calculation method.

FIG. 2: Cartoon for our simulation set up.

IV. PERFORMANCE IMPROVEMENT VIA
THE GPU PARALLELIZATION

Recently, graphical processing units (GPU) have be-
came more and more important in the field of high per-
formance computation. Under the needs in the computer
game markets, the GPUs are currently under booming
developments. The GPUs have become programmable
via the Compute Unified Device Architecture (CUDA)
provided by NVIDIA, and have been implemented in var-
ious scientific areas such as molecular dynamics, gravi-
tational N-body simulations and lattice QCD [25–29].
CUDA is an extension of C language, one of the most
popular high level languages in the world. Programmer
familiar with C language can utilize GPU computations
by simply calling the functions from CUDA. The gen-
eral parallelization strategies can be found in the CUDA
Programming Guide (available on their webpage).

Because of the multicore architecture, GPUs are
ideal for implementing parallel algorithms. The FDTD
method is therefore the ideal candidate to benefit from
GPU computing. The texture memories provide the pos-
sibility to realize the memory cache speedup. Since the
texture memories in CUDA are read-only, we bind the 1D
cuda array to E-field and H-field alternatively, and write
back to global memories for the unbound E/H-field. The
basic steps are like the following:

1. Allocate global memories to store E-field and H-
field.
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2. Bind texture to H-field.

3. Calculate and store the updated E-field by reading
the cached H-field.

4. Unbind H-field.

5. Bind texture to E-field.

6. Calculate and store the updated H-field by reading
the cached E-field.

7. Unbind E-field.

8. Repeat steps (2) - (7).

We have investigated the performances of our codes
with one single NVIDIA GTX285 graphic card, which has
240 cores and 933 floating point operations per second
(GFlOPS) of theoretical peak performance. The follow-
ing table shows the performances of our codes with differ-
ent total grid numbers (N), compared to Intel Quad Core
i7 920 at 2.66GHz (sequential code without CPU paral-
lelization). The GPU system is provided by the Center
for Quantum Science and Engineering of National Tai-
wan University (CQSE).

Ngrid tCPU tGPU speed up GPU performance

(sec) (sec) (tCPU/tGPU) (GFLOPS)

2562 5.15 0.040 128.75 57.0

5122 34.94 0.186 187.85 98.1

10242 294.41 1.167 252.28 125.1

20482 2122.80 8.372 253.56 139.5

40962 15751.17 67.617 232.95 138.2

81922 120617.48 681.082 177.11 109.8

TABLE I: Performance of CPU and GPU codes.

The algorithm of FDTD method is inherently paral-
lel since each grid can be updated independently, so the
advantage of GPU systems can be maximally utilized in
this algorithm. The performance test shows a tremen-
dous speed up using GPU parallelization, which allows
the calculation to be done in very reasonable time, with
a cost-efficient computer resource.

V. RESULTS

A. At the Cherenkov Angle

First we compare the E-fields fixed at Cherenkov an-
gle (θc) with various distances (R). The magnitude of
the Eω decreases as R increases. However, the decreas-
ing speeds in different frequencies are not the same. For
example, Fig.( 3) shows the Eω spectra at R = 25 m and
R = 50 m, but with the latter multiplied by a factor of
two. These two spectra match well at high frequencies

while they deviate from each other at low frequencies. In
Fig.( 4), the spectra at R = 25 m and R = 50 m are
shown with the latter scaled by a factor of two. In this
case, the two spectra match well at low frequencies, while
they deviate at high frequencies. According to these two
examples, one can see that the behavior in high frequen-
cies suggests that Eω ∝ 1/

√
R, namely a cylindrical wave

behavior. On the other hand, the behavior in low fre-
quencies suggests Eω ∝ 1/R, a spherical wave behavior.

The different behaviors in different frequency regimes
can be interpreted in a physical way. It is a known fact
that waves of higher frequencies are less likely to diffract.
Therefore, the high frequency waves in Cherenkov radi-
ations are more confined in the θ-direction, and their
energies can only spread into the Cherenkov cone. Their
energies go like 1/R due to geometrical reason, and hence

1/
√
R for the fields. For the low frequency waves, diffrac-

tion allows another direction (the θ-direction) for their
energies to disperse, and therefore decrease faster.

The fact that the higher frequency regime decreases
slower implies that there is a shift of the peak frequecy
in different R. The peak will migrate to the higher
frequency regime as distance moves further away. The
shape of the spectrum is R-dependent, and a simple scal-
ing relation of R is no longer valid here.

FIG. 3: Eω spectra at R = 25 m and R = 50 m with the
latter scaled by a factor of

√
2; these two spectra match

well at high frequencies, implying a cylindrical behavior
(Eω ∝ 1/

√
R).
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FIG. 4: Eω spectra at R = 25 m and R = 50 m with the
latter scaled by a factor of 2; these two spectra match well
at low frequencies, implying a spherical behavior (Eω ∝
1/R).

In principle, all waves will eventually diffract and be-
have like spherical waves no matter how high their fre-
quencies are, if we set the distance R infinitely large.
Therefore, the terms ”high” and ”low” frequencies are
only relative concepts. From the far field condition in
Eq.( 3) we can see that all three length scales couple
with each other. The waves start to diffract after they
propagate to the distance large enough such that the far
field condition is satisfied. This character can be demon-
strated more clearly if we plot the Eω - R relation with
one single frequency. Figure( 5) shows how Eω decreases
with R. At the distance very close to the shower, Eω goes
like 1/

√
R. As the distance increases, for large enough R,

the radiation can be viewed as a point source and thus
have Eω ∝ 1/R. We can see a smooth transition from
cylindrical behavoir to spherical behavoir. At R large
enough such that all the waves of different frequencies in
the Cherenkov pulse reach the far field regime, the shape
of the spectrum is fixed and independent of R, and R
becomes just a normalization factor.

FIG. 5: The Eω - R relation of 100MHz. The blue curve
is the E-field. The green and red curve show the cylin-
drical (Eω ∝ 1/

√
R) and spherical (Eω ∝ 1/R) behavoir

respectively. The E-field goes like 1/
√
R in the near field

regime, while approaches to (1/R)-behavoir in the far
field regime. Note the smooth transition from near field
to far field.

B. Angular Distribution

The diffraction effect can also be seen in the angular
distribution. Figures( 6) and ( 7) show the angular dis-
tributions of Eω at R = 4 m and R = 64 m respectively.
For the case at R = 4 m, the distance is too close for
the waves to diffract. In fact, the radiation pattern in
the near field (before diffraction happen) is just a fuzzy
image of the radiating source. We can see the waves of
higher frequencies have stronger magnitudes, which is the
inherent character of Cherenkov radiations. Note the dis-
tribution is not symmetric on two sides, since the θ < θc
part is closer to the shower axis than the θ > θc part is.
This asymmetry can be understood as we are using the
spherical coordinate to describe a sysytem that is actu-
ally cylindrical symmetric. For the case at R = 64 m, the
detection distance is long enough for waves diffract into
the θ-direction. The lower the frequency is, the wilder
of its angular distribution is, which is the standard prop-
erty in diffraction. In time domain, it can be seen in
Figure( 8) that the pulse at detection angle more away
from θc has wilder width. In principle, if the frequency
goes to infinity, the angular distribution will be a delta
function. However the destructively interference of the
lateral distribution suppress these high frequecy compo-
nents. The distribution now looks much more symmetric,
since the differences of the distances to the shower axis
between θ < θc and θ > θc parts are negligible compares
to R. Namely, as R goes further, the system, originally
cylindrical symmetric, becomes more and more spherical
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symmetric.

FIG. 6: Eω angular distributions for R = 4 m (near field).
The diffraction has not yet happened and the radiation
pattern follows the shower image.

FIG. 7: Eω angular distributions for R = 64 m (far field).
The higher the frequency is, the narrower of its angular
distribution is. Diffraction phenomenon is quite obvious
here.

FIG. 8: Time domain E-fields at different angles θ at R
= 32 m. The pulse is wilder at angles more away from
θc, implying the fact that lower frequency components
diffract more.

C. Comparison

We compare our results with the conventional far field
formula. The one dimensional approach in [11] should
be a reasonable approximation except at the Cherenkov
angle. Substituting our shower model in Eq.( 10), the
E-field can be obtained:

~E(ω,~x) =
e

4πε0c2
iω sin θ

eikR

R
n̂⊥

∫
dz′ Ne(z

′) eipz
′

=

√
2πe

4πε0c2
iω sin θ

eikR

R
Nmaxl e−

l2p2

2 n̂⊥ (12)

where the parameter p(θ, ω) = (1 − n cos θ) ω/c. Figure
( 9) shows the comparison between the spectra of the
far field formula and our simulation results at R = 64 m
and different θ. At lower frequency part they are in good
agreements, while at high frequency part there are sig-
nificant differences between them. It can be understood
as the disagreement part has not yet reached the far field
regime and thus decreases slower. If we set larger R, the
disagreement part will enter the far field regime and will
match with the formula.
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FIG. 9: Comparison between the spectra of the far field
formula and our simulation results at R = 64 m. From
top to bottom are the spaetra at θc+5◦, θc+10◦, θc+15◦,
θc+20◦ respectively. The solid curves are our results and
the dashed curves are obtained from the far field formula.

VI. SUMMARY AND CONCLUSIONS

We have developed a numerical code to calculate the
radiation patterns of Cherenkov signals from near field
to far field based on the FDTD method. By utilizing
GPU parallel computation, the effeciency of the code can
be greatly improved to a satisfying level on a comercial
graphic card NVIDIA GTX285. This will be useful in
studying the signals originate from an elongated shower
of its size comparable to the detection distance, where
the traditional Fraunhofer approximation does not ap-
ply. Signals from the ultra-high energy electromagnetic
showers induced by the electrons produced in neutrino
charged-current interaction are the typical examples, for
they suffer from severe impact of the LPM effect. Our
result shows a smooth transition between near field and
far field pattern. In fact, the FDTD method is more
suitable for the calculation of near field pattern since the
far field pattern may challange the computer resources.
The spectrum and the angular distribution of near field
pattern have quite complicated R dependences instead of
simple scalings in the case of far field.

In the cases of far field, the angular distribution of sig-
nals induced by LPM-elongated showers are much nar-

rower than the ordinary ones, and the detection solid
angle is considered to be small. However the far field as-
sumption neglects the shower size and treat it as a point
source which is not fair. A shower of hundred meters
long would in fact generates signals spaneed also hun-
dred meters, and is surely as possible to be detected as
those with compact size.

The idea of using staggered grid configuration to solve
the two coupled first-ordered PDEs is not limited to
the electromagnetic problems. Recently there are also
applications of FDTD method in the acoustic simula-
tions [30, 31] solving the coupled pressure fields and ve-
locity fields. It is possible to simulate signals in the neu-
trino detection experiments using acoustic approaches,
which is another potential field in UHE neutrino detec-
tion [32, 33].

In the next generation neutrino detectors applying the
ground array layout, it is possible to simultaneously de-
tect the hadronic shower and the electromagnetic shower
that are induced by one single charged current neutrino
interaction. If both the hadronic shower and the electro-
magnetic shower can be correctly reconstructed, it opens
an opportunity to distinguish the electron neutrino from
others [34], since the two shower vertexes are nearly lo-
cated at the same places. However, the features of near
field are very different from far field, and will face some
detection difficulties. For example, the normal way to
reconstruct the direction of incoming Cherenkov pulses
by the arrival time differences between antennas is based
on the assumption that the shower is a point source, i.e.
the far field assumption. For a extended shower this as-
sumption fails and therefore requires a new reconstruc-
tion method. Any ground based neutrino detector has to
take this near field effect into account in order to recon-
struct signals from extended showers.
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