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Abstract

We uncover a remarkable role that an infinite hierarchy of non–linear differential equa-
tions plays in organizing and connecting certain ĉ < 1 string theories non–perturbatively.
We are able to embed the type 0A and 0B (A,A) minimal string theories into this sin-
gle framework. The string theories arise as special limits of a rich system of equations
underpinned by an integrable system known as the dispersive water wave hierarchy.
We observe that there are several other string–like limits of the system, and conjec-
ture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We
explain how these and several string–like special points arise and are connected. In
some cases, the framework endows the theories with a non–perturbative definition for
the first time. Notably, we discover that the Painlevé IV equation plays a key role in
organizing the string theory physics, joining its siblings, Painlevé I and II, whose roles
have previously been identified in this minimal string context.
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1 Introduction

While string theory has had remarkable successes over the last several years, accelerated by

the revolutions in understanding its non–perturbative properties, it is still very much the

case that we do not yet know what the theory is. We cannot state unambiguously what the

basic degrees of freedom are (it is highly context dependent in a way that depends upon

the dynamics themselves), and even the backgrounds in which the theory propagates are

themselves open to interpretation. For example, in some descriptions and situations, the

theory contains gravity, and in others, it does not. From some perspectives there are open

strings present, and from others, only closed. Ironically, several of these frustrating (from

the point of view of finding simple definitions) features are also among the theory’s most

powerful positive traits, allow an ever–widening range of applications of the theory to diverse

problems, often of a strongly coupled nature.

While applications continue, it is still important to try to get to grips with what the

theory is. At the very least, this is important from a pragmatic standpoint, since perhaps

a useful definition or characterization of string theory might be put to use as, for example,

a diagnostic device in identifying when a physical problem may have some aspect of it

that is amenable to solution by string theory methods. More generally, if string theory

ultimately plays some fundamental role in the understanding of physics beyond the standard

model, and/or in cosmology and other origins questions about the universe at large, a more

profound understanding of the nature, power, and scope of the theory would seem to be

highly desirable.

At best, to date, as a result of various dualities, we know that it is probably part

of some larger physical framework which itself is only string theoretic in various corners of

its parameter space. This physical setting, called M–theory, remains profoundly mysterious

well over a decade after the first clear glimpses of it[1, 2, 3].

Historically, problems pertaining to such essential matters of understanding in physics

are greatly illuminated by having a rich set of examples that are simple, but yet complex

enough to contain all the important phenomena in question. For the problems outlined

above, it would be rather excellent to have the simplest possible string theories that still

contain some of the marvellous non-perturbative physics we know and love, and be able to

follow them as they connect to each other in ways that are entirely invisible in perturbation

theory. Further icing on the cake would be to have the physics all captured in terms of

relatively familiar structures for which there is an existing technology for its study.

This is the subject of this paper (and a follow–up to appear later[4]), at least in
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part. The simplest known strings with tractable non–perturbative physics that contain

a rich set of phenomena (such as holography and open–closed dualities) are the minimal

strings[5, 6, 7], and in particular (where non–perturbative physics is concerned) the type 0

strings (formulated in refs.[8, 9, 10, 11, 12] and refs.[13, 14], and recognized as type 0 strings

in ref.[15]). The non–perturbative formulation of the type 0A and type 0B strings can

be done rather beautifully in terms of certain integrable systems, as we will review later:

Type 0A has the Korteweg–de Vries system while type 0B has Zakharov–Shabat. The

non–perturbative physics of each is formulated in terms of associated non–linear ordinary

differential equations often called “string equations”. While much of the language of the

two is similar, these are very different systems, and except for various accidental (from the

perspective of those separate formulations) perturbative coincidences (and a non–trivial non–

perturbative equivalence for one model — see later), the physics of each are quite separate

indeed.

This paper builds on all of these results, taking them much further. We have found

that there is a larger framework into which the type 0A and type 0B string theories can

be naturally embedded and within which they are connected as parts of a larger theory.

We found further that the two string theories are merely special points in a much larger

tapestry of possibilities. When perturbation theory is examined, other special points suggest

themselves, and they turn out to be just as “stringy” as the original type 0 theories, deserving

to be thought of as string theories as well. We begin the program of trying to identify some

of these theories, with some success. We also find that the larger framework provides natural

definitions of regimes of the type 0 string theories that are hard to define using perturbation

theory, and we will report more fully on non–perturbative aspects in a follow–up paper[4].

In this sense, we have a precise analogue of M–theory. We have a larger physical

framework that is not itself a string theory, but that can be readily specialized to yield

string theories as special limits. We can move between different theories in a quite natural

way, which is nonetheless outside the framework of any of its daughter string theories. We

find this encouraging and exciting.

At the base of our infinite family of string equations, organizing much of this remark-

able structure, is a non–linear differential equation known as Painlevé IV. This well–known

equation from the classical mathematics literature1, part of a celebrated family of six equa-

tions, has two arbitrary constants, usually denoted α and β. (Actually, two copies of Painlevé

IV turn up in our story, intertwined in an interesting way.) It turns out that the type 0A

1See for example the lovely monograph of ref.[16] and references therein.
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and 0B points in the tapestry of theories occur at the vanishing of one or other of these

constants for one of the copies of Painlevé IV. The vanishing of the constants of the second

Painlevé IV hint at interesting new special points.

After reviewing crucial aspects of the type 0A and 0B string theories in section 2, we

unpack the dispersive water wave hierarchy and present the infinite family of equations we

propose as the string equations in section 3. Section 4 highlights the role of Painlevé IV.

In section 5 we show how the structures of section 2 arise as special points in this larger

framework, while section 6 is a detailed study of the rich properties of the string equations

and the types of solutions available. We organize and classify a great deal of the physics

that appears, and notice in section 7 that much of the physics can be organized in terms

of a square. The square is reminiscent of the main square organizing the moduli space of

ĉ = 1 (two–dimensional) string theories, discovered in ref.[17], and we contemplate a possible

connection, perhaps induced by Renormalization Group flow[18, 19] to the ĉ < 1 context of

the work in question. The possible relation between the squares helps us make a conjecture

about the nature of two new special points we find: They might be type IIA and IIB minimal

string theories. (Note that these are type II theories in the sense of the structure of the GSO

projection used to formulate them. There is no spacetime supersymmetry[17].) In section 8

we carry out a comparison of the new structures we found to some continuum computations

for one–loop partition functions. From this we strengthen aspects of our type II suggestion.

We conclude in section 9 with a brief summary and discussion.

2 The (A,A) Type 0 Theories: Review

We will start with a brief review of the type 0 string theories coupled to the (2, 4k) supercon-

formal minimal models and show how these theories can be elegantly described within the

framework of an integrable hierarchy of partial differential equations (PDEs) accompanied

by an hierarchy of ordinary differential equations (ODEs). These models exhibit novel and

interesting physics, all of which and more will be seen to be embedded in the DWW system

that we will describe in the next section. This review will help establish our notation and

the framework upon which we can readily build the more general structure.
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2.1 Type 0A Strings

We begin with the following ordinary differential equation (known in the old days as a “string

equation”)

wR2 − 1

2
RR′′ + 1

4
R′2 = ν2Γ2 . (1)

This equation (or, really, family of equations) and its properties have been studied in several

papers. It was first derived and studied as a fully non–perturbative definition of a string

theory in refs.[9, 10, 11, 12], and evidence that it defines a type 0A string theory was presented

first in ref[15]. Further properties of the equation, in particular concerning how branes and

fluxes are encoded by it and the underlying integrable (KdV) system, were presented in

refs.[20, 21]. Here w(z) is a real function of the real variable z, a prime denotes ν∂/∂z, and

Γ and ν are real constants. The quantity R is defined by

R =
∞∑
k=0

(
k +

1

2

)
tkPk , (2)

where the Pk[w] are polynomials in w(z) and its z–derivatives, called the Gel’fand–Dikii

polynomials[22]. They are related by a recursion relation (defining a recursion operator R2)

P ′k+1 =
1

4
P ′′′k − wP ′k −

1

2
w′Pk ≡ R2P

′
k , (3)

and fixed by the value of the constant P0 and the requirement that the rest vanish for

vanishing w. Some of them are:

P0 =
1

2
; P1 = −1

4
w; P2 =

1

16
(3w2 − w′′);

P3 = − 1

64
(10w3 − 10ww′′ − 5(w′)2 + w′′′); · · · (4)

The kth model is chosen by setting all the tj to zero except t0 ≡ z and

tk =
(−4)k+1(k!)2

(2k + 1)!
. (5)

This number is chosen so that the coefficient2 of wk in R is set to −1.

The function w(z) defines the partition function Z = exp(−F ) of the string theory

via

w(z) = 2ν2∂
2F

∂µ2

∣∣∣
µ=z

, (6)

2This gives w = z1/k + . . . as z → +∞. If we had instead chosen t0 = −z, we would have chosen the
coefficient of wk to be unity.
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where µ is the coefficient of the lowest dimension operator in the world–sheet theory. So

w(z) is a two–point function of the theory.

From the point of view of the kth theory, all the other tj represent couplings of closed

string operators Oj. It is well known[23, 24] that the insertion of each operator is captured

in terms of the integrable KdV hierarchy of flows describing how w(z, tj) evolves in tj:

∂w

∂tj
= P ′j+1 = R2P

′
j . (7)

For the kth model, equation (1), which has remarkable properties[20, 21], is known

to furnish a complete non–perturbative definition of a family of spacetime bosonic string

theories [12]. The models are actually type 0A strings [15], based upon the (2, 4k) supercon-

formal minimal models coupled to super–Liouville theory. As superconformal theories, they

have central charge

ĉ = 1− (2k − 1)2

k
. (8)

The asymptotic expansions for the first two k are:

k = 1

w(z) = z +
νΓ

z1/2
− ν2Γ2

2z2
+

5

32

ν3

z7/2
Γ
(
4Γ2 + 1

)
+ · · · (z →∞) (9)

w(z) = 0 +
ν2(4Γ2 − 1)

4z2
+
ν4

8

(4Γ2 − 1)(4Γ2 − 9)

z5
+ · · · (z → −∞)

k = 2

w(z) = z1/2 +
νΓ

2z3/4
− 1

24

ν2

z2

(
6Γ2 + 1

)
+ · · · (z →∞) (10)

w(z) = (4Γ2 − 1)

(
ν2

4z2
+

1

32

ν6

z7
(4Γ2 − 9)(4Γ2 − 25) + · · ·

)
(z → −∞)

It should be noted that the solution for z > 0 can be numerically and analytically

shown to match onto the solution for z < 0, providing a unique[10, 11, 12] non–perturbative

completion of the theory. (See figure 1 for an example of a solution found using numerical

methods.)

As instructed in equation (6), integrating twice the asymptotic expansions (such as

those in equations (9) and (10)) furnishes the free energy F (µ), and it can be seen to define

a perturbative expansion in the dimensionless string coupling

gs =
ν

µ1+ 1
2k

. (11)
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Figure 1: A plot of the k = 2 type 0A solution showing how the perturbative regimes at large
|z| are smoothly connected. Section 3 discusses a function v(x) (x ∝ z), which has a number of
different classes of behaviour distinguished by choice of boundary condition. The type 0A theory
has class v1(z) in the +z perturbative regime and class v2(z) in the −z perturbative regime. Here
we have set ν = 1 and Γ = 0.

For all models, in the µ→ +∞ regime, Γ represents[12, 15] the number of background

ZZ D–branes [25] in the model, with a factor of Γ for each boundary in the worldsheet

expansion. These are point–like branes localized at infinity in the Liouville direction φ,

deep in the strong coupling region. In the µ → −∞ regime, Γ represents the number of

units of RR–flux in the background, with g2
sΓ

2 appearing when there is an insertion of pure

RR–flux [15]. Since there is a unique non–perturbative solution connecting the two regimes,

the string equation (1) supplies a non-perturbative completion of the theory that is a very

clear example of a geometric transition between these two distinct (D-branes vs RR–fluxes)

spacetime descriptions of the physics.

The function w(z) is the potential in the Hamiltonian H ≡ −ν2∂2
z + w(z) of the

well–known (in the inverse scattering literature) associated Sturm–Liouville problem con-

nected to the integrable KdV hierarchy. The wavefunctions of that problem define the

partition functions of FZZT[26, 27] D–branes stretched along the Liouville direction φ, end-

ing at a finite φc set by the eigenvalue. The zero–energy problem is interesting[20, 21],

since there the FZZT D–branes stretch to infinity, and the Hamiltonian’s factorization,

H = −(ν∂z ± g(z))(ν∂z ∓ g(z)) where w(z) = g(z)2 ± g(z)′, is highly convenient. The

7



function g(z) (its definition in the equation before is termed a Miura map in the integrable

literature) satisfies[12] an infinite hierarchy of equations sometimes called the Painlevé II

hierarchy since the equation at k = 1 is the Painlevé II equation3. The asymptotic expan-

sion of y(z) generated by these equations is in terms of worldsheets involving ZZ D–branes

(or fluxes) and FZZT D–branes. The entire problem defines a toy supersymmetric quan-

tum mechanics problem within which the celebrated Bäcklund transformations of the KdV

system can be made manifest. In this language the ZZ D–branes are identified with the

number of threshold bound states (formally, zero–velocity solitons) of the system, and the

Bäcklund transformations change their number by an integer. These more recently estab-

lished features[20, 21], together with the earlier identification[23, 24] of the role of the KdV

flows in organizing the close string operators, show how the integrable model and inverse–

scattering technology of the mathematical physics literature comes to life in organizing the

open and closed string content of minimal string theory.

2.2 Type 0B Strings

Type 0B string theory coupled to the (2, 4k) superconformal minimal models [15] is described

succinctly by the following string equations[13, 14]:

∞∑
l=0

tl(l + 1)Rl = 0 ,
∞∑
l=0

tl(l + 1)Hl + νq = 0 , (12)

where the Rl and Hl are polynomials of functions r(x) and ω(x) (and their derivatives),

and ν and q are real constants.

The differential polynomials satisfy the following recursion relations

Rl+1 = ωRl −
(
H ′l
r

)′
+ rHl , H ′l+1 = ωH ′l − rR′l , (13)

3Those equations were derived in a string theory context by studying unitary matrix models[28, 29].
Painlevé II hierarchies have a mathematical life independent of this physical context, however. See e.g.,
refs[30, 31].
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where a prime denotes ν∂/∂x. Some of them are:

H−1 = 1, R−1 = 0;

H0 = 0, R0 = r;

H1 = −r
2

2
, R1 = ωr;

H2 = −r2ω, R2 = −r
3

2
+ rω2 + r′′; (14)

H3 =
3

8
r4 − 3

2
r2ω2 +

1

2
r′2 − rr′′ ,

R3 = −3

2
r3ω + rω3 + 3r′ω′ + 3ωr′′ + rω′′ .

The function w̃(x) = r2/4 defines the partition function of the theory via

w̃(x) =
r2

4
= ν2d

2F

dx2
. (15)

The nth model is chosen by setting all tl to zero except t0 ∼ x and tn, analogous to what

was done in the previous section concerning the 0A case. Note that these models have

an interpretation as type 0B strings coupled to the (2, 2n) superconformal minimal models

only for even4 n. Writing n = 2k, we again have a set of models connected to the (2, 4k)

superconformal minimal models, this time type 0B.

As in the 0A case, from the point of view of the kth theory, all the other tj represent

coupling to closed string operators Oj. Again the insertion of each operator can be expressed

in terms of the Zakharov–Shabat[32] hierarchy of flows, the underlying integrable system in

this case:

∂β

∂tk
= Rk+1 ,

∂r

∂tk
= −

H
′

k+1

r
, (16)

where β
′ ≡ ω.

The asymptotic expansions of the string equations (12) for the first even n = 2k are:

n = 2 (k = 1)

w̃(x) =
x

4
+

(
q2 − 1

4

)[
ν2

2x2
+

(
q2 − 9

4

)(
−2ν4

x5
+ · · ·

)]
, (x→∞)

w̃(x) =
νq
√

2

4|x|1/2
− ν2q2

4|x|2
+

ν3

|x|7/2
5
√

2

64
q
(
1 + 4q2

)
+ · · · (x→ −∞) (17)

4For odd n, lack of modular invariance of the partition function rules out the interpretation as type 0B
strings coupled to superconformal matter [15].
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n = 4 (k = 2)

w̃(x) =

√
x

4
+

ν2

144x2

(
64q2 − 15

)
+ · · · ; (x→∞) (18)

w̃(x) =

√
|x|

2
√

14
+

ν

2|x|3/4
q√

3 · 71/4
+ · · · (x→ −∞)

Upon integrating twice, the asymptotic expansions in equations (17) and (18) furnish

the free energy perturbatively as an expansion in the dimensionless string coupling, given

by the same expression as before in equation (11).

For these models, in the µ→ −∞ regime, q represents the number of background ZZ

D–branes in the model, with a factor of q for each boundary in the world sheet expansion,

while in the µ→∞ regime it counts the number of units of RR-flux in the background[15].

The asymptotic expansions in the two directions can be argued in ref.[15] to match onto

each other analytically in a particular (’t Hooft) limit. For the case k = 1, the full non–

perturbative solution is known since it can be mapped directly to the solution known for the

k = 1 type 0A case, as will be discussed below in section 2.3.

For later reference, we briefly discuss the structure of these solutions with increasing n.

As argued in ref.[15] the n = 2 expansions are deformations of the solutions of the equation

with q = 0. However things get interesting for n = 4. As before, the x > 0 solution is a

deformation of the solution with q = 0. For x < 0, q = 0 allows for the trivial solution

r(x) = 0, but trying to deform this for q 6= 0 leads only to a complex solution. Additionally,

q = 0 allows for two nontrivial solutions with r(x) 6= 0 and ω(x) 6= 0. These two are related

by ω → −ω and are interpreted as Z2 symmetry breaking solutions. In the interpretation of

ref.[15], this is due to the presence of R–R fields. Both these solutions have a real extension

to the case with q 6= 0. The requirement of matching a x < 0 solution to the x > 0 solution

picks out one of these for q > 0 and the other for q < 0. (The x < 0 solution listed above

is for q > 0.) For higher n, more such symmetry–breaking solutions arise. We will see how

this is organized explicitly in section 6.

2.3 A Non–perturbative Connection Between 0A and 0B

It turns out that the simplest case of n = 2 (k = 1), the 0A and 0B theories are non–

perturbatively related in a very special way. In this case the conformal model is trivial (i.e.

ĉ = 0) and we simply have the pure world–sheet supergravity sector. The strings are unen-

cumbered by a spacetime embedding (not counting the ubiquitous Liouville direction, φ).
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The string equation for the k = 1 0A theory, equation (1) with R = w(z)− z, is

w (w − z)2 − 1

2
ν2∂

2w

∂z2
(w − z) +

1

4
ν2

(
∂w

∂z
− 1

)2

= ν2Γ2 . (19)

On the other hand, the string equation (12) for the k = 1 0B theory can be written succinctly

as

ν2 ∂
2r

∂x2
− 1

2
r3 +

1

2
xr + ν2 q

2

r3
= 0 . (20)

Notice that the perturbative expansion for the k = 1 0A theory as z →∞ (equation (9)) looks

similar to the perturbative expansion for the n = 2 0B theory as x → −∞ (equation (17))

up to a (non–universal) sphere term, once one identifies Γ with q. The two expansions are

just offset by various powers of 2. In fact there exists a non–perturbative map between the

two equations [8, 33] that can be seen as follows. First define a function f(z) via

w(z) = f(z)2 + z , (21)

for which the string equation for the 0A theory (19) becomes

ν2∂2
zf − f 3 − zf + ν2 Γ2

f 3
= 0 . (22)

After rescaling using

f = 2−1/6r; z = 2−1/3x .

equation (22) becomes the string equation for the 0B theory (20), but with the sign of x

reversed. The physics of pure 0A supergravity and pure 0B supergravity (i.e. ĉ = 0) are

non–perturbatively related, with the brane and flux perturbative regions exchanged.

This non–perturbative connection between the 0A and 0B theories (for k = 1) follows,

mathematically, from the fact that the same basic string equation appears at the base of the

two separate (KdV vs ZS) hierarchies of equations. This connection is partly in the spirit

of a much larger set of connections that we are reporting on in this paper. We find that

the KdV and ZS structures are embedded in a much larger structure, the dispersive water

wave hierarchy of equations, and find a class of connections (of a different sort) between 0A

and 0B for all k and see that they define two special corners of a larger tapestry of physical

theories.
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3 The Dispersive Water Wave Hierarchy

The standard dispersive water wave (DWW) hierarchy[34], which will play a central role in

the new physics we uncover, is a two–component system5. It is described by:

utn = Rnux ≡ ν∂xLn+1[u] , (23)

where utn ≡ ∂tnu, ux ≡ ν∂xu (note that here and in the rest of the paper, for any function

G(x), Gx will denote ν ∂G/∂x), and we adopt a matrix notation:

u =

(
u
v

)
, Ln[u] =

(
Ln[u, v]
Kn[u, v]

)
.

Here,

R ≡ 1

2

(
∂xu∂

−1
x − ∂x 2

2v + vx∂
−1
x u+ ∂x

)
, (24)

is the recursion operator for the DWW hierarchy. The operator R can be written as the

quotient of two Hamiltonian operators B1 and B2,

R = B2 ◦B−1
1 ,

where B1 and B2 are given by

B2 =
1

2

(
2∂x ∂xu− ∂2

x

u∂x + ∂2
x v∂x + ∂xv

)
, B1 =

(
0 ∂x
∂x 0

)
. (25)

The Ln obey the recursion relation

Ln+1,x = RLn,x , (26)

which follows immediately from (23). The first few Ln and Kn are as follows:

L0 = 2; K0 = 0;

L1 = u; K1 = v;

L2 =
1

2
u2 + v − 1

2
ux; K2 = uv +

1

2
vx;

L3 =
1

4
u3 +

3

2
uv − 3

4
uux +

1

4
uxx; (27)

K3 =
3

4
u2v +

3

4
v2 +

3

4
uvx +

1

4
vxx .

5See refs.[35, 36, 37] for earlier studies of the properties of the dispersive water wave equations, and we
will use the notation of refs.[34, 38].
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The normalization of L0 is chosen so as to reproduce (23) for n = 0.

The DWW hierarchy can be reduced to a one–component system by demanding that

one of the two independent functions vanish. If we set u(x) = 0, we actually reduce to the

KdV hierarchy: two operations of the (reduced) DWW recursion operator give

R ◦R ≡ R2 =

(
R2 0

1
4
(2vx + vxx∂

−1
x ) R2

)
, (28)

where R2 = 1
4
(∂2
x + 4v + 2vx∂

−1
x ) is the recursion operator of the KdV hierarchy, shown in

equation (3). Thus we obtain a reduction of the even flows of the original hierarchy (23) to

vt2n = Rn
2vx , (29)

which is the KdV system in −v(x) with independent variable x, and the even times of DWW

map to the times of the KdV t2n → tn. (Compare with equation (7)).

In addition, the recursion relation (26) reduces to

L2n+2,x = R2 ◦ L2n,x, (30)

which is exactly the KdV recursion relation (3). The relative normalizations are L0 = 2

and P0 = 1
2

so we conclude that L2n = 4Pk. Moreover, with u = 0, it is immediate that

L2n+1 = 0.

The other obvious reduction, v(x) = 0, reduces the system to the Burgers hierarchy.

We do not explore if there are any string theory consequences of that in this paper, since

v(x) is used to define the partition function of our theories in all our examples.

3.1 Scaling Reductions and New String Equations

Integrable hierarchies of partial differential equations (PDEs) can be reduced to ordinary

differential equations (ODEs) through an additional condition on the variables. In our

context, these ODEs are sometimes to be thought of as defining string theories; they are

the “string equations” of a family of theories, forming an hierarchy themselves. As outlined

around equation (7), string equations can be thought of as supplying the initial conditions

for the partition function, and then the PDEs of flows describe how the partition function

evolves as a function of the operators that couple to the tk[23]. The original example of all

this[5, 6, 7] was a hierarchy of equations that have the Painlevé I equation as the non–trivial

equation at their base, indexed by an integer k. They defined the bosonic c < 1 string

theories coupled to the (2, 2k − 1) conformal minimal models.
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It was later realized[10] that another rich family of string equations (those in equa-

tions (1)) can be obtained by imposing certain scaling relations on the variables of the KdV

system (note however that the equations were originally derived[8, 9] directly from matrix

model constructions analogous to the original route). With this in mind, we explore a simi-

larity reduction of the DWW hierarchy, expecting to obtain new string equations at the end

of the day.

We follow the approach originally used to derive the string equations of type 0A (1)

for the KdV hierarchy [10, 12]. To that end, assign v mass dimension 1. The dimensions of

the other terms uniquely follow from (23) and are [u] = 1
2
, [x] = −1

2
and [tn] = −1

2
(n + 1)

Thus we can write down two Callan–Symanzik equations expressing the scaling symmetry,

1

2
u+

1

2
xux +

∞∑
n=0

1

2
(n+ 1)tnutn = 0

v +
1

2
xvx +

∞∑
n=0

1

2
(n+ 1)tnvtn = 0 .

(31)

Using (23) and (26) we can rewrite these equations,

1

2
u+

1

2
xux +

∞∑
n=0

1

2
(n+ 1)tn

(
1

2
uLn,x +Kn,x −

1

2
Ln,xx +

1

2
uxLn

)
= 0

v +
1

2
xvx +

∞∑
n=0

1

2
(n+ 1)tn

(
1

2
vxLn +

1

2
Kn,xx +

1

2
uKn,x + vLn,x

)
= 0 .

(32)

Defining, (
L
K

)
=
∞∑
n=0

1

2
(n+ 1)tnLn, (33)

we can rewrite (32),

1

2
uLx +

1

2
uxL+Kx −

1

2
Lxx = 0 (34)

vLx +
1

2
vxL+

1

2
Kxx +

1

2
uKx = 0 , (35)

where we have used the fact that we will take t0 = x and the other tn to be independent of x.

Equation (34) can readily be integrated. Moreover, solving (34) for Kx and substituting the

result into (35) yields an expression, which, after multiplying by L, can also be integrated.

The results are our new coupled string equations,

− 1

2
Lx +

1

2
uL+K = νc (36)(

−v +
1

4
u2 +

1

2
ux

)
L2 − 1

2
LLxx +

1

4
L2
x = ν2Γ2 , (37)
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where we have introduced two integration constants, c and Γ. We stress that the simplest

possibility is for c and Γ to be independent of x and ti, though only independence of x is

strictly necessary.

The nth model is chosen by setting all ti equal to zero except for t0 = x and tn which

is chosen to be a numerical factor to fix the normalization. We choose to parameterize tn as

gn ≡
1

1
2
(n+ 1)tn

(38)

in order to make direct contact with some recent literature which discusses this system in a

much different (mathematical) context[38].

4 The Organizing Role of Painlevé IV

Let us focus on the case n = 1, which forms the bottom of the hierarchy of string equations

from which all others follow using the recursion relations. The string equations in this

case reduce to the Painlevé IV equation, an important equation from the mathematical

literature. Its appearance at the bottom of the ladder of string equations we’re presenting

here is significant. Note that the entire family of string equations can be generated from this

n = 1 case by use of the recursion operator, and so structures at this level will be reflected

at higher n, even while the complexity of the equations increases. Also notable is that this

is the first time that a role for this equation has been uncovered in this context of non–

perturbative string theory, and it takes its place alongside the Painlevé I and II equations

whose roles (mentioned earlier) have been established in this context already. In fact, part

of the motivation that led to the discoveries upon which we report here was the question as

to the further role of the Painlevé equations in such systems. Painlevé IV emerged naturally

as a candidate equation to play a role and this led to our studying of the DWW system that

we found connected to Painlevé IV in the literature[38].

Let us see more explicitly how the equation emerges. Remarkably, it will naturally

appear in two different ways[38, 39].

4.1 Painlevé IV: First Movement

The string equations for n = 1 are:

2v − ux + u2 + g1xu = 2νg1(c+
1

2
) , (39)(

−v +
1

4
u2 +

1

2
ux

)
(u+ g1x)2 − 1

2
uxx(u+ g1x) +

1

4
(ux + νg1)2 = ν2g2

1Γ2 .
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where we have used the relation g1 = 1
t1

.

Solving the first of these for v gives

v =
1

2

(
ux − u2 − g1xu+ 2νg1(c+

1

2
)

)
, (40)

and substituting this into the second yields a second order ODE in u which, under the change

of variables

u(x) = y(x)− g1x (41)

becomes

yxx =
1

2

y2
x

y
+

3

2
y3 − 2g1xy

2 + 2

[(
g2

1x
2

4

)
− να1

]
y − ν2 1

2

β2
1

y
. (42)

α1 and β1 are constants related to c and Γ in the DWW string equations through

α1 = g1(c+
1

2
) , β1 = ±2g1Γ , (43)

Setting g1 = −2, and dropping the subscripts on the constants, gives

yxx =
1

2

y2
x

y
+

3

2
y3 + 4xy2 + 2

(
x2 − να

)
y − ν2 1

2

β2

y
, (44)

which is the fourth Painlevé equation PIV in standard form, and

α = −(2c+ 1) , β = −8Γ2 . (45)

We will see in the next section, specific constraints yielding the 0A and 0B theories

that require c = −1
2

and Γ = 0 respectively. Notably, these are precisely the values for which

the constants α and β in the standard form of Painlevé IV vanish.

4.2 Painlevé IV: Second Movement

In fact, there is another natural appearance of the Painlevé IV equation in this system[38, 39],

at n = 1. There is a natural generalization[34] of the Miura map (that we saw for KdV in

section 2) to the DWW system, defining new variables U and V :

u = U , v = UV − V 2 + V ′ . (46)

Now, as we saw above, y(x) = u(x) − 2x = U(x) − 2x satisfies Painlevé IV with constants

α and β given in equation (44). Well, additionally, −V (x) satisfies a copy of Painlevé IV

(equation (44)) also, but with constants related to our physical parameters by

α = ∓3Γ + c+ 1 , β = (c± Γ)2 . (47)
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We take this seriously, not the least because the variables described by the Miura

map in the case of KdV (type 0A) were seen to be physically very natural, pertaining as

they do to the FZZT and ZZ D–branes. (See the end of section 2.1 for a brief review.) We

expect therefore (but this needs more exploration) that this DWW Miura map also leads to

rich physics. The cases c = ±Γ and c = −1± 3Γ imply vanishing of α and β and may well

have some special significance in this context. (We will, for example, find special solutions

for all n corresponding to c = ±Γ points. It is also interesting to note that the equations

together point to the values c = ±1
2
, Γ = ±1

2
, values which do feature prominently in what

is to follow.)

5 Connecting the Type 0 String Theories

Having introduced the DWW hierarchy, we now show how both the type 0A and type 0B

string theories coupled to the (2, 4k) superconformal minimal models can be found embedded

in this system. We show that by placing appropriate constraints on the full system of string

equations, one can recover the respective string equations for both of the type 0 theories.

Quite beautifully, these constraints require one of the two integration constants (c,Γ) to

freeze to particular values. The remaining unfixed constant then acts as the parameter that

counts the number of ZZ–branes or units of R–R flux in each theory, depending on which

asymptotic region (positive or negative large x) is under consideration.

5.1 Reduction to 0A

It was seen in section (3) that setting u=0 reduces the DWW hierarchy to the KdV hierarchy.

We therefore expect that this constraint also reduces our new string equations to the 0A

string equations. That this indeed occurs can be seen as follows. Equation (33) gives,

L[u=0, v=− w] =
∞∑
n=0

1

2
(n+ 1)tDWW

n Ln

=
∞∑
n=0

1

2
(2n+ 1)tDWW

2n L2n

= 4
∞∑
j=0

(j +
1

2
)tDWW

2j Pj

= R[w]

(48)
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where we have used that L2n+1[u=0, v] = 0 and L2n[u=0, v=−w] = 4Pn[w] (see below (30)).

The last equality holds provided that we make the identification,

tDWW
2n =

1

4
tKdV
n =

(−1)n+14n(n!)2

(2n+ 1)!
⇒ g2n = 2

(−1)n+1(2n)!

4n(n!)2
. (49)

Finally, we see that when u = 0 and v = −w, equation (37) exactly reduces to equation (1),

i.e. our new string equations encode 0A string theory coupled to the (2, 4k) superconformal

minimal models. For even flows it is easy to show that u = 0 is only consistent with the

other string equation (36) if c is frozen:

c = −1

2
. (50)

So one of the parameters in the original DWW equations becomes fixed when recovering

type 0A coupled to the (2, 4k) superconformal minimal models, while the other parameter Γ

counts the number of branes or units of RR–flux in the type 0A theory. We will see this

behaviour again in the case that we recover the type 0B theory.

5.2 Reduction to 0B

Consider the following redefinition of the DWW variables {u(x), v(x), x} to the ZS variables

{r(y), ω(y), y}:

y = 2x, u(y) = 2

(
ω(y)− ry

r(y)

)
, v(y) = −r2(y) . (51)

The recursion relation (26) becomes,(
Ln+1

Kn+1,y

)
=

(
(ω − ry

r
)Ln − Ln,y +Kn,y

−r(rLn − Kn,y

r
)y + ωKn,y

)
, (52)

or, (
Rn+1

Hn+1,y

)
=

(
ωRn −

(
Hn,y

r

)
y

+ rHn,y

−rRn,y + ωHn,y

)
, (53)

where we have defined,

Rn =
1

2

(
rLn −

Kn,y

r

)
, Hn =

1

2
Kn. (54)

These are precisely the recursion relations of the ZS hierarchy (13). Moreover, the Hn and

Rn just defined actually agree with those presented in (14). It suffices to check n = 0:
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from (27) we have L0 = 2 and K0 = 0 which imply H0 = 0 and R0 = r, as expected.

Finally, we may ask how we can produce the 0B string equations (12) from our new

string equations (36) and (37). The answer turns out to be simple and elegant: all we must

do is set

L = 0 . (55)

Equation (36) then requires,

∞∑
n=0

tn(n+ 1)Hn − νc = 0 , (56)

which further implies,
∞∑
n=0

tn(n+ 1)Rn = 0 . (57)

The tn required here to consistently produce the equations of [15] are identical to the values

we determined earlier (49). So, upon identifying c = −q, we have exactly produced the 0B

string equations.

Again notice how the consistency of our constraint L = 0 with (37) forces one of our

parameters to vanish

Γ = 0 , (58)

leaving the parameter c = −q to count the number of ZZ branes or RR–fluxes in the type

0B theory. Finally, we remark that the partition function of the 0B theory is determined via

F =
1

ν2

∫
d2y

r(y)2

4

= − 1

ν2

∫
d2x v(x)

(59)

so that −v(x) encodes the partition function for both 0A and 0B.

6 DWW Unconstrained — Beyond the Familiar

We have seen that constraining the DWW string equations (36) appropriately leads to the 0A

and 0B theories (coupled to the superconformal (2, 4k) series), respectively. The constraints

take the system with two free parameters (c,Γ) and define two special points: 0A with

(c = −1/2,Γ free) and 0B with (c free, Γ=0). We can also consider the fully unconstrained

system with both parameters (c,Γ) unfixed, and general {v(x), u(x)}. Interestingly, we get

multiple asymptotic expansions for the variable v(x). The structure of the equations and
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the corresponding asymptotic expansions gets richer as n increases. Since in both cases,

asymptotic expansions of v(x) gave us, upon integrating twice, an expansion of a partition

function for a string theory, we look again for it to define an interesting partition function

in the new cases we will encounter. While this is an assumption, we shall see it bear fruit

presently.

In this section we will first list the asymptotic expansions for the first few n obtained

from the corresponding string equations. We will explain the organizational rules we use to

group these expansions into various classes. A careful analysis of the patterns we uncover in

what follows allows us to extrapolate to higher n and predict the structure of the expansions

for any n. We will see that a subset of these, when appropriately combined, reproduce the

type 0 expansions that we have already encountered. In addition, we obtain completely new

expansions which have not been presented in the literature before. Our key observation here

is that these also resemble perturbative sectors of string theories (either with branes or fluxes

present). We take these seriously as new string theories and our task after this section will

be to identify what string theories they might be.

The number of expansions grows large as n increases (we will see later that the num-

ber of expansions is (n + 1)2). To deal with this proliferation of expansions, we classify

them into classes whose members are related to one another by simple symmetries. The

classes themselves are distinguished by a number of salient features, many of which we ex-

plore in what follows. We choose to define the classes based on their behavior at order ν0

(this is equivalent to the leading behavior in g−2
s , the sphere level of closed string perturba-

tion theory, as we will see later). Since DWW is a two component system, we must consider

the leading behavior of both functions, u and v. We adopt the following classification scheme:

Class 1: u1 ∼ 0, v1 ∼ x2/n

Class 2: u2 ∼ 0, v2 ∼ 0

Class 3: u3 ∼ x1/n, v3 ∼ 0

Class 4: u4 ∼ x1/n, v4 ∼ x2/n, u2
4/v4 ∼ 1/4

Class 5: u5 ∼ x1/n, v5 ∼ x2/n, u2
5/v5 ∼ a 6= 1/4

(60)

We postpone the detailed study of u to subsequent work. Here we mention its leading

behavior only to complete the classification; in what follows, we focus exclusively on v and

its asymptotic expansions.

The details of sections 6.1–6.4, being a list of examples that we found instructive,
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might be a little dry on first reading and so the reader is encouraged to skip to section 6.5

for the general case.

6.1 n = 1

The string equations for this case were already written in equations (39). Solving the first of

these for v gave equation (40), and substituting into the second yields a scalar second order

ODE in u(x) (equivalent to Painlevé IV), which can be used to produce the expansions.

Asymptotic expansions for u(x) can then be used to yield asymptotic expansions for v(x)

using equation (40).

We obtain three classes of expansions for v(x),

v2 =
ν2

x2
(c2 − Γ2)

(
1− ν

g1x2
6c+

ν2

g2
1x

4
(45c2 − 5Γ2 + 5)− · · ·

)
,

v3 = ν(c− Γ)

(
1− ν

g1x2
2Γ− ν2

g2
1x

4
6Γ(c− 3Γ)− · · ·

)
, (61)

v4 =
1

9
g2

1x
2 + ν

2g1c

3
− ν2

x2

1

3
(3c2 + 9Γ2 − 1) +

ν3

g1x4
6c(c2 − 9Γ2)− · · · .

Upon integrating twice (following what we learned from the type 0 theories in sec-

tions 2.1 and 2.2), one can obtain the free energy for a genus expansion of a string theory

which allows us to identify the string coupling to be gs = ν/x2.

6.1.1 Symmetries for n = 1

The other expansions within each class can be obtained by the following symmetry operation:

f1 : Γ→ −Γ .

Since v2 and v4 contain only even powers of Γ, the are invariant under this map; however,

f1 ◦ v3 6= v3. Thus there are two expansions in the v3 class, and, together with v2 and v4,

these comprise four total n = 1 expansions.
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6.2 n = 2

The string equations are:

uxx = 3uux − u3 − 6uv − 2g2xu+ 4νg2

(
c+

1

2

)
,

vxx = 2

(
(uv + 1

2
vx − νg2c)

2 − ν2g2
2Γ2

v + 1
2
u2 − 1

2
ux + g2x

)
(62)

−2v

(
v +

1

2
u2 − 1

2
ux + g2x

)
− 2(uv)x .

where again g2 = 1
t2

. Solving the first of these for v gives,

v =
1

6u

(
uxx − 3uux + u3 + 2g2xu− 4νg2

(
c+

1

2

))
. (63)

Substituting this into the second yields a scalar fourth order ODE in u, which can then

be used to produce the expansions for v. In this case, there are four relevant classes of

expansions

v1 = −g2x−
νg

1/2
2

x1/2
Γ +

ν2

x2

1

8

(
−4c2 + 4Γ2 + 1

)
+ · · · ,

v2 =
ν2

x2

(
c2 − Γ2

)(
1− 2ν2

g2x3
(5c2 − Γ2 + 1) + · · ·

)
, (64)

v3 =
g

1/2
2 ν

x1/2
(c− Γ)

(
i√
2

+
ν

g
1/2
2 x3/2

1

4
(c− 5Γ)− · · ·

)
,

v4 = −g2x

5
+
νg

1/2
2

x1/2

ic√
5
− ν2

x2

1

4
(2c2 + 10Γ2 − 1)− · · · .

Here, we see that the string coupling is gs = ν/x
3
2 .

6.2.1 Symmetries for n = 2

The other expansions within each class can be obtained by the following operations,

f1 : Γ→ −Γ , f2 : c→ −c ,

and compositions thereof. Some of the vi are invariant under one or both of these maps. Al-

together, there are nine distinct expansions. Here are the four classes of expansions together

with the number of distinct expansions within each class and the maps that lead to them:

v1(2) : {1, f1}; v2(1) : {1}; v3(4) : {1, f1, f2, f1 ◦ f2}; v4(2) : {1, f2} .
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6.3 n = 3

The string equations are too long to be written down explicitly here and so we omit them.

Four classes of expansions are produced in this case, and one sees expansions in Class 5

appearing for the first time here.

v2 =
ν2

x2
(c2 − Γ2)

(
1− ν3

g3x4

5

2
c(7c2 − 3Γ2 + 5) + · · ·

)
,

v3 =
ν

x2/3
(c− Γ)

(
(−2)2/3g

1/3
3

3
+

ν

x4/3

1

3
(c− 3Γ)− · · ·

)
, (65)

v4 =
2 · 21/3

352/3
g

2/3
3 x2/3 +

νg
1/3
3

x2/3

2 · 22/3c

3 · 351/3
− ν2

x2

1

9
(3c2 + 21Γ2 − 2) + · · · ,

v5 = −2 · 21/3

52/3
g

2/3
3 x2/3 − νg

1/3
3

x2/3

22/3

3 · 51/3
(c+

√
5Γ)− ν2

x2

1

9
(3c2 − 3Γ2 − 1) + · · · .

Here the string coupling turns out to be gs = ν/x
4
3 .

6.3.1 Symmetries for n = 3

The other expansions within each class can be obtained by the following operations,

f1 : Γ→ −Γ , f3 : x→ −x , f4 : g3 → −g3 , (66)

and any compositions of these maps. A quick calculation shows that there 16 different

expansions

v2(1) : {1};

v3(6) : {1, f1, f3 = f4, f1 ◦ f3 = f1 ◦ f4, f1 ◦ f3 ◦ f4, f3 ◦ f4};

v4(3) : {1, f3 = f4, f3 ◦ f4};

v5(6) : {1, f1, f3 = f4, f1 ◦ f3 = f1 ◦ f4, f1 ◦ f3 ◦ f4, f3 ◦ f4} .
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6.4 n = 4

Our explicit string equations are rather complicated and so we will not list them here. The

following five classes of expansions are obtained:

v1(x) = − 2i√
3

√
g4

√
x− νg

1/4
4

x3/4

(1 + i)Γ

2 · 31/4
− ν2

x2

1

48

(
12c2 − 12Γ2 − 5

)
+ · · · ,

v2(x) = −ν
2

x2
(Γ2 − c2)

(
1− 3ν4

2g4x5
(21c4 − 14c2Γ2 + Γ4 + 35c2 − 5Γ2 + 4)

)
+ · · · ,

v3(x) = −g
1/4
4 ν

x3/4
(c− Γ)

(
1

23/4(1 + i)
+

ν

g
1/4
4 x5/4

7Γ− 3c

8
+ · · ·

)
, (67)

v4(x) = − 2i

3
√

7

√
g4

√
x− g

1/4
4 ν

x3/4

c√
3 · 71/4(1 + i)

− ν2

x2

1

24

(
6c2 + 54Γ2 − 5

)
+ · · · ,

v5(x) = −2

√
2

21

√
g4

√
x− g

1/4
4 ν

x3/4

211/4

25/4

(
− c√

7
+

Γ√
3

)
− ν2

x2

1

48

(
12c2 − 12Γ2 − 5

)
+ · · · .

Here, the string coupling is gs = ν/x
5
4 .

6.4.1 Symmetries for n = 4

The other expansions within each class can be obtained by the following operations,

f1 : Γ→ −Γ , f2 : c→ −c , f3,4 : (x, g4)→ (−x,−g4) , (68)

and any arbitrary composition of those maps. A quick calculation shows that there are 25

distinct expansions. Here are the five classes of expansions together with the number of

distinct expansions within each class and the maps that lead to them:

v1(4) : {1, f1, f3,4, f1 ◦ f3,4};

v2(1) : {1};

v3(8) : {1, f1, f2, f1 ◦ f2, f3,4, f1 ◦ f3,4, f2 ◦ f3,4, f1 ◦ f2 ◦ f3,4};

v4(4) : {1, f2, f3,4, f2 ◦ f3.4};

v5(8) : {1, f1, f2, f1 ◦ f2, f3,4, f1 ◦ f3,4, f2 ◦ f3,4, f1 ◦ f2 ◦ f3,4} .

6.5 Patterns and Asymptotia

The expansions displayed above for n = 1 to n = 4 exhibit a rich structure which we explore

shortly. First we briefly review the interpretation given to the parameter Γ of the 0A theory
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(and also to q of the 0B theory). In the µ (or x) → +∞ regime, Γ represents the number of

background ZZ D–branes in the model, with a factor of Γ for each boundary in the worldsheet

expansion. Since an orientable surface with odd (even) Euler characteristic must contain an

odd (even) number of boundaries, Γ must be raised to an odd (even) power if gs is. In

addition, the power of Γ must be less than or equal to the power of gs. On the other hand, in

the µ (or x)→ −∞ regime, Γ represents the number of units of RR–flux in the background,

with g2
sΓ

2 appearing when there is an insertion of pure RR–flux. So in this case both Γ

and gs should appear with even powers.

In applying these observations to our DWW expansions, we immediately notice the

remarkable fact that the various expansions have powers of the parameters which somehow

allow for interpretations as counting branes or fluxes. This is by no means guaranteed, and

indeed its occurrence was one of our main motivations for in–depth study of the system.

The presence of two parameters, however, leads to a few subtleties. For example, in some

expansions an interpretation in terms of branes is only possible if one of the two parameters

is set to zero. With keep such observations in mind as we begin the study of the various

expansions.

Finally we note that the asymptotic direction (i.e., positive or negative x) of each

expansion can be fixed by requiring that once we fix the value of gn, the expansion must be

real (which is an important constraint since v encodes the free energy). The value of gn, in

turn, can be fixed using the values listed in equation (49) since we must reproduce the 0A

theory. With all of these observations we are ready to begin analyzing our expansions.

6.5.1 Class 1

• v1 contains powers of Γ consistent with those of a parameter counting branes. This

remains true for any value of c.

• v1 contains powers of c consistent with those of a parameter counting fluxes. However,

for arbitrary Γ, gs appears with odd powers, inconsistent with our requirements for a

description of fluxes, as mentioned above. This problem is avoided if we set Γ = 0

since this forces the odd powers of gs to vanish.

• In particular, setting Γ = 0 with gn given by equation (49) reduces this expansion to

the x > 0 flux-expansion in c (or q) for the type 0B theory seen in equations (17,18)

for n = 2, 4 respectively.

• Alternatively, setting c = −1
2

with the same value of gn reduces these expansions to
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those of the type 0A for x > 0. (We listed them in equations (9 and 10) for k = 1, 2

respectively6.)

• With the values of gn need to reduce to 0A and 0B, one obtains real expansions in this

class only if x > 0. Hence we fix this class of expansions to be x → +∞ asymptotic

expansions.

• This class of expansions only exists for even n.

6.5.2 Class 2

• For even n, v2 contains powers of Γ and gs consistent with those of a parameter counting

fluxes. This is true for all values of c. For odd n, the powers of Γ are still consistent

with the flux interpretation, but there are odd powers of gs which are inconsistent with

fluxes. These odd powers can be removed by setting c = 0.

• For even n, v2 contains powers of c and gs consistent with a parameter counting fluxes.

This is true for all values of Γ. For odd n, the powers of c are consistent with those of

a parameter counting branes. In this interpretation, there are no contributions from

surfaces with only one boundary.

• Setting c = −1
2

with gn as chosen in equation (49), reduces the v2 expansions to the

type 0A expansions for x < 0. (We listed them in equations (9) and (10) for k = 1, 2

respectively.)

• Only even powers of gn and x appear, so the requirement of reality does not fix the

direction of these expansions.

• Consistency with the 0A expansions forces us to consider the expansions in this class

as x→ −∞ expansions. We note the possibility that these might appear as x→ +∞
expansions outside of the simple type 0A context we’ve seen so far7.

• These expansions vanish when c2 = Γ2. (This is a likely special point(s) in parameter

space. We got a first hint of this point in section 4 where the second copy of Painlevé IV

has β = 0.)

6Recall that the DWW hierarchy index n is related to KdV hierarchy index k by n = 2k.
7In fact, we can already think of an example. There are rational solutions of the type 0A string equations

that were considered in a string theory context in ref.[40]. The rational solutions have v2 type expansions
(for c = −1/2) in both asymptotic directions for x. Clearly there are analogous rational solutions for the full
DWW equations that have v2 asymptotic expansions that generalize the known cases. We have constructed
large families of them, and leave their study for a later publication.
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• This class of expansions appears for all n.

6.5.3 Class 3

• v3 contains powers of Γ consistent with those of a parameter counting branes. This is

true only for c = 0.

• v3 contains powers of c consistent with those of a parameter counting branes. This is

true only for Γ = 0.

• We notice that associating one boundary to each factor of c and Γ also produces a

consistent worldsheet expansion. We might speculate about whether, in general, these

expansions might capture c and Γ simultaneously counting branes.

• Setting Γ = 0 with g2 = 1 reduces these expansions to the x < 0 brane-expansions for

the type 0B theory for n = 2 as seen in equation (17). Hence we fix the expansions in

this class to be x→ −∞ expansions.

• At n = 4, the value g4 = −3
4

with Γ = 0 renders this expansion complex for x < 0.

This fits in nicely with the structure of expansions observed in the 0B case, reviewed8

in section 2.2.

• c = Γ causes these expansions to vanish (we got a first hint of this point in section 4

where the second copy of Painlevé IV has β = 0.)

• This class of expansions exists for all n, but is real as an x < 0 expansion only for

n = 2 mod 4.

6.5.4 Class 4

• The v4 class of expansions has not, to our knowledge, made a previous appearance in

the literature, as it does not appear until encountering the DWW system.

• v4 contains powers of c consistent with those of a parameter counting branes. This

remains true for any value of Γ.

• v4 contains powers of Γ consistent with those of a parameter counting fluxes. However,

for arbitrary c, gs appears with odd powers, inconsistent with our requirements for a

8Recall that the trivial solution with r(x) = 0 in that case did not have a real deformation for q 6= 0. The
v3 class is exactly the analogue of this trivial solution.
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description of fluxes, as mentioned above. This problem is avoided if we set c = 0 since

this forces the odd powers of gs to vanish.

• The direction of v4 is not immediately determined by the consistency conditions we

have used so far. Compatibility with the type 0 theories at n = 2 requires g2 = 1

which renders v4 real for x→ −∞. On the other hand, compatibility with the type 0

theories at n = 4 requires g4 = −3
4

which renders v4 real for x→ +∞.

• We will later provide evidence in favor of v4 existing for x > 0.

• In general, for the type 0 choices (49) for gn, v4 remains real for x > 0 when n = 0

mod 4 and becomes complex when n = 2 mod 4.

• In the special case n = 2, v4 can be made real by setting c = 0.

6.5.5 Class 5

• v5 contains powers of Γ consistent with those of a parameter counting branes. This is

true only for c = 0.

• v5 contains powers of c consistent with those of a parameter counting branes. This is

true only for Γ = 0.

• As for v3, we notice that associating one boundary to each factor of c and Γ also

produces a consistent worldsheet expansion. We might speculate that, in general,

these expansions might capture c and Γ simultaneously counting branes.

• These expansions do not exist for n < 3.

• With Γ = 0 and g4 = −3
4

this class reduces to the x < 0 brane–expansion in c seen for

the 0B theory at n = 4 in equation (18). (Recall that there q = −c.)

• These are the non–trivial broken–symmetry solutions obtained in the 0B theory as one

increases n. We reviewed this at the end of section 2.2.

• As n increases, further expansions in this class arise for every odd n, which we generi-

cally label vi≥5. These are distinguished by the different values of a in (60), but since

their behavior is identical for our purposes we often group them together.

• For odd n, reality imposes no restrictions on the direction of vi≥5.
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• For n = 4, reality requires that we fix v5 to be an x → −∞ expansion. For the

subsequent even n, some of the vi≥5 are real for +x, while the remaining are real

for −x.

6.6 The Structure at Higher n

We can extrapolate the pattern observed for the first few n and make predictions for the

structures that should appear at higher n. The first observation is that there are (n + 1)2

expansions in all (taking into account the various expansions related by symmetries in each

class) at each n. The counting can be broken down as follows.

v2 v4 v1 v3 v5 v6 v7 total
n = 1 1 1 2 4
n = 2 1 2 2 4 9
n = 3 1 3 6 6 16
n = 4 1 4 4 8 8 25
n = 5 1 5 10 10 10 36
n = 6 1 6 6 12 12 12 49
n = 7 1 7 14 14 14 14 64
n = 8 1 8 8 16 16 16 16 81

Table 1: The number and types of expansion classes for v(x), as a solution to the string equa-
tions (36) and (37), with increasing n from 1 to 8. See text for further discussion.

Class 2 has exactly one member for each n, while Class 1 and Class 4 each have n

members. (Recall that Class 1 only exists for even n.) As previously mentioned, for every

odd n, new expansions in Class 5 (the vi≥5) appear. These reduce to the x < 0 broken

symmetry expansions of the 0B theory (for Γ = 0 and gn in equation (49)) when n is even.

These expansion classes each contain 2n members. The appearance of these new expansions

is consistent with the counting provided in ref.[15] for the 0B expansions, as reviewed at the

end of section 2.2. The counting is tabulated in Table 1. All together, we see that for odd

n, adding across the rows gives a total of 1 + n + n+1
2
· 2n = (n + 1)2 expansions, while for

even n we get 1 + n+ n+ n
2
· 2n = (n+ 1)2 expansions.

7 An Organizing Square

To construct a full solution for v(x), we need to specify its behaviour in the two asymptotic

directions, positive and negative x. Consider the example of type 0A discussed in section 2.1.
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The string equation at a given k was shown to have a solution connecting these two pertur-

bative regimes with a full non–perturbative completion, plotted for k = 2 in figure 1. (Recall

that z ∝ x and w = −v.) This solution is in fact made of two expansions, v1(x) for the

positive x regime and v2(x) for negative x. The parameter c is frozen to −1
2

in this case,

leaving the parameter Γ to count D–branes at +x and fluxes at −x, as described in 6.5.

This is the organizing scheme we follow in order to construct more theories, with

type 0B being another working example, this time with Γ = 0 and using v1 for positive x

and v3, v5, or the higher vi (not v4) for negative x, as already discussed.

In constructing new theories, matching perturbative expansions does not guarantee

that a full non–perturbative solution exists with the desired properties. Further work is

needed, using both analytic and numerical techniques, in order to demonstrate the non–

perturbative existence of the proposed theories. This is the subject of our companion paper,

where we find several non–perturbative solutions numerically, and present analytical argu-

ments in favour of several new non–perturbatively complete theories. For the rest of this

paper, our analysis will be concerned with the various perturbative regimes that appear from

our DWW string equations.

Much of this structure can be organized neatly into the shape of a square, with the

string theory special points we know so far at two of the corners. The v1 and v2 pair form

two edges with the type 0A (with c = −1
2
) theory where they join. Then v3 (at n = 2) (or

v5 at n = 4, and so on) make another edge, with type 0B (Γ = 0) at the corner where that

edge meets the v1 edge. See figure 2.

Using our observations from section (6.5), we conjecture that v4 and v2 form a physical

pair when Γ is fixed, with c counting either branes of fluxes in the perturbative regimes.

Similarly, v4 with v3 (or vi≥5) may form physical pair for fixed c, with Γ counting fluxes or

branes. Since v2, v3, and vi≥5 appeared as x < 0 expansions, it is natural to fix the direction

of v4 to be +x. It fits elegantly at the bottom of the square, at least when n = 0 mod 4,

(i.e., when v4 is real for positive x).

We summarize all of this in figure 2. The special points in parameter space with

c2 = Γ2 or c = Γ, where v2 and v3 vanish, are represented by the dark squares on the vertical

edges.

This way of organizing things immediately suggests that there are two new special

points, corresponding to the lower two corners of the square, and we’ve called them Theory A

and Theory B. We will need to determine what the special values of c and Γ might be for

these corners, and the nature of the new theories. (The special values c = 0 and Γ2 = 1
4
,
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Figure 2: DWW Expansions forming a square. See text for explanation.

complementary to the known values for the type 0 theories, are suggestive, but so far this is

a guess. We will find several pieces of evidence to support this suggestion in later sections.)

The lines connecting the special points are not (at this stage) to be taken too literally,

since we do not have a clear statement of the nature of the theory (stringy or not) away

from the special points. However, the structure is highly suggestive, and reminiscent of the

square discovered in ref.[17] organizing the moduli space of ĉ = 1 strings. We reproduce it

here in figure 3. ĉ = 1 strings are fully two dimensional, having in addition to the Liouville

direction φ an extra direction X. This direction can be compactified on a circle, and in the

square the lines represent values of radii varying between 0 and ∞. The relations between

theories then arise as a result of T–dualities (horizontally) possibly combined with discrete

twists by discrete fermionic symmetry operations (vertically).

In the case under study here, there is generically no compact circle, and so the

analogy is limited, but it is possible that it is not entirely coincidental that a square emerges.

Two dimensional string theories can descend to ĉ < 1 theories by Renormalization Group

flow[18, 19], and so an organizing square at ĉ = 1 may well leave an imprint at ĉ < 1 that

still is an organizing square. The fact that there are two special points on the vertical lines

on the ĉ = 1 square that match our c2 = Γ2 and c = Γ points is suggestive.

Inspired by the similarity between our square and that of ref.[17], we explored whether
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Figure 3: The moduli space of two–dimensional string theories[17]. The four corners of the square
represent the four string theories 0B, 0A, IIB and IIA. The lines labelled 1–8 represent differ-
ent compactifications. The points on each line represent compactifications with different radii R.
Lines 1, 4, 7 and 8 interpolate between different non–compact theories as R varies between 0 and∞.
The points marked with black squares on lines 7 and 8 represent the non–critical superstrings of
ref.[41]. See ref.[17] for discussion of other features of the diagram.

the two unknown theories at the bottom of our square could actually be type IIA and type IIB

string theories, coupled to superconformal minimal models. We present the details of our

explorations in section 8.

8 A Search for New Theories

So far, we have demonstrated that the DWW hierarchy has an extremely rich structure of

asymptotic expansions that naturally contain both the 0A and 0B string theories coupled

to the (A,A) (2, 4k) superconformal minimal models. We’ve also pointed out that there are

new expansions that seem to have perfectly stringy interpretations, in terms of backgrounds

containing D–branes or fluxes once either c or Γ has been fixed. It is natural to wonder

whether a sensible interpretation as string theories coupled to some matter minimal (super–

minimal) models can be given to these new expansions. We will find some success with this

for some corners of parameter space.
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The square in figure 3 motivates the conjecture that the new string theories are

type II string theories coupled to some superconformal minimal models. This has some

physical motivation since type II string theories can be obtained as twisted orbifolds of type

0 theories. Also, the (A,D) series of superconformal minimal models can be obtained as

orbifolds of the (A,A) series via a twist in the matter sector. In descending from ĉ = 1 to

ĉ < 1, the remnants of the twisted T–dualities connecting the type 0 and type II sectors

could well be a combination of these orbifold actions. In what follows, we argue that type II

string theories coupled to (A,D) (4, 4k − 2) superconformal minimal models are natural

candidates for the physics encoded by the new special points of our string equations.

One method of partially checking which theories are being captured by our asymptotic

expansions is to compare the (putative) torus contributions (terms at order g0
s in the free

energy) with a continuum calculation (i.e., results of a traditional world–sheet string one–

loop computation) for these models. Such a comparison will enable us to specialize to

various points in parameter space and provide further consistency checks to determine the

exact underlying models.

8.1 The g0
s terms

We begin by listing the terms that appear at order g0
s in the expansion for the free energy

for each class of the expansions studied in section 6, for all n:

v1(x) :
n+ 1

12n
− c2

n
+

Γ2

n
,

v2(x) : c2 − Γ2 ,

v3(x) :
n− 1

2n
c2 − n+ 1

n
cΓ +

n+ 3

2n
Γ2 , (69)

v4(x) :
n+ 1

6n
− c2

n
− 2n+ 1

n
Γ2 ,

vi(x) :
n+ 1

12n
− c2

n
+

Γ2

n
, (i ≥ 5) .

Notice that the torus term in the expansion classes labeled vi is identical to that in v1. This

is a generalization of the curious observation that was made in ref.[15], that the symmetry

breaking solutions (for x < 0) of the 0B theory have the same torus terms (for x > 0) as

those of the 0B theory.

In each case, these terms are at order x−2 in the expansion, and multiplied by ν2.

Following e.g., equations (6) and (15), the free energy is obtained by integrating twice and

dividing by ν2, yielding the same terms above multiplied by ln(|x|), which is part of a
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standard Liouville theory volume factor that is common to everything we will do at this

order at perturbation theory9.

8.2 The Continuum Partition Functions

We now present several continuum partition functions in the even spin structures sector for

both type 0 and type II theories coupled to (A,A) and (A,D) modular invariants. Ref. [44],

presents the modular invariant partition functions in the even spin structures (−,−), (−,+)

and (+,−) for all the N = 1 superconformal minimal models, as classified in ref. [45].

Ref. [46] combines these results with Liouville theory to compute some of the string theory

partition functions and we follow their methods to present the type II expressions that we

suggest at the end of this section.

8.2.1 The Type 0 Theories

• The (Ap−1, Aq−1) modular invariants.

The contribution of the even spin structures to the genus one path integral for the (Ap−1, Aq−1)

superconformal minimal models coupled to supergravity has been calculated in ref.[46]:

Z(A,A)
even = − 1

16

(p− 1)(q − 1)

(p+ q − 1)
ln |x| , (p, q odd) (70)

Z(A,A)
even = − 1

16

(p− 1)(q − 1) + 1

(p+ q − 2)
ln |x| . (p, q even) (71)

• The (Ap−1, Dq/2+1) modular invariants.

The superconformal minimal model partition functions may be written in terms of the par-

tition functions for fields on a circle at special radii, as shown in ref.[44]. These can be

combined with partition functions for affinized compact circle theories to yield the desired

one–loop string theory expressions[46]. Using this technique, it is easy to show that the

9The Liouville direction φ is effectively a box of volume VL = − ln(|µ|/Λ)/αmin where αmin is the Liouville
dressing of the lowest dimension operator in the theory (see e.g., refs.[42, 43] for a review). In a unitary
theory, µ is the cosmological constant, the coefficient of the puncture operator, which measures worldsheet
area. Recall that the dilaton and hence the local string coupling increases with φ, and so there is a natural
cutoff at the point where perturbation theory begins to break down, denoted Λ. Standard conventions are
to choose a scale such that Λ is unity and we will write µ = x in much of what follows, differing slightly
from our notation in e.g., equation (6).
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partition functions in the even spin structures for the (Ap−1, Dq/2+1) modular invariants are:

Z(A,D)
even = − 1

64

(3p− 4)(q + 2)

(p+ q − 2)
ln |x| , (q = 2 mod 4) , (72)

Z(A,D)
even = − 1

32

(p− 2)(q + 3) + 2

(p+ q − 2)
ln |x| , (q = 0 mod 4) . (73)

8.2.2 The Type II Theories

By analogy with the previous section, similar procedures can be used to propose partition

functions in the even spin structures for superconformal minimal models coupled to the type

II string theories, using as starting point the partition functions for the corresponding circle

theories given in ref.[17]. Our results are:

• The (Ap−1, Aq−1) modular invariants.

Z̃(A,A)
even =

1

32

(p− 1)(q − 1)

(p+ q − 1)
ln |x| , (p, q odd) (74)

Z̃(A,A)
even =

1

32

(p− 1)(q − 1) + 1

(p+ q − 2)
ln |x| . (p, q even) (75)

• The (Ap−1, Dq/2+1) modular invariants.

Z̃(A,D)
even =

1

64

p(q + 2)

(p+ q − 2)
ln |x| , (q = 2 mod 4) , (76)

Z̃(A,D)
even =

1

64

p(q + 2)− 4

(p+ q − 2)
ln |x| , (q = 0 mod 4) . (77)

While this is a natural extension of the definitions for bosonic strings and type 0 strings

via combinations circle partition functions, as we have already stated, an independent direct

definition of the type II strings coupled to minimal models (explicitly coupling to super–

Liouville and defining the appropriate GSO projection) would be desirable. This method

only produces Zeven, whereas a direct definition would give explicit expressions for type IIA

and type IIB.

8.3 Searching for Special Values of Parameters

8.3.1 Comparison of Torus Terms — The Known

Before proceeding to the general story, we briefly review the comparison[15] between the

torus terms supplied by the asymptotic expansions and the continuum calculations for the
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type 0 theories coupled to the (2, 4k) (A,A) series of superconformal minimal models.

For the (2, 4k) series, equation (71) becomes

Z(2,4k)
even =

1

2
(Z0A(x) + Z0B(x)) = − 1

16
ln |x| . (78)

Let us compare this with the results we have from our string equations presented in section 2.

The torus terms in each direction are as listed below:

Z0A = −k − 1

24k
ln |x| , Z0B = −2k + 1

24k
ln |x| , (x > 0) ,

Z0A = −1

8
ln |x| , Z0B = 0 , (x < 0) . (79)

These can be read off from the expansions given in sections 2.1 and 2.2, or alternatively by

starting with our DWW string equations and expansions given in section 6, and specializing

to either c = −1
2

(type 0A) or Γ = 0 (type 0B). It follows from the torus terms (79) that

Z(2,4k)
even =

1

2
(Z0A(x) + Z0B(x)) = − 1

16
ln |x| , (80)

for either sign of x, in agreement with the worldsheet computation above. As argued in

ref.[15], this is strong evidence that indeed these asymptotic expansions represent the (2, 4k)

super–minimal models coupled to supergravity.

Let us try to systematize the above procedure in the context of the DWW string

equations. Recall that specializing to the 0A (0B) theory requires c = −1
2

(Γ = 0). We seek

to discover which properties of our one–loop partition functions are general conditions that

produce these values.

To this end, turn again to the square of figure 2. It suggests three possible theories:

Theory B, which has Γ fixed and v2 governing the x→ −∞ asymptotics and v4 governing the

x→ +∞ asymptotics (for which we introduce the notation (v2|v4)); Ã, which has c fixed and

(v3|v4) asymptotics; and Â, which has c fixed and (vi≥5|v4) asymptotics. We summarize these

possibilities and the resulting torus terms in table 2. These terms are obtained from (69) by

eliminating c or Γ whenever its appearance represents an insertion of a worldsheet boundary

or a flux vertex operator, which would change the topology. So, e.g., Γ cannot appear in the

type 0A torus terms while c cannot appear for type 0B.

As table 1 indicates, we have multiplied the torus terms by unknown normalizations

{a, b}, {ã, b̃} and {â, b̂}, which we will later attempt to fix. Notice that we have distinguished

two possibilities for ZB: ZB̃ and ZB̂, to match the Ã, Â choices. We now construct the three

possible Zeven = 1
2

(ZA + ZB) from these torus terms.
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x > 0 x < 0

Z0A a
(
n+1
12n
− c2

n

)
(v1) ac2 (v2)

Z0B b
(
n+1
12n

+ Γ2

n

)
(v1) b

(
n+3
2n

)
Γ2 (v3)

ZÃ ã
(
n+1
6n
− c2

n

)
(v4) ã

(
n−1
2n

)
c2 (v3)

ZB̃ b̃
(
n+1
6n
− 2n+1

n
Γ2
)

(v4) −b̃Γ2 (v2)

ZÂ â
(
n+1
6n
− c2

n

)
(v4) â

(
n+1
12n
− c2

n

)
(vi≥5)

ZB̂ b̂
(
n+1
6n
− 2n+1

n
Γ2
)

(v4) −b̂Γ2 (v2)

Table 2: Unnormalized torus terms for string theories, before fixing parameters c and Γ. We have
also indicated from which expansion each term arises.

1. The known theories: 0A and 0B

Z(0A,0B)
even =

1

2

[(
a+ b

12

)(
n+ 1

n

)
− (ac2 − bΓ2)

n

]
(x > 0)

Z(0A,0B)
even =

1

2

[
ac2 +

(
n+ 3

2n

)
bΓ2

]
(x < 0) (81)

2. The unknown theories: Ã and B̃

Z(Ã,B̃)
even =

1

2

[(
ã+ b̃

6

)(
n+ 1

n

)
− 1

n
ãc2 −

(
2n+ 1

n

)
b̃Γ2

]
(x > 0)

Z(Ã,B̃)
even =

1

2

[(
n− 1

2n

)
ãc2 − b̃Γ2

]
(x < 0) (82)

3. The unknown theories: Â and B̂

Z(Â,B̂)
even =

1

2

[(
â+ b̂

6

)(
n+ 1

n

)
− 1

n
âc2 −

(
2n+ 1

n

)
b̂Γ2

]
, (x > 0)

Z(Â,B̂)
even =

1

2

[
â

(
n+ 1

12n

)
− 1

n
âc2 − b̂Γ2

]
(x < 0) (83)

8.3.2 The known theories: 0A and 0B

We will now see what conditions are required to deduce the special parameter values, c = −1
2

and Γ = 0, for type 0A and 0B respectively. We begin by observing that the continuum
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partition functions listed in section 8.2 are independent of the sign of x. Therefore, we will

impose this as a constraint on every Zeven that we construct,

Condition 1: Zeven(x > 0) = Zeven(x < 0) . (84)

We impose this condition by equating the two expressions in equation (81). Interestingly,

the n–dependence factorizes completely leading to

ac2 +
b

2
Γ2 =

a+ b

12
. (85)

While it is indeed possible for c and Γ to inherit n dependence from dependence

on tn, the simplest possibility is that these parameters are independent of n. That the n

dependence factors out of equation (85) allows this simplicity to be realized. This suggests

that we also impose

Condition 2: c and Γ are independent of n. (86)

Substituting (85) back into (81) we obtain,

Z(0A,0B)
even =

a+ b

24
+

3b

4n
Γ2 (87)

Finally, we impose one more condition,

Condition 3: Zeven is independent of n, (88)

which, together with Condition 2, forces us to conclude

c2 =
a+ b

12a
, Γ = 0 ⇒ Z(0A,0B)

even =
a+ b

24
. (89)

Condition 3 is motivated by the remarkable fact that Zeven is independent of n, which

is nontrivial given the form of equation (71), and also by the observation that this constraint

correctly produces the required parameter values in this case. This is as far as we can go

without some extra information. Fortunately, for the type 0 theories, we actually know

a = −1
2

and b = −1: the factor of half is because of the doubling of the free energy the 0B

theory relative to the 0A theory and the negative sign is because it is −v which defines the

two–point function for these theories. (Recall the observation at the end of section (5.2)).

Thus we see that we obtain the correct parameter values c = −1
2

and Γ = 0 for the theories

under consideration. Moreover, we correctly obtain the known value10 of Zeven = − 1
16

.

10A subtle but important point should be mentioned here. We have used the torus term from v3 to be
the x < 0 contribution to the 0B theory leading us to Γ = 0. This means that the x < 0 contribution to
the 0B theory is actually zero. While v3 is real as a x < 0 expansion for n = 2 mod 4, it is complex for
n = 0 mod 4. The resolution is that the zero contribution is to be understood as coming from the trivial
v = 0 solution of the 0B theory obtained by setting c = 0 in the 0B string equations. It is interesting that
our procedure using v3 should give parameter values that are consistent with the trivial solution.
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Next, we turn to exploring where our new conditions take us in investigating the

unknown corners.

8.3.3 The unknown corners: Ã and B̃

Using equation (82), we see that Condition 1 gives,

ã

2
c2 + b̃Γ2 =

ã+ b̃

6
⇒ Z(Ã,B̃)

even = − ã+ b̃

12
+ ãc2

(
1

2
− 1

4n

)
. (90)

Conditions 2 and 3 give,

Γ2 =
ã+ b̃

6b̃
and c = 0 , (91)

and so11 we have

Z(Ã,B̃)
even = − ã+ b̃

12
. (92)

Remarkably enough, everything seems to work as before, except now we obtain new values

for our parameters and a new expression for Zeven. We have yet to make an numerical

prediction for Zeven as we still must fix the normalizations. We will return to this point in

next section 8.4.

8.3.4 The unknown corners: Â and B̂

Condition 1 gives:

Γ2 =
â+ 2b̂

12b̂
⇒ Z(Â,B̂)

even = − b̂

12
+
â(1− 12c2)

24n
(93)

Conditions 2 and 3 imply,

c2 =
1

12
, Γ2 =

â+ 2b̂

12b̂
⇒ Z(Â,B̂)

even = − b̂

12
(94)

This result is not as encouraging. Zeven does not depend on â which implies that it does

not depend on theory Â at all. We find this unacceptable and therefore conclude that

Conditions 2 and 3 are incompatible constraints in this case. We nevertheless take seriously

the possibility that theories like this may exist, but with n–dependent parameters and an

n–dependent Zeven. We will briefly consider this possibility in section (8.4.2).

11This c = 0 result means that the contribution to the torus terms coming from v3 is zero. In a sense, this
result is the analog of what was seen for the type 0B theories. Our argument again is that the torus term
for x < 0 at the (v4|v3) corner comes from the trivial v = 0 solution, analogous to the 0B case.

39



8.4 The New Theories

In the above we have explored the crucial and quite constraining assumption that Zeven is

independent of the index n = 2k. Theories Ã and B̃ seemed particularly suited to produce

such a Zeven. In an effort to better understand what these theories may be, we next ask which

continuum theories are capable of producing an n–independent Zeven. Looking at the various

partition functions listed in section 8.2, it is easy to see that only the following choices give

rise to an n–independent partition function:

1. Z
(A,A)
even in equation (71) with p = 2 and q = 4k.12 These theories are type 0 string

theories coupled to the (2, 4k) (A,A) models and are already described at the known corners.

2. Z
(A,D)
even in equation (72) with p = 4 and q = 4k − 2.13 These theories are the type 0

strings theories coupled to the (4, 4k − 2) (A,D) models with Z
(A,D)
even = −1

8
ln |x|.

3. Z̃
(A,A)
even in equation (75) with p = 2 and q = 4k. These are the type II strings cou-

pled to the (2, 4k) (A,A) models with Z̃
(2,4k)
even = 1

32
ln |x|.

4. Z̃
(A,D)
even in equation (77) with p = 2 and q = 4k. These are the type II strings cou-

pled to the (2, 4k) (A,D) models with Z̃
(2,4k)
even = 1

32
ln |x|. This is the same partition function

as case (3) above.

5. Z̃
(A,D)
even in equation (76) with p = 4 and q = 4k − 2. These theories are the type II

string theories coupled to the (4, 4k − 2) (A,D) models with Z̃
(4,4k−2)
even = 1

16
ln |x|.

We seek to identify Z
(Ã,B̃)
even = − ã+b̃

12
with one of the above partition functions, but to do

so we will need some way of determining ã and b̃. We consider the possibility that the the-

ories Ã and B̃ are type IIA and type IIB string theories, respectively. As we will see, this

will uniquely fix the normalizations and allow us to identify the resulting Z
(Ã,B̃)
even as that of

12The two positive integers p and q labeling the super–minimal models must obey: q > p; q − p = 0
mod 2; if both are odd, they are coprime and if both are even, then p/2 and q/2 must be coprime. There is
also a standard restriction that if p and q are even, then (q− p)/2 must be odd. It follows that if p = 2 then
q = 4k.

13 Strictly speaking, q = 4k±2. The choice q = 4k+2 would suggest that the (4, 6) (A,D) model exists at
at k = 1; however, all combinations of real expansions at k = 1 have been exhausted in describing the type 0
(A,A) (2, 4) model. We therefore expect the (4, 6) model to appear at k = 2 where more combinations of
expansions exist since v4 is real. Thus we choose q = 4k − 2 with k ≥ 2.
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case (5) above, i.e. type II string theories coupled to the (4, 4k − 2) (A,D) models.

8.4.1 Type II Theories Coupled to the Superconformal Minimal Models

Pursuing the apparent similarity with the moduli space of ĉ = 1 theories[17] a little further,

(recall our discussion in section 7, and figure 3) we can study the partition functions of those

theories (compactified on a circle) to get clues as to the possible relative normalizations. We

list them here[17]:

0A :
Z

VL
=

1

12
√

2

(√
α′

R
+ 2

R√
α′

)
,

0B :
Z

VL
=

1

12
√

2

(
2

√
α′

R
+

R√
α′

)
,

IIA :
Z

VL
= − 1

24
√

2

(
2

√
α′

R
+

R√
α′

)
,

IIB :
Z

VL
= − 1

24
√

2

(√
α′

R
+ 2

R√
α′

)
. (95)

An important clue is to be found in the 1/R behaviour of each theory. This is the physics of

the field theory sector (Kaluza–Klein states) that propagate on the circle, and the relative

normalizations are of interest to us. Type 0B has twice as much energy in this sector as

type 0A, and type IIA has double that of type IIB. Now, as expected, the type 0 theories

exchange under the T–duality operation R → α′/R, as do the type II theories. Now T–

duality vertically should take the type II theories to the type 0 theories, but this needs to

be done on a circle twisted by (−1)fl . The partition functions for IIA/B on such a circle is:

IIA :
Z

VL
= − 1

24
√

2

(√
α′

R
− R√

α′

)
,

IIB :
Z

VL
= − 1

12
√

2

(√
α′

R
− R√

α′

)
. (96)

Notice that the field theory term of type IIA is now actually half that of type IIB. Now we

can compare the overall type II normalization to the type 0 by doing the vertical T–duality.

Under R→ α′/R we see that type IIB field theory term matches that of the type 0A theory,

while for type IIA, the field theory term is 1/4 that of the type 0B value.

In summary, we see that comparing squares would suggest that ZA = ZIIA and

ZB = ZIIB, and the chain of relationships above gives the relative normalization of 0B
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and 0A as 2 to 1, while that of (twisted) IIB and IIA is 2 to 1, so b̃ = 2ã. Finally, T–duality

(with a twist) between 0A and IIB gives them the same relative normalization, implying,

b̃ = −1

2
, ã = −1

4
. (97)

In this case we get therefore that for our putative type II theories,

Z(Ã,B̃)
even =

1

16
ln |x| , (98)

which is equal to that of the type 0 case, but with an opposite sign. This is the same as

the partition function (76) for the type II theories coupled to the (4, 4k − 2) (A,D) super–

minimal models. Interestingly, equation (91) implies that Γ2 = 1/4 for IIB and c = 0 for

IIA, which nicely mirrors the values c2 = 1/4 for 0A and Γ = 0 for 0B.

Further work is required to strengthen our conjecture that we have here the type IIA

and IIB theories coupled to the superconformal minimal models. As stated, an explicit

definition of ĉ < 1 type II strings (separately for types A and B, and not just our suggestion

for Zeven given in section 8.2.2) does not yet seem to exist in the literature, and our attempts

to directly define them so far are incomplete. Note that we have assumed that the relative

normalizations of the partition functions that follow from ĉ = 1 really descend to the ĉ < 1

case, and while reasonable, this needs to be proven. The explicit k dependence of the

individual partition functions that we get by taking the DWW one–loop expressions seriously

have a (so far) unilluminating form at positive x that we have not been able to check against

a continuum computation. On the other hand the negative x result neatly mirrors the type 0

case. We list the results here, and leave this line of investigation for the future14:

ZIIA = −2k + 1

48k
ln |x| , ZIIB =

8k + 1

48k
ln |x| , (x > 0) ,

ZIIA = 0 , ZIIB =
1

8
ln |x| , (x < 0) . (99)

This should be compared with the type 0 cases displayed in equation (79).

8.4.2 n–dependence

Our main successes so far have involved theories in which Zeven and the values for Γ and c

have been independent of n. While these are the simplest possibilities, there is little reason

14We also considered the possibility that our Ã and B̃ theories are again type 0A and type 0B string
theories, respectively, perhaps coupled to an (A,D) modular invariant. This would again fix the relative

normalization of the partition functions such that a = − 1
2 and b = −1, yielding Z

(Ã,B̃)
even = 1

8 ln |x|, which
unfortunately differs from the continuum partition function for the (4, 4k− 2) (A,D) super–minimal models
by a sign. To match, we would have to assume that +v encodes the partition function instead of −v, which
contradicts our earlier establishment of the (A,A) type 0 points.
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to suspect that these theories are the only types amenable to description by DWW. We

observed in section 8.3.4 that there might be new theories, e.g., the ones we called Â and B̂,

whose description will most likely require such n–dependence for (Γ, c). Unfortunately,

the availability of continuum calculations to compare to is limited, so obtaining convincing

evidence for any particular proposal is difficult. Nevertheless, there is much more evidence

to accumulate from the differential equations themselves. We hope to report upon this issue

in later work.

We briefly mention one way that n–dependence might emerge naturally. The Zeven

that we have constructed from the torus terms of our perturbation expansions depend on

three variables: n, c, and Γ. We must however impose sign independence which reduces the

total number of independent variables describing Zeven to two. In special cases the algebra

conspires and we find that Zeven actually depends on no variables at all. This behavior is

to be compared to Zeven as computed from the continuum partition functions. For generic p

and q, Zeven is a function of two variables, but in special cases this dependence completely

vanishes. This motivates us to attempt to express for n, c, and Γ as functions of p and q.

Equation (87) indicates that Z0A,0B
even is inversely proportional to n. The form of equa-

tion (71) then suggests that we take n ∼ p + q − 2. Since q = 4k = 2n in this case, we can

predict

n =
1

2
(p+ q − 2) . (100)

Now equating Z0A,0B
even of equation (87) with the quantity in equation (71) and using the

relation c2 + Γ2 = 1
4
, which follows from sign independence, gives

Γ2 =
1

12
(p− 2)(q − 2) . (101)

Note that the models already studied had p = 2 which gave us Γ = 0. We can perform

the same exercise for Z
(Ã,B̃)
even which we have argued describes type II strings coupled to

(A,D) (4, 4k − 2) models. Again we have n = 1
2
(p + q − 2), which holds for p = 4 and

q = 4k − 2 = 2n − 2. Equating Z
(Ã,B̃)
even of equation (90) with the quantity in equation (76)

and using 1
4
c2 + Γ2 = 1

4
gives,

c2 = −(p− 4)(q − 2)

8(p+ q − 3)
. (102)

For the models we’ve previously considered, p = 4, so we correctly reduce to the condition

c = 0. Note here that we would run into problems if we considered p > 4 because then c

would become imaginary.
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9 Discussion

As discussed at length in the introduction, we find very significant this rich framework into

which we can embed so many string theories and discover how they intertwine with each

other. We suspect that there may be many more theories to be found in this framework,

and that we have only just begun to learn how to extract and identify the various theories

using the limited comparisons we can do to existing continuum computations.

We have been able to gather evidence for a square of connected theories, firmly

establishing the top corners as type 0A and 0B theories coupled to the (A,A) modular

invariant (2, 4k) minimal models, and finding several strong pieces of evidence that the

special points at the bottom are string theories, the (non–supersymmetric[17]) type IIA

and IIB theories coupled to the (A,D) modular invariant (4, 4k − 2) minimal models. See

figure 4.

Notice that the v3 side of the square is generically understood as defining the theory

when the number background branes, i.e., c or Γ, is set to zero. This is the case for type 0B

(already established in ref. [15]) and is inherited by the type IIA theory as well. Away from

c = 0 v3 is complex for k even, and one of the symmetry breaking vi(i ≥ 5) may supply the

x < 0 physics instead. (For k odd, v3 is real for c 6= 0 and so may well furnish the x < 0

physics in those cases.)

It is also important to note that for k odd, v4 is no longer real (with the exception

of c = 0 at k = 1). This suggests that this regime of perturbation theory at x > 0

(containing fluxes for type IIA and branes for type IIB) is ill–defined at those values of

k, even while the opposite regime at x < 0 exists. This may suggest non–perturbative

instabilities for those values of k. An instructive prototype of this possibility is the original

bosonic family of string theories defined non–perturbatively in terms of a Painlevé I hierarchy

of string equations[5, 6, 7]. At large x, the leading behaviour for the two point function was

w(x) = xk for the kth model, and for positive x the physics was the (2, 2k − 1) conformal

minimal models coupled to Liouville theory. For even k, the the x < 0 regime gives complex

values, signalling the non–perturbative problems. Something analogous may be going on

here for odd k (except k = 1, c = 0) for the type II (A,D) (4, 4k − 2) models. We will

report further non–perturbative aspects in a follow–up paper where we discuss numerical

and analytic studies of solutions that connect different perturbative regimes[4].

There are many more interesting issues to understand. While we compared to our

proposal for a continuum definition of the even sector partition function of the type II

theories, a direct continuum definition of the type IIA and IIB string theories would be
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Figure 4: A family of string theories, forming a square. See text for details.

valuable to have, in order to provide another check on our conjecture for the new points.

Whether or not they are type II string theories, it is clear that these new theories are

of interest, and may (as already stated) be only the first in a very large family of new

theories that our string equations define. They are all nicely interconnected with the known

type 0 theories, and have a rich non–perturbative sector. We will explore much of this

non–perturbative physics in a follow–up paper[4].

We have seen several signs that the organizing square is inherited from the organizing

square of theories seen at ĉ = 1 in ref.[17]. We suspect this inheritance arises physically by

RG flow, and it would be of value to explore this further (there are bosonic investigations

in the literature[18, 19]). In particular, the special points with Γ=± c, where our partition

functions vanish (also suggested by the underlying Painlevé IV structures we saw in section 4,

which are also worth understanding better), may well be related to the supersymmetric points

identified in ref.[17].

In summary, we have found a rich laboratory of solvable string theory models with

several non–perturbative connections between them by realizing them as special points of

a larger physical system, the theory of dispersive water waves. In some respects it is an
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analogue of what we would like to see in studies of M–theory. It will be interesting to learn

whether the larger framework of dispersive water waves can yield any new insights about

the non–perturbative nature of string theories and related theories.
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