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Abstract: We study black branes carrying both electric and magnetic charges in

Einstein-Maxwell theory coupled to a dilaton-axion in asymptotically anti de Sit-

ter space. After reviewing and extending earlier results for the case of electrically

charged branes, we characterise the thermodynamics of magnetically charged branes.

We then focus on dyonic branes in theories which enjoy an SL(2, R) electric-magnetic

duality. Using SL(2, R), we are able to generate solutions with arbitrary charges

starting with the electrically charged solution, and also calculate transport coeffi-

cients. These solutions all exhibit a Lifshitz-like near-horizon geometry. The system

behaves as expected for a charged fluid in a magnetic field, with non-vanishing Hall

conductance and vanishing DC longitudinal conductivity at low temperatures. It’s

response is characterised by a cyclotron resonance at a frequency proportional to the

magnetic field, for small magnetic fields. Interestingly, the DC Hall conductance is

related to the attractor value of the axion. We also study the attractor flows of the

dilaton-axion, both in cases with and without an additional modular-invariant scalar

potential. The flows exhibit intricate behaviour related to the duality symmetry. Fi-

nally, we briefly discuss attractor flows in more general dilaton-axion theories which

do not enjoy SL(2, R) symmetry.
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1. Introduction

The AdS/CFT correspondence provides us with a marvellous new tool for the study

of strongly coupled field theories. There is hope and excitement that these devel-

opments might lead to a better understanding of some quantum critical theories

occurring in Nature, for example in superfluid-insulator transitions or in cuprate

materials which exhibit high Tc superconductivity [1, 2, 3, 4, 5]. Strong repulsion

due to charge is believed to play an important role in some of these critical theories.

Modelling such repulsion on the gravity side leads one to consider extremal black

brane gravitational solutions whose mass essentially arises entirely from electrostatic

repulsion. In fact extremal black branes/holes are fascinating objects in their own

right, and have been at the centre of much of the progress in understanding black

holes in string theory. A possible tie-in with experimentally accessible quantum

critical phenomena only adds to their allure.

With these general motivations in mind, charged dilatonic black branes in AdS

space-times were discussed in [6]. Earlier work on the subject had mostly dealt with

the case of the Reissner-Nordstrom black brane. This is interesting in many ways

but suffers, in the context of our present motivations, from one unpleasant feature.

An extremal Reissner-Nordstrom black hole, which is the zero temperature limit of

this system, has a large entropy. This feature seems quite unphysical, and in the

non-supersymmetric case it is almost certainly a consequence of the large N limit in

which the gravity description is valid. It leads one to the worry that perhaps other

properties, for example transport properties like conductivity etc., calculated using

this brane would also receive large corrections away from the large N limit, leaving

the Reissner-Nordstrom system to be of only limited interest in the present context.1

1It has recently been suggested that perhaps the large entropy of the Reissner-Nordstrom brane

can be interpreted as arising from some analogue of a “fractionalized Fermi liquid” phase in the

boundary theory [7]. Some support for the existence of such a phase, at least in some AdS/CFT

dual pairs, accrues from explicit lattice models with localised fermions in string constructions, where

AdS2 regions arise from bulk geometrization of the lattice spins [8]. While this is an intriguing

possibility, here we adopt the view that it would be good to find natural models without the large

ground-state entropy. Another, complementary approach to the entropy problem is developed in

[9].
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In the dilatonic case, in contrast, it was found that the extremal electrically

charged brane has zero entropy [6]. Its near-horizon geometry shows that the dual

theory in the infra-red has scaling behaviour of Lifshitz type [10] with a non-trivial

dynamical exponent 1/β (where β < 1 is determined by the details of the dilaton

coupling to the gauge field), and with additional logarithmic violations. Departures

from extremality give rise to an entropy density s growing as a power law s ∼ T 2β,

with a positive specific heat. The optical conductivity, for small frequency compared

to the chemical potential µ, is of the formRe(σ) ∼ ω2, with the power law dependence

being independent of the dynamical exponent β.

In this paper, we continue the study of extreme and near-extreme dilatonic black

branes. We find that in the electric case at small frequency and temperature, when

ω � T � µ, the conductivity is Re(σ) ∼ T 2 (with an additional delta function at

ω = 0). The field theory we are studying has a global Abelian symmetry and the

conductivity determines the transport of this global charge. To characterise the field

theory better it is useful to gauge this global symmetry, then turn on a background

magnetic field and study the resulting response. This also corresponds to turning on

a magnetic field in the gravity dual.

Once we are considering a bulk magnetic field it is also natural to add an axion

in the bulk theory.2 A particularly interesting case is when the bulk theory has

an SL(2, R) symmetry. 3 In this case the behaviour of a system carrying both

electric and magnetic charges can be obtained from the purely electric case using

an SL(2, R) transformation. One finds that the system is diamagnetic. Under an

SL(2, R) transformation the dilaton-axion, λ = a + ie−2φ, transforms like λ →
ãλ+b
cλ+d

. It turns out that the two complex combinations of the conductivity σ± =

σyx ± iσxx also4 transform in the same way, σ± → ãσ±+b
cσ±+d

, allowing us to easily

determine them. An important check is that the resulting Hall conductivity at zero

frequency is σyx = n
B

where n,B are the charge density and magnetic field, and the

longitudinal conductivity at zero frequency vanishes. These results follow simply

from Lorentz invariance in the presence of a magnetic field. An interesting feature

of our results is that the DC Hall conductivity agrees with the attractor value of the

axion. This is in accord with expectations that the axion determines the coefficient

of the Chern-Simons coupling in the boundary theory, which in turn determines the

Hall conductivity.

2It is reasonable to believe that varying the boundary value of the axion corresponds to adjusting

the value of a Chern-Simons coupling in the boundary theory [12]; we briefly expand on this

comment in §6.
3This symmetry is expected to only be approximate and would receive corrections beyond the

classical gravity approximation; for instance, in many quantum string theories, it is broken to

SL(2, Z) non-perturbatively.
4The conductivities σxx, σyx, are frequency dependent and complex thus σ± are not complex

conjugates of each other.
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Besides the electric conductivity we also calculate the thermoelectric and thermal

conductivity for a general system carrying both electric and magnetic charges. These

are related to the electric conductivity by Weidemann-Franz type relations which are

quite analogous to those obtained in the non-dilatonic case [13, 14]. As was noted

above, the electric conductivity behaves quite similarly as a function of temperature

or frequency in the dilaton-axion and non-dilatonic cases. The Weidemann-Franz

type relations then lead to the thermoelectric and thermal conductivities also behav-

ing in a similar way in these cases.

We also discuss the attractor flows for the axion and dilaton in these dyonic

branes, and find intricate flow diagrams whose properties are governed by the SL(2,R)

symmetry. In cases with a suitable SL(2,Z) invariant potential, we find that for fixed

charges there can be multiple attractor points, governing different basins of attraction

in field space.

Finally we consider a more general class of bulk theories containing a dilaton-

axion but without SL(2, R) symmetry. For some range of parameters we find that

the deep infra-red geometry is an attractor and changing the asymptotic value of

the axion does not lead to a change in this geometry. Outside this parametric

range, however, the attractor behaviour appears to be lost and a small change in

the asymptotic value of the axion results in a solution which becomes increasingly

different in the infrared.

This paper is structured as follows. §2 contains a review of the salient points

in [6]. §3 contains a discussion of the DC conductivity at finite temperature in the

purely electric case. §4 contains a discussion of the case with only a magnetic field

and no charge. This is a warm up for the more general discussion with both electric

and magnetic charges which is analysed for a system with SL(2, R) invariance in

§5. Additional discussion of conductivity and other transport coefficients in this

case is contained in §6. Attractor flows in these systems, both with and without a

bare potential for the dilaton-axion, are discussed in §7. Some more general systems

without SL(2, R) symmetry are discussed in §8. Finally §9 contains some concluding

comments. Supporting material appears in the appendices.

2. Review of earlier results

Here we summarise some of the results of [6]. Consider a four-dimensional system

consisting of a dilaton coupled to a gauge field and gravity with action

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e2αφF 2 − 2Λ

)
. (2.1)

Λ = − 3
L2 is the cosmological constant. We will often set L = 1 in the discussion

below.
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The metric of a black brane has the form

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 (dx2 + dy2) (2.2)

For an electrically charged brane the gauge field is

e2αφF =
Q

b(r)2
dt ∧ dr. (2.3)

The extremal black brane is asymptotically AdS4 and characterised by two pa-

rameters, the charge Q and φ0 - the asymptotically constant value of the dilaton.

In the extremal case, the near-horizon region is universal and independent of both

these parameters, due to the attractor mechanism 5. The metric is of the Lifshitz

form [10]6

ds2 = −(C2r)
2dt2 +

dr2

(C2r)2
+ r2β(dx2 + dy2), (2.4)

with dynamical exponent

z =
1

β
. (2.5)

The near-horizon solution is valid when

r � µ (2.6)

where µ ∝
√
Q is the chemical potential.

The dilaton in the near-horizon region is

φ = −Klog(r) . (2.7)

The constants which appear in the metric and dilaton above are given in terms of α,

the coefficient in the dilaton coupling eq.(2.1):

C2
2 =

6

(β + 1)(2β + 1)
, β =

(α
2
)2

1 + (α
2
)2
, K =

α
2

1 + (α
2
)2 . (2.8)

This class of solutions, but with different asymptotics than those of interest to us,

was discussed in [15] (the solutions there were asymptotically Lifshitz, and have

strong coupling at infinity; for other asymptotically Lifshitz black hole solutions, see

[16, 17]).

The entropy of the extremal black brane vanishes. For a near-extremal black

brane the temperature dependence of entropy and other thermodynamic quantities

is essentially determined by the near-horizon region. (For a careful discussion of how

the global embedding affects the thermodynamics, see appendix A of [18]; see also

5The curvature scale in the near-horizon region is set by the cosmological constant Λ.
6See also [11].
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the recent paper [19] for a recent discussion of how the non-extremal branes embed

into AdS.).

The bulk theory above is dual to a 2+1 dimensional boundary theory which is a

CFT with a globally conserved U(1) symmetry. The electrically charged black brane

is dual to the boundary theory in a state with constant charge density determined

by Q.

The black brane geometry can be used to calculate transport coefficients in the

boundary theory. In particular, the real part of the longitudinal electric conductivity

(Re(σ) ≡ σxx = σyy) at zero temperature and small frequency is found to be 7

Re(σ) = C
ω2

µ2
. (2.9)

Here C is a constant which depends on α and φ0. We note that the frequency

dependence of Re(σ) is universal and is independent of α. The conductivity is

dimensionless in 2 + 1 dimensions. This fixes the dependence on µ - the chemical

potential- once the dependence on ω is known.

More generally, at finite temperature and frequency, σ is a function of two dimen-

sionless variables σ(T
µ
, ω
µ

). Eq.(2.9) gives the leading dependence when T � ω � µ.

We also note that in the purely electric case the Hall conductivity σxy vanishes.

3. The DC conductivity

In this section we calculate the leading behaviour of the conductivity, σ, when

ω � T � µ. (3.1)

Our analysis will closely follow the discussion in §3 of [6] (which itself used heavily the

results of [20]). We consider a perturbation in Ax, which mixes with the metric com-

ponent gxt, impose in-going boundary conditions at the horizon, and then carry out

a matched asymptotic expansion which determines the behaviour near the boundary

and hence the conductivity. We skip some of the details here and emphasise only

the central points.8

The leading behaviour of the conductivity in the parametric range eq.(3.1) will

turn out to be

Re(σ) = C ′
T 2

µ2
(3.2)

This is independent of ω. The DC conductivity defined as the limit ω → 0 of the

above formula then just gives eq.(3.2) as the result. Actually there is an additional

7There is a delta function Drude peak at ω = 0 in addition which we have subtracted.
8The result of this section has also been obtained in [21], which appeared while our paper was

being readied for publication. Other related papers which appeared recently include [22, 23].
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delta function contribution at ω = 0; we will comment on this more in the following

subsection. C ′ in eq.(3.2) is a constant that depends on φ0.

We begin with a coordinate system in which the metric is,

ds2 = −ge−χdt2 +
dr̃2

g
+ r̃2(dx2 + dy2) (3.3)

and define a variable z
∂

∂z
= e−χ/2g

∂

∂r̃
. (3.4)

One can then show that the variable

Ψ = f(φ)Ax (3.5)

satisfies a Schrödinger equation,

−Ψ′′ + V (z)Ψ = ω2Ψ, (3.6)

where prime indicates derivative with respect to z, and f 2(φ) = 4 e2αφ, as discussed

in eq.(3.10) of [6]. The potential is

V (z) =
f ′′

f
+ g−1f 2eχ(A′t)

2 (3.7)

Comparing the gtt, grr components in eq.(2.2), eq.(3.3) we see that

ge−χ = a2,
dr

dr̃
= e−χ/2 (3.8)

so that
∂

∂z
= a2 ∂

∂r
. (3.9)

The potential eq(3.7) is

V =
f ′′

f
+
a2Q2

b4f 2
. (3.10)

In the near-boundary region, Ψ takes the form

Ψ = (D1 +D2) + iω(−D1 +D2)z. (3.11)

The resulting flux is

F ∼ |D1 +D2|2ωRe(σ). (3.12)

We are interested here in a slightly non-extremal black brane. This has a near-

horizon metric

ds2 = −C2
2r

2(1− (
rh
r

)2β+1)dt2 +
dr2

C2
2r

2(1− ( rh
r

)2β+1)
+ r2β(dx2 + dy2), (3.13)
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The temperature is

T ∼ rh. (3.14)

The dilaton is the same as in the extremal case. The near-horizon form of the

metric above is valid for r � µ. The temperature dependence of the conductivity is

essentially determined by the near-horizon region, as long as T
µ
� 1. This is similarly

to what happens for the frequency dependence when ω
µ
� 1.

In the near-horizon region rh is the only scale, as we can see from eq.(3.13). It

is therefore convenient, in the discussion below, to rescale variables by appropriate

powers of rh. We define

r̂ =
r

rh
(3.15)

â2 ≡ a2

r2
h

= C2
2 r̂

2(1− (
1

r̂
)2β+1) (3.16)

and
∂

∂ẑ
≡ 1

rh

∂

∂z
= â2 ∂

∂r̂
(3.17)

The Schrödinger equation then becomes,

−d
2Ψ

dẑ2
+ V̂Ψ =

ω2

r2
h

Ψ (3.18)

where the rescaled potential, V̂ , is dependent on the rescaled variable ẑ alone without

any additional dependence on rh .

Very close to the horizon, V̂ goes to zero and we have

ψ ∼ e

(
−iω(t+z)

)
= e−iωte

−i( ω
rh
ẑ)

(3.19)

resulting in the flux

F ∼ ω. (3.20)

From eq.(3.12), eq.(3.20) we see that the conductivity is

Re(σ) ∼ 1

|D1 +D2|2
. (3.21)

Now, consider the region of the near-horizon geometry where

µ

T
� r̂ � 1 . (3.22)

Since the temperature is small eq.(3.1), these conditions are compatible. In this

region the temperature dependent terms in the metric are subdominant and a2 '
C2

2r
2. Eq.(3.17) then leads to

ẑ = − 1

C2
2 r̂

(3.23)
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and eq.(3.10) to a potential,

V̂ =
c

ẑ2
, (3.24)

with the constant

c = 2. (3.25)

Now since the frequency is even smaller than the temperature, eq.(3.1), ω/T � 1

and eq.(3.22) and eq.(3.14) imply that

r̂ � ω

rh
. (3.26)

In terms of z this becomes
1

ẑ2
� (

ω

rh
)2. (3.27)

It follows that the the frequency term in the Schrödinger equation eq.(3.18) is

subdominant compared to the potential term in this region. The resulting solution

becomes

Ψ ' ẑ1/2(
a1

ẑν
+ b1ẑ

ν) (3.28)

with

ν =

√
c+

1

4
. (3.29)

From the condition r̂ � 1 and eq.(3.23) we see that in this region

|ẑ| � 1. (3.30)

As a result, the first term on the rhs of eq.(3.28) dominates 9 giving

Ψ ∼ a1(rhz)( 1
2
−ν) (3.31)

Here we have used the fact that ẑ = rhz.

We have seen above that once r lies in the region which meets the condition

eq.(3.22) both the temperature and frequency effects can be neglected. Moving

outwards towards the boundary this continues to be true all the way till the near

boundary region. This region is described in Step 1 of §3.2.2 in [6]. As a result, one

gets

D1 ∼ D2 ∼ r
( 1
2
−ν)

h (3.32)

From eq.(3.21), eq.(3.14), eq.(3.25) and eq.(3.29), this gives

Re(σ) ∼ (rh)
(2ν−1) ∼ T 2ν−1 ∼ T 2. (3.33)

The dependence on µ then follows from dimensional analysis, leading to eq.(3.2).

Finally we note that it is simple to see that the Hall conductivity continues to

vanish at finite temperature as well.

9This would not be true if a1 was suppressed compared to b1 by a power of ω. However, this

does not happen, as we discuss further in Appendix A.
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3.1 The pole in Im(σ) and related delta function in Re(σ)

The real part of σ has a delta function contribution at ω = 0, which arises because

the system has a net charge and it is transported in a momentum conserving manner.

A Kramers-Kronig relation relates the delta function to a pole in the imaginary part

of σ. It will be important to keep track of this pole and the related delta function

when we turn to the discussion of the system in a magnetic field, so let us discuss it

in some more detail here. We will rely on the analysis in §3 of [6].

As discussed in §3.1 of [6], following [20], the conductivity is given in terms of

the reflection coefficient R by

σ =
1−R
1 +R

(3.34)

(the extra term in eq.(3.12) of [6] drops out since f ′(0) vanishes like z3 towards the

boundary).

Now in the notation of §3.2 of [6] close to the boundary Ψ is

Ψ = D1e
−iω(t+z) +D2e

−iω(t−z), (3.35)

giving

σ =
D1 −D2

D1 +D2

. (3.36)

The coefficients D1, D2 can be related to E1, E2 which govern the solution in the

not-so near boundary region. This region is defined in Step 1 of §3.2.2 in [6] and

corresponds to taking |ω| � z � 1. The coefficients E1, E2 are defined in eq.(3.30)

of [6], by

D1 +D2 = E1, D1 −D2 = i
E2

ω
, (3.37)

giving from eq.(3.36)

σ = i
E2

E1

1

ω
. (3.38)

Now E2, E1 are obtained by starting from the near horizon region where in-going

boundary conditions are imposed and integrating out towards the boundary. The

Schrödinger equation is real. And in the zero temperature case discussed in [6], the

solution to leading order in the near horizon region is given in the equation after

equation (3.32) there. We see that is of the form, ψ = Cz1/2−ν . Integrating this

out towards the boundary will give E2/E1 to be real and of order unity in units of

the chemical potential. Similarly at non-zero temperature in the parametric range

eq.(3.1) the solution in the near -horizon region eq.(3.22) is given by eq.(3.31). Once

again integrating out towards the boundary gives E2/E1 to be real and of order unity.

Thus we learn that near ω = 0

Im(σ) = C ′′
µ

ω
(3.39)
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where C is a coefficient of order unity and we have restored the µ dependence on

dimensional grounds. As a result there is indeed a pole at ω = 0 in Im(σ), and hence

as discussed above a delta function in Re(σ) at ω = 0.

In the presence of disorder the frequency dependence changes, 1
ω
→ 1

ω+i/τimp
[13],

and the pole acquires an imaginary part. As a result the delta function peak in Re(σ)

is broadened out as will be discussed further in §6.

4. Purely magnetic case

Next, as a warm-up for general dyonic branes, we consider the case of a black brane

which carries only magnetic charge. The dyonic case, with a bulk axion as well, will

be investigated in subsequent sections. The action is given by eq.(2.1), but now we

are interested in the case where the gauge field strength is

F = Qmdx ∧ dy. (4.1)

It is easy to see that the equations of motion for the system are invariant under a

duality transformation which keeps the metric invariant 10 and takes

φ→ −φ, Fµν → e2αφF̃µν . (4.2)

Here

F̃µν =
1

2
εµνρσF

ρσ. (4.3)

So we see that starting from the electric case eq.(2.3), we get to the magnetic one

eq.(4.1) after the duality transformation discussed above. The value of Qm is

Qm = Q. (4.4)

As a result, the metric for the extremal magnetic case in the near horizon region

is still of the Lifshitz form eq.(2.4). To avoid confusion we denote the dilaton after

duality by φ′ in the subsequent discussion; it is given by

φ′ = K log(r) (4.5)

where the constants which appear in the metric and in the dilaton continue to be

given by eq.(2.8). The gauge coupling is (g′)2 = e−2αφ′ . From eq.(4.5), eq.(2.8) we

see that the theory now gets driven to strong coupling, (g′)2 →∞, near the horizon,

and if a string embedding is possible this would mean that quantum loop effects

would get important near the horizon. By considering a slightly non-extremal black

brane such effects can be controlled.

10This is the Einstein frame metric.
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The behaviour of the dilaton can also be understood in terms of the effective

potential [24]. In general, with electric and magnetic charges the effective potential

is (from eq.(2.19) of [6]):

Veff = e−2αφQ2
e + e2αφQ2

m (4.6)

Since after duality, Qe = 0, Qm = Q, we get,

Veff = Q2e2αφ′ (4.7)

so that the minimum does indeed lie at e2αφ′ → 0, or equivalently e−2αφ′ →∞.

In mapping the magnetic case to the boundary theory it is best to think of weakly

gauging the global U(1) symmetry of the boundary theory. Then the magnetic case

corresponds to turning on a constant magnetic field in the boundary theory. The

electric-magnetic duality therefore has an interesting consequence. In the electric

case, the electric field is a normalisable mode and corresponds to a state in the

boundary theory at constant number density or chemical potential. In contrast, in

the magnetic case, the magnetic field is a non-normalisable mode and corresponds

to changing the Lagrangian of the boundary theory.

The metric in the slightly non-extremal case is also unchanged by duality and

hence given in the near-horizon region by eq.(3.13). We now elaborate on the result-

ing thermodynamics.

4.1 Thermodynamics

Let us begin by briefly reviewing the purely electric case. From the Maxwell term in

the action

Sem = −
∫
d4x
√
−ge2αφFµνF

µν (4.8)

using standard techniques in AdS/CFT and the definition of Q, eq.(2.3), we learn

that the the charge density n in the boundary theory is

n = 4Q. (4.9)

A purely electric system satisfies the thermodynamic relation

TdS = dE + pdV − µdN (4.10)

From this relation, using electric-magnetic duality, one can obtain the thermody-

namic quantities in the magnetic case. For this purpose it is convenient to take the

independent thermodynamic variables in the electric case to be (E, V, T, n), since

these can be mapped directly to the independent variables (E, V, T,Qm) in the mag-

netic case. Here Qm is the magnetic field 11. Since the Einstein frame action is

11The magnetic field is usually denoted by H or B, but Qm is more natural for us in view of the

duality transformation.
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duality invariant (E, V, T ) are left unchanged in going from the electric to the mag-

netic case. And from eq.(4.9) and eq.(4.4) it follows that n→ 4Qm. Thus, the four

independent variables can be easily mapped to one another.

Expressing the number N = nV = 4QV = 4QmV we get from eq.(4.10) in the

electric case that

TdS = dE + (p− 4µQ)dV − 4µV dQm. (4.11)

Comparing eq.(4.11) with the standard thermodynamic relation in the purely mag-

netic case (as discussed in e.g. Reif, Fundamentals of Statistical and Thermal Physics ,

11.1.7)

TdS = dE + pdV +MdH , (4.12)

and noting that the magnetic field is Qm in our notation, we get that the magneti-

sation is

M = −4µV (4.13)

and the pressure in the magnetic case is

pmag = pel − 4µQ = pel +
MH

V
. (4.14)

In the electric case the chemical potential is a function of the energy density ρ, T, n,

µ(ρ, T, n). In the formulae above for the magnetic case, eq.(4.13), eq.(4.14), the

chemical potential should now be interpreted as a function of ρ, T,Qm given by

µ(ρ, T, 4Qm).

It is worth discussing the extremal situation in the magnetic case further. The

energy density (see eq.(2.52) of [6]) is given by

ρ = CQ3/2e−3αφ0/2 = C(Veff0)3/4 (4.15)

where we have used the definition of the effective potential in eq.(4.6). The subscript

“0” on Veff indicates that it is to be evaluated at ∞, where the dilaton takes value

φ0.

The chemical potential is

µ =
∂ρ

∂n
=

3

8
CQ1/2e−3αφ0/2 =

3

8
C(Qm)1/2e3αφ′0/2 (4.16)

where we have used eq.(4.4) and eq.(4.2). We see from eq.(4.13) that the magnetisa-

tion is opposite to the magnetic field. As a result, the susceptibility for this system

is negative, and the theory is diamagnetic.

Using pel = ρ/2, ([6] eq.(2.53)), the pressure in the magnetic case is

pmag = −ρ = −CH3/2e3αφ′0/2 (4.17)

It seems puzzling at first that that this is negative, since one would expect the

boundary theory to be stable. This turns out to be a familiar situation in magne-

tohydrodynamics, see the discussion around eq.(3.10) in [13]. In the presence of a

– 13 –



magnetic field the pressure and spatial components of stress energy are different and

related by

T xx = T yy = pmag −
MH

V
. (4.18)

Stability really depends on the sign of T xx, which determines the force acting on the

system. From eq.(4.14), we see that T xx = pel, and is thus positive. 12

4.2 Controlling the flow to strong coupling

We saw above, eq.(4.7), that for the magnetic case e2αφ′ → 0 and thus the gauge

coupling g2 = e−2αφ′ gets driven to strong coupling at the horizon. In a string theory

embedding one would expect the string coupling to become large and thus quantum

corrections to become important near the horizon. To control these corrections one

can consider turning on a small temperature and dealing with the near-extremal

brane instead. From eq.(4.4), eq.(3.14), and eq.(2.8) we see that if the temperature

is T ∼ rh the coupling at the horizon is

e−2αφ′ ∼ 1

T 4β
(4.19)

The only other dimensionful quantity in the boundary theory is the magnetic field, so

the dependence on magnetic field can be fixed by dimensional analysis. An explicit

bulk analysis also shows that this dependence is correct. In addition there is a

dependence on the asymptotic value of the dilaton φ′0. It is easy to see that φ′0 only

enters in the combination Qme
αφ′0 with the magnetic field and as (φ′ − φ′0) with the

varying dilaton. This is enough to fixed the φ′0 dependence of eq.(4.19) and we get

e−2αφ′ ∼ e−2αφ′0(
Qme

αφ′0

T 2
)2β. (4.20)

For the temperature to be small and the brane to be near-extremal,

T 2 � Qme
αφ′0 . (4.21)

Thus to make e−2αφ′ � 1 we need to adjust the asymptotic value of dilaton and start

with a theory which is at very weak coupling

e−2αφ′0 � (
T 2

Qmeαφ
′
0
)2β. (4.22)

Once this is done the coupling will continue to be small all the way to the horizon.

12In fact this had to be true since T xx, T yy are duality invariant and in the electric case pel =

T xx = T yy.
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4.3 Dyonic case with only dilaton

Most of this section has dealt with the purely magnetic case. Below we will turn

to a dyonic system with an axion. Before doing so though let us briefly discuss the

dyonic case in the presence of only a dilaton without an axion. From eq.(4.6) we see

that the dilaton now has the attractor value φ∗ with,

e2αφ∗ = | Qe

Qm

|. (4.23)

From the equations of motion it then follows that the metric component b2, eq.(2.2),

at the horizon is

b2
h ∼

√
Veff (φ∗) ∼

√
|QeQm|. (4.24)

The resulting entropy is then

s ∝ b2
h/GN ∼ C

√
|QeQm| (4.25)

where C ∼ L2/GN is the central charge of the AdS4. As has been discussed above

the purely electric case has no ground state degeneracy. Once a magnetic field

is also turned on we see that such a degeneracy does arise. By itself this is not

surprising. However, the resulting entropy formula, eq.(4.25), is quite intriguing and

understanding it better should provide important clues for the microscopic dual of

the purely dilatonic case.

5. The SL(2, R) invariant case

In this section we discuss a theory which has SL(2, R) duality symmetry, in the

presence of an axion, with action 13,

S =

∫
d4x
√
−g[R− 2Λ− 2(∂φ)2 − 1

2
e4φ(∂a)2 − e−2φF 2 − aF F̃ ]. (5.1)

Comparing with eq.(2.1) we see that the gauge coupling function here corresponds

to taking α = −1. We will mostly follow the notation of [25] below (see also [26])

and denote the complexified dilaton-axion by

λ = λ1 + iλ2 = a+ ie−2φ. (5.2)

It is easy to see that under an SL(2, R) transformation

M =

(
ã b

c d

)
(5.3)

13In our conventions F̃µν = 1
2ε
µνρκFρκ and εµνρσ has a factor of 1√

−g in its definition, thereby

making the axionic coupling independent of the metric. We have chosen conventions εtrxy > 0.
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which takes

Fµν → F ′µν = (cλ1 + d)Fµν − cλ2F̃µν (5.4)

and

λ→ λ′ =
ãλ+ b

cλ+ d
(5.5)

while keeping the metric invariant, the equations of motion are left unchanged. (This

is discussed for example in [26] around eq.(18) with (ML)ab → −1). Note that we

are denoting M11 = ã and the axion by λ1 ≡ a to avoid confusion. Also, since M is

an element of SL(2, R)

ãd− bc = 1. (5.6)

Thus starting from the purely electric case where only the dilaton is non-trivial

and carrying out a general duality transformation, we can obtain a dyonic brane

with both axion and dilaton excited. In the discussion below we will follow the

conventions established above of referring to parameters obtained after duality with

a prime superscript.

The starting electric brane is characterised by four parameters: a mass M , a

charge Q, and asymptotic values of the dilaton and axion, λ20 ≡ e−2φ0 , λ10 ≡ a0.

The axion is radially constant. The SL(2, R) transformation adds three additional

parameters, 14 resulting in a 7 parameter set of solutions. Two of these parame-

ters are redundant, though, since the general dyonic brane solution only has only 5

independent parameters: M ′, Q′e, Q
′
m, λ

′
20, λ

′
10. This redundancy can be removed by

setting λ10 = 0 in the electric case, and also setting Q = 1 15. In the discussion below

we will set λ10 = 0, but not necessarily set Q = 1.

The gauge field can be written in terms of the electric and magnetic charges as

follows

F ′ =
(Q′e −Q′mλ′1)

b(r)2
(λ′2)−1dt ∧ dr +Q′mdx ∧ dy (5.7)

It can be seen that Q′e, Q
′
m being constant solves the gauge field equations of motion

and Bianchi identities. From eq.(5.7) we see that

F ′xy = Q′m. (5.8)

Using eq.(5.4) this gives,

Q′m = −cλ2F̃xy = cQ. (5.9)

Similarly from eq.(5.7) we see that

λ′2F
′
tr =

(Q′e − λ′1Q′m)

b(r)2
. (5.10)

14det(M) = 1 so there is one constraint among the 4 matrix elements.
15More correctly the scaling symmetry allows one to set |Q| = 1.
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And eq.(5.4) now gives

F ′tr = (cλ1 + d)Ftr − cλ2F̃tr = dFtr = d
Q

λ2b(r)2
(5.11)

where we have used eq.(5.9) and the fact that λ1 = a = 0 and F̃tr = 0 in the electric

case. Together these imply

Q′e = (
λ′2
λ2

d+ λ′1c)Q. (5.12)

Using eq.(5.5), and relation ãd− bc = 1 then gives

Q′e = ãQ. (5.13)

It is now easy to see that the effective potential, which is given by

V ′eff = (Q′e −Q′mλ′1)2(λ′2)−1 + (Q′m)2λ′2 , (5.14)

is in fact duality invariant and thus equal to its value in the purely electric frame,

Veff =
Q2

λ2

. (5.15)

Thermodynamic quantities of a system carrying electric charge in a magnetic

field satisfy the relation

TdS = dE + pdV − µdN +MdQm (5.16)

We will be particularly interested in the extremal case where the TdS term vanishes.

Writing E = ρV,N = nV we get in this case,

(dρ− µdn+
M

V
dQm)V + (ρ− µn+ p)dV = 0 (5.17)

From this it follows that both,

(dρ− µdn+
M

V
dQm) = 0 (5.18)

and

(ρ− µn+ p) = 0. (5.19)

We are interested in applying these relations to the dyonic case obtained after

duality. The energy density is duality invariant, since it can be extracted from the

Einstein frame metric which is duality invariant. Thus we get,

ρ′ = ρ = C(Veff0)3/4 = C[(Q′e −Q′mλ′10)2(λ′20)−1 + (Q′m)2λ′20]3/4 (5.20)
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The subscript “0” on Veff and the moduli indicates that the effective potential must

be evaluated at ∞ where the moduli take values λ′20 ≡ e−2φ′0 , λ′10 ≡ a′0. Straightfor-

ward manipulations then give us that

µ′ =
1

4

∂ρ′

∂Q′e
=

3C

8
(Veff0)−1/4(

Q′e − λ′10Q
′
m

λ′20

) (5.21)

where we have used the fact that n′ = 4Q′e. The magnetisation per unit volume is

M ′

V
= − ∂ρ′

∂Q′m
= − 3C

2(Veff0)1/4λ′20

[Q′m(λ′220 + λ′210)− λ′10Q
′
e] (5.22)

and the pressure is

p′ = µ′n′ − ρ′ = − C

(Veff0)1/4λ′20

[(Q′m)2(λ′220 + λ′210)− 1

2
(Q′2e + λ′10Q

′
eQ
′
m)] (5.23)

In eq.(5.21)-(5.23) the moduli take their values at infinity. From eq.(5.22) it fol-

lows that the susceptibility is negative, and thus the system is diamagnetic. From

eq.(5.23) we see that the pressure can be positive or negative. The stress energy

tensor component T xx = T yy = ρ/2 and is always positive.

Finally, we discuss the compressibility of this system. This is defined to be

κ = − 1

V

∂V

∂p
|TQmN (5.24)

The partial derivative on the rhs is to be evaluated at constant temperature T ,

magnetic field Qm and total number N = V n. For a system of fermions which has

precisely enough particles to fill an integer number of Landau levels, reducing the

volume while keeping the magnetic field Qm fixed would change the available number

of states in the occupied Landau levels. But since the total number of fermions is

not being changed in the process, and there is a large gap to the next available

Landau level, this cannot happen without significant energetic cost, and as a result

the compressibility vanishes. This happens for example in quantum Hall systems.

For our case, from eq.(5.18) eq.(5.19) we have that

∂p

∂V
|TQmN = n

∂µ

∂V
|TQmN = n

∂µ

∂n
|TQm(

∂n

∂V
)N . (5.25)

This gives

κ =
1

n2
(
∂n

∂µ
)|TQm . (5.26)

From the expression for µ′ eq.(5.21) it is easy to see that (∂µ
′

∂n′
)|TQ′m cannot go to

infinity for finite Veff , and non-vanishing λ20 and thus the compressibility cannot

vanish except in extreme limits. So the system at hand cannot become incompress-

ible, except when Veff → 0 and/or e−2φ → 0. We will see that some of the natural

attractor flows in SL(2, R) invariant theories do result in incompressible states of

holographic matter.
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6. Conductivity in the SL(2, R) invariant case

We now turn to calculating the conductivity in the SL(2, R) invariant case discussed

in the previous section. The conductivity is defined as follows

jx = σxxFtx + σxyFty (6.1)

jy = σyxFtx + σyyFty. (6.2)

Under a rotation by π/2, which is a symmetry of the system, (x, y) → (y,−x).

Transforming all quantities appropriately in the above equations we learn that

σxx = σyy, σxy = −σyx. (6.3)

Thus there are two independent components in the conductivity tensor. In the

discussion below we will use the notation

σ1 =
σyx
4
, σ2 =

σxx
4
. (6.4)

Below we will use the bulk description to calculate jx, jy, in terms of the boundary

value of gauge fields. From the resulting equations we will find that the two complex

combinations

σ+ = σ1 + iσ2 (6.5)

σ− = σ1 − iσ2 (6.6)

both transform in the same way as the axion dilaton under an SL(2, R) transforma-

tion. Namely

σ± →
ãσ± + b

cσ± + d
(6.7)

under the transformation eq.(5.3). Note that the conductivity components σxx, σyx
are in general complex. Thus σ+ and σ− are not complex conjugates of each other.

Starting from the purely electric case, for which the conductivity has already been

obtained above, and using the transformation properties, eq.(6.7), we can then easily

obtain the conductivity for a general dyonic case.

The electromagnetic part of the bulk action is

Sem =

∫
d4x
√
−g[λ2FµνF

µν − λ1FF̃ ]. (6.8)

In the subsequent discussion it is useful to work in a coordinate system where the

metric takes the form

ds2 = a2(−dt2 + dz2) + b2(dx2 + dy2) (6.9)

Asymptotically, the metric approaches AdS4 and a2 = b2 = z−2. In the boundary

theory, the current 〈jx〉 can be obtained by

〈jx〉 =
δ log(Z)

δAx
(6.10)
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The standard AdS/CFT dictionary then tells us that in the bulk,

〈jx〉 = 4[λ2Fzx − λ1Fty]z→0 (6.11)

(here we have chosen conventions so that εtzxy > 0). Similarly,

〈jy〉 = 4[λ2Fzy + λ1Fty]z→0. (6.12)

In this section we will be mainly concerned with using these formula to calculate the

conductivity. For ease of notation in the subsequent discussion we will not specify

that the moduli and field strengths which appear are to evaluated at the boundary,

z → 0.

From eq.(6.11), eq.(6.12), eq.(6.1), eq.(6.2) and eq.(6.5) we get

λ2Fzx − λ1Fty = σ2Ftx − σ1Fty (6.13)

λ2Fzy + λ1Ftx = σ2Fty + σ1Ftx. (6.14)

A general SL(2, R) transformation can be obtained by a product of two kinds of

SL(2, R) elements. The first, which we denote as Tb, is of the form(
1 b

0 1

)
(6.15)

And the second, which we denote by S, is(
0 −1

1 0

)
(6.16)

To show that eq.(6.13), eq.(6.14) transform in a covariant way under a general

SL(2, R) transformation, when σ± transform as given in eq.(6.7) it is enough to

show this for the transformations Tb, S.

Under Tb the field strength Fµν does not change, eq.(5.4). The dilaton-axion

transform as λ1 → λ1 + b, eq.(5.5), and σ1 → σ1 + b, eq.(6.7). So we see that

eq.(6.13), eq.(6.14) are left unchanged. The lhs of eq.(6.13) can be written as,

[λ2Fzx − λ1Fty] = −λ
2

(F+)ty −
λ̄

2
(F−)ty (6.17)

where F± = F ± iF̃ . Under a general SL(2R) transformation

F+ → F ′+ = (cλ+ d)F+ (6.18)

F− → F ′− = (cλ̄+ d)F−. (6.19)

From this it follows that under S the lhs of eq.(6.13) goes to

[λ2Fzx − λ1Fty]→ Fty. (6.20)
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The RHS of eq.(6.13) can be written as

RHS = σ2Ftx − σ1Fty =
1

2i
[σ+(Ftx − iFty)− σ−(Ftx + iFty)]. (6.21)

Under a general SL(2, R) transformation this becomes

RHS → 1

2i
[(
ãσ+ + b

cσ+ + d
){(cλ1 + d)(Ftx − iFty)− cλ2(F̃tx − iF̃ty)}

−(
ãσ− + b

cσ− + d
){(cλ1 + d)(Ftx + iFty)− cλ2(F̃tx + iF̃ty)}] (6.22)

From eq.(6.7) after some algebra it then follows that under S

RHS → 1

σ+σ−
[σ2(λ1Ftx + λ2Fzy) + σ1(λ1Fty − λ2Fzx)] (6.23)

Using eq.(6.13), eq.(6.14) this becomes,

RHS → 1

σ+σ−
[σ2(σ1Ftx + σ2Fty) + σ1(σ1Fty − σ2Ftx)] = Fty (6.24)

Thus the LHS and RHS of eq.(6.13) transform the same way if the conductivity

transforms as given in eq.(6.7). A similar result can be obtained for eq.(6.14) thereby

establishing that eq.(6.7) is the correct transformation law for σ±.

Similarly, some algebra shows that if σ transforms as in eq.(6.7) the RHS of

eq.(6.13) becomes,

σ2Ftx − σ1Fty →
1

σ2
1 + σ2

2

[σ2(λ1Ftx + λ2Fzy)− σ1(λ2Fzx − λ1Fty)] (6.25)

Upon using eq.(6.13) this gives

σ2Ftx − σ1Fty → Fty (6.26)

which is indeed equal to the transformation of LHS, as seen in eq.(6.20). Similarly

eq.(6.14) can also be shown to be covariant under S. This proves that eq.(6.13),

eq.(6.14) transform in a covariant manner under SL(2, R).

Since a general dyonic system can be obtained by starting from a purely electric

one and carrying out an SL(2, R) transformation, we can now obtain the conduc-

tivity for the general dyonic case using eq.(6.7). We will follow the conventions of

the previous section and refer to quantities in the electric frame without a prime

superscript and in the dyonic frame with a prime superscript. In the purely electric

case we have σxy = σyx = 0. Thus σ = iσxx/4. Also, it is enough to consider the

case with the axion set to zero, λ1 = 0, in the electric frame. Thus λ = iλ2. Then

using eq.(6.7) we get

σ′xx =
σxx

d2 + c2(σxx
4

)2
(6.27)
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and

σ′yx = 4
ãc(σxx

4
)2 + bd

d2 + c2(σxx
4

)2
. (6.28)

To complete the analysis one would like to express the SL(2, R) matrix elements

which appear on the RHS of eq.(6.27), eq.(6.28) in terms of parameters in the dyonic

frame.

As discussed in the previous section, the most general dyonic case can be obtained

by starting with a purely electric case with axion set to zero and Q = 1. From

eq.(5.13), eq.(5.9) we see that with Q = 1

Q′e = ã, Q′m = c. (6.29)

The invariance of the effective potential gives, from eq.(5.14), eq.(5.15),

λ−1
20 = (Q′e −Q′mλ′10)2(λ′20)−1 + (Q′m)2λ′20. (6.30)

This allows the asymptotic value of the dilaton in the electric frame to be expressed

in terms of quantities in the dyonic frame. Using this and eq.(5.12) we learn that d

is

d =
(Q′e − λ′10Q

′
m)

(Q′e − λ′10Q
′
m)2 + (Q′m)2(λ′20)2

. (6.31)

And then, finally, using the relation ãd− bc = 1 gives

b =
λ′10Q

′
e −Q′m(λ′210 + λ′220)

(Q′e − λ′10Q
′
m)2 + (Q′m)2(λ′20)2

. (6.32)

6.1 More on the conductivity

The formulae obtained for the conductivity eq.(6.27) eq.(6.28) are valid in general.

Let us discuss the resulting behaviour of the conductivity at small frequencies and

temperatures in the parametric range eq.(3.1) more explicitly.

To start it is useful to state the parametric range eq.(3.1) in a duality invariant

manner. The SL(2, R) transformation with b = c = 0, ã = 1/d is a scaling trans-

formation. Starting with the purely electric case, this SL(2,R) transformation yields

Q′e = Qe/d,Q
′
m = 0. From eq.(5.21), eq.(5.5), it follows that the chemical potential

and dilaton transform as

µ′ = µd,
√
λ′2 =

√
λ2/d, (6.33)

so that µ
√
λ2 is invariant under the rescaling. This combination can in fact be

expressed in terms of the effective potential, which is duality invariant, as µ
√
λ2 ∼

(Veff0)1/4. The frequency ω and temperature T are duality invariant. 16 Thus the

duality invariant way to state the parametric range of interest is

ω � T � (Veff0)1/4. (6.34)

16The duality invariance of the temperature follows from that of the Einstein frame metric.
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In the purely electric case, the conductivity to leading order is

σxx = C ′
T 2

µ2
+ iC ′′

µ

ω
(6.35)

Under the rescaling discussed in the previous paragraph, σ′xx = σxx/d
2. From this

and eq.(6.33) it follows that C ′ is independent of φ0 while C ′′ ∝ (λ2)3/2. Both Re(σxx)

and Im(σxx) have corrections, which result in a fractional change of order ω2,

Re(σxx) = C ′
T 2

µ2
(1 +O(ω2)), Im(σxx) = C ′′

µ

ω
(1 +O(ω2)). (6.36)

Plugging eq.(6.35) into the transformation laws eq.(6.27), eq.(6.28), gives the con-

ductivity for the general dyonic case.

Let us consider the Hall conductance first. When the magnetic field is non-zero,

c 6= 0 and the pole in the imaginary part of σxx will dominate the low frequency

behaviour. As a result, we get

σ′yx = 4
ã

c
+O(ω2) (6.37)

From eq.(6.29), eq.(4.9) we see that the leading behaviour is

σ′yx =
n′

Q′m
(6.38)

where n′, Q′m are the charge density and the magnetic field respectively. This result

in fact just follows from Lorentz invariance.

Intuitively, one would expect that the DC value of the Hall conductivity agrees

with the coefficient of the Chern-Simons term of the dual field theory in the far infra-

red, which in turn should be given by the value of the axion close to the horizon in

the bulk. From (5.5) it follows that the axion after the duality transformation is

given by

λ′1 =
ãcλ2

2 + bd

c2λ2
2 + d2

(6.39)

Near the horizon in the electric case λ2 →∞; thus, the attractor value of the axion

is

λ′1∗ =
ã

c
(6.40)

which is indeed proportional to the value of the Hall conductance eq.(6.38) (the factor

of 4, which is the proportionality constant, follows from eq.(6.13), (6.14)).

Actually, it turns out that the O(ω2) terms in eq.(6.37) can also be calculated

reliably in terms of C ′, C ′′. From eq.(6.28) and eq.(6.35) we get that

σ′yx =
n′

Q′m
[1 + ω2{−4(

T 2C ′

C ′′µ3
)2 +

64d

µ2n′(Q′m)2(C ′′)2
}+O(ω4)] (6.41)
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Next let us consider the longitudinal conductivity. From eq.(6.27) we get,

σ′xx = −i 16

(Q′m)2

ω

C ′′µ
[1 + i

C ′

C ′′
ωT 2

µ3
+O(ω2)] (6.42)

Here C ′, C ′′ are the coefficients as given in eq.(6.35) and µ is the chemical potential in

the electric theory. We see that the longitudinal conductivity vanishes as ω → 0. This

result also follows from Lorentz invariance in the presence of a magnetic field. We

also see that the imaginary part does not have a pole after the duality transformation;

this shows that there is no delta function at zero frequency in the real part of σxx.

The absence of this delta function again is to be expected on general grounds, since

in the presence of the background magnetic field, momentum is not conserved.

It is worth comparing our results with the general discussion of conductivity for

a relativistic plasma in [13]. From general reasoning based on linear response in

magnetohydrodynamics it was argued in [13] (see also [14]) that at small frequency

σxx = σQ
ω(ω + iγ + iω2

c/γ)

[(ω + iγ)2 − ω2
c ]

(6.43)

and

σxy = − n′

Q′m
(
γ2 + ω2

c − 2iγω

(ω + iγ)2 − ω2
c

) (6.44)

Here σQ, γ, ωc depend on the magnetic field Q′m, T and charge density n′. γ is the

damping frequency and ωc is the cyclotron frequency. Expanding in a power series

for small ω gives

σxx = −iσQω
γ

[1 +
iγω

γ2 + ω2
c

+O(ω2)] (6.45)

and

σxy =
n′

Q′m
[1 +

ω2

γ2 + ω2
c

] (6.46)

Comparing with eq.(6.41), eq.(6.42) we see 17 that

γ

γ2 + ω2
c

=
C ′T 2

C ′′µ3

1

γ2 + ω2
c

=
64d

n′Q′2mC
′′ − 4(

T 2C ′

C ′′µ3
)2

σQ
γ

=
16

(Q′m)2C ′′µ
(6.47)

These three relations determine σQ, γ, ωc in terms of the parameters of our cal-

culations. To express the answer in terms of the dyonic duality frame variables

we should bear in mind that d is given in terms of the charges etc in eq.(6.31),

17Our convention for σxy differs from that of [14] by a sign.

– 24 –



µ
√
λ20 ∼ (Veff0)1/4, and λ20 is given in eq.(6.30). Also while C ′ is independent of

λ20, C ′′ ∝ λ
3/2
20 .

The equations in (6.47) are valid for small temperature eq.(6.34) and arbitrary

n′, Q′m. It is easy to solve them and obtain σQ, γ and ωc in a small T expansion.

While we do not present the results in detail, let us note that one finds at small T

and also small magnetic field Q′m that σQ, γ, ωc scale as,

σQ ∝ T 2, γ ∝ (Q′m)2T 2, ωc ∝ Q′m. (6.48)

This qualitative behaviour is in agreement with the results of [14, 27] for the Reissner-

Nordstrom black brane at small ω and Q′m.

6.2 Thermal and thermoelectric conductivity

There are two transport coefficients related to the conductivity, the thermoelectric

coefficient α and the thermal conductivity κ. Both should be thought of as tensors.

These are defined by the relations,(
~J
~Q

)
=

(
σ α

αT κ

)(
~E

−~∇T

)
(6.49)

where ~E is the electric field, ~∇T is the gradient of the temperature, ~J is the electric

current and ~Q is the heat current.

It is easy to see, using the second law, that Qi is given by 18

Qi = T ti − µJ i (6.50)

where T ti is a component of the stress energy tensor and ~J is the electric current.19

In AdS/CFT the source term corresponding to the electric field is a non-normalisable

mode of the bulk gauge field Ai, while the source corresponding to a thermal gradi-

ent ∇iT corresponds, to a combination of the non-normalisable mode for the metric

component git and Ai. By turning these on and calculating the response we can

calculate the thermoelectric and thermal conductivities.

6.2.1 The thermoelectric conductivity

The thermoelectric coefficient α can be determined by calculating the heat current
~Q generated in response to an electric field in the absence of a temperature gradient.

In AdS/CFT we turn on a non-normalisable mode for Ai and calculate the resulting

18Ambiguities in the definition of the heat current can arise because entropy is not conserved.

However they enter in higher orders and are not important in linear response theory.
19Some of the literature, e.g., [13], defines transport coefficients in terms of currents where a

magnetisation dependent term is subtracted out. It is straightforward to relate our answers to

those obtained after such a subtraction.
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value for Qi. We will take the time dependence to be of the form e−iωt throughout.

To begin we consider the SL(2, R) case eq.(5.1) but in fact our results will be quite

general and we comment on this at the end of the subsection.

For a metric

ds2 = −a2dt2 +
dr2

a2
+ b2(dx2 + dy2) + 2gxtdxdt+ 2gytdydt (6.51)

and with action given by eq.(5.1) we find that the xt component of the trace-reversed

Einstein equations gives

Rxr = 2λ2(−FrtFtxgtt + FryFxyg
yy + FrxFxtg

xt + FrtFxtg
yt + FrtFxyg

yt) (6.52)

with

Rxr = −iω∂r(g
xxgtx)

2gttgxx
. (6.53)

The standard procedure to calculate the stress tensor in terms of the extrinsic

curvature [28, 29] gives

Ttx = [a∂rgtx − 2gtx] (6.54)

where the right hand side is to be evaluated close to the boundary as r →∞.

While we skip some of the steps in the analysis below, it is easy to see that close

to the boundary, the leading behaviour on the rhs of eq.(6.52) comes from the first

two terms. Thus, we get close to the boundary from eq.(6.53), eq.(6.52)

−iω∂r(g
xxgtx)

2gttgxx
' 2λ2(−FrtFtxgtt + FryFxyg

yy) (6.55)

Substituting eq.(5.7) for the field strength then yields,

Ttx =
2

iω
[−2

(Q′e − λ′10Q
′
m)

a
E ′x + 2λ′2Q

′
mF

′
rya] (6.56)

Some of the notation we have adopted here is potentially confusing. The superscript

prime here denotes a dyonic configuration with both electric and magnetic charge

as in the previous sections. In particular, the variable λ′10 denotes the asymptotic

axion in the system with both electric and magnetic charge. The variable a in the

equation above stands for the redshift factor in the metric.

Using the relation between the variable r used above and z used in eq.(6.9) we

see that

λ′2F
′
ry = − 1

a2
λ′2F

′
zy = − 1

a2
[
j′y
4
− λ′10E

′
y] (6.57)

where on the rhs we have also used eq.(6.12).

To complete the calculation we need to express Ttx in terms of boundary theory

coordinates. This requires us to multiply the rhs of eq.(6.56) by a factor of a. After

doing this we get in the boundary theory

Ttx = (
1

iω
)[−4(Q′e − λ′10Q

′
m)E ′x − j′yQ′m + 4λ′10Q

′
mE

′
y] (6.58)
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Finally using the relation

Qx = T tx − µJx = −Ttx − µJx = TαxxEx + TαyxEy (6.59)

gives

α′xx =
(n′ − 4λ′10Q

′
m)

iωT
+
Q′m
iωT

σ′yx −
µ′

T
σ′xx (6.60)

α′xy =
1

iωT
[σ′yyQ

′
m − 4λ′10Q

′
m]− µ′

T
σ′xy (6.61)

where we have used the relation n′ = 4Q′e. By symmetries α′yy = α′xx, α
′
yx = −α′xy.

We have considered the action eq.(5.1) in the analysis above, but it is easy to

see that the relations eq.(6.60), eq.(6.61) stay the same for the more general case

S =

∫
d4x
√
−g[R− 2Λ− 2(∂φ)2 − h(φ)(∂λ1)2 − λ2F

2 − λ1FF̃ ], (6.62)

with h(φ) and λ2 being general functions of φ.

The results above are quite analogous with those in [14], which studied transport

properties in the AdS Reissner-Nordstrom case. It is instructive to compare the cases

with and without a dilaton-axion. Consider first the purely electric case. We have

seen earlier that the thermodynamics in the extremal limit for the cases with and

without a dilaton are quite different, since the entropy vanishes in the presence of a

dilaton. Despite this difference, we have also seen that the electric conductivity at

both small and large frequency and small and large temperature qualitatively agree.

In this subsection, we find that the relation between the thermoelectric and electric

conductivities is essentially the same in the two cases. Thus, the thermoelectric con-

ductivity also agrees qualitatively in the two cases. Once a magnetic field is turned

on, in the presence of an axion the thermodynamics of the extremal situation contin-

ues to behave differently from the extremal Reissner-Nordstrom case, with vanishing

entropy, while we saw in the previous subsection that the electrical conductivity is

still quite similar. Here we see that the thermoelectric conductivity gets additional

contributions due to the presence of the axion, but these only affect the imaginary

part and not the dissipative real part at non-zero frequency. Thus, the thermoelectric

conductivity continues to be quite similar.

6.2.2 Thermal conductivity

Next we turn to the thermal conductivity. It is easy to see using a Kubo formula

that the thermal conductivity κij is related to the retarded two-point function of the

heat current Qi [14],

κij = −〈Qi, Qi〉
iωT

. (6.63)

Using the definition of Qi eq.(6.50) one then gets

〈Qi, Qj〉 = 〈(T ti − µJi),−µJj)〉+ 〈T ti , T tj 〉 − µ〈Ji, (T tj − µJj)〉 − µ2〈Ji, Jj〉 . (6.64)
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Now it is easy to see from the rules of AdS/CFT that

〈(T ti − µJi), Jj〉 = 〈Jj, (T ti − µJi)〉

so that the first and third terms on the rhs can be related to each other. Further

using the definition of thermoelectric and electric conductivity,

〈T ti − µJi), Jj〉 = (−iωT )αij, 〈Ji, Jj〉 = (−iω)σij (6.65)

then gives

〈Qi, Qj〉 = iωµT (αij + αji) + iωµ2σij + 〈T ti , T tj 〉. (6.66)

As we will see in Appendix B

〈T ti , T tj 〉 =
ρ

2
δij (6.67)

where ρ is the energy density. Substituting the last few equations in eq.(6.63) then

finally gives the relation

κij = −µ(αij + αji)−
µ2

T
σij +

i

2ωT
ρδij. (6.68)

We note that this relation follows essentially from the Kubo formula and is valid

in general. For the case where there is no magnetic field we get from eq.(6.60) and

eq.(6.68)

Re(κxx) = (
µ2

T
)Re(σxx). (6.69)

This is a Weidemann-Franz like relation, and is analogous to those obtained in the

non-dilatonic case studied in [13, 14]. At low temperature and frequency, we have

seen in §3 that Re(σ)xx ∼ T 2

µ2
, leading to a linear behaviour of thermal conductivity

Re(κxx) ∼ T. (6.70)

The derivation of eq.(6.67) is discussed in Appendix B. We note that the result

in eq.(6.67) is independent of momentum, and is therefore a contact term. Often in

AdS/CFT calculations such contact terms are simply discarded. We do not delve

into this issue here any further except to note that [14] discusses it and does subtract

this term from the final answer.

6.3 Disorder and power-law temperature dependence of resistivity

So far we have neglected the effects of disorder. In this subsection we attempt to

include some of these effects and discuss the resulting consequences. Disorder can

be incorporated in a phenomenological way by adding a small imaginary part to the

frequency, following [13], ω → ω + i/τ . We focus on the resulting effects on electric

conductivity in the discussion below.

– 28 –



To begin, consider the purely electric case. The conductivity, at small frequency,

is given by eq.(6.35)

σxx =
C ′T 2

µ2
+ iC ′′

µ

(ω + i/τ)
, (6.71)

with σxy = 0. For very small frequencies, ω � 1/τ the disorder will dominate the

imaginary part of σxx and we get,

σxx ' C ′′µτ +
C ′T 2

µ2
. (6.72)

The first term on the rhs is a Drude-like contribution to the conductivity which

is proportional to the relaxation time τ . For small disorder, µτ � 1 and we see

that first term on the rhs of eq.(6.72) is large 20. In the theory without disorder

Im(σxx) has a pole and Re(σxx) has a corresponding delta function at ω = 0. We

see from eq.(6.72) that after adding disorder, the pole and the delta function have

both disappeared as expected, leaving a large, but finite, Drude-like contribution in

Re(σxx).

Now consider the purely magnetic case obtained by carrying out an S transfor-

mation, eq.(6.16) on the purely electric case. Since ã = d = 0 we see from eq.(6.28)

that σ′yx = 0 and since c = 1 from eq.(6.27) that the resistivity,

ρ′xx =
1

σ′xx
=
σxx
16

. (6.73)

Thus the large Drude-like contribution in σxx discussed above turns into a large

resistivity in the magnetic case, scaling with the relaxation time τ . In addition we

see that the resistivity now grows as T 2 with increasing temperature.

The S duality transformation is also a symmetry of the purely dilaton theory,

which does not have an axion, for all values of the coupling α defined in eq.(2.1).

Thus our results apply to these cases as well. More generally, see e.g. [21], once an

additional potential is added for the dilaton-axion, one expects that the conductivity

in the purely electric case can vary with temperature in ways different from the T 2

dependence we have found. This will then result in a different dependence for the

resistivity in the purely magnetic case. In particular, we expect that one can obtain

a linear dependence ρxx ∼ T reminiscent of strange metal behaviour in this manner.

6.4 SL(2, R) and SL(2, Z) in the boundary theory

It is natural to ask about how the SL(2, R) symmetry is implemented in the boundary

theory. The gauge symmetry in the bulk corresponds to a global symmetry in the

boundary. To implement the SL(2, R) in the boundary one needs to gauge this global

symmetry [30]. This is because, starting with a state which carries only electric

20C ′′ which is dimensionless is O(1).
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charge in the bulk, one gets after a general SL(2, R) transformation a system with

both electric charge and a magnetic field. Now, the magnetic field corresponds to

a non-normalisable deformation and therefore requires a change in the boundary

Lagrangian. Once the global symmetry is gauged in the boundary theory, there is a

boundary gauge field aµ, and the required change in the boundary Lagrangian can

be identified as turning on a background magnetic field.

6.4.1 Tb

The SL(2, R) symmetry is generated by the two elements Tb and S discussed in

(6.15) and (6.16). Under Tb the axion shifts, λ1 → λ1 + b. It is natural to identify

this with a change in the coefficient of the Chern-Simons term for the gauge field

in the boundary theory [12]. In fact, this cannot be the whole story. The reason

is that, even for abelian gauge fields, the Chern-Simons term must appear with a

quantised coefficient [30]. In defining the Chern-Simons term on a three-manifold

Σ3, one chooses an extension of the gauge field to a four-manifold Σ4 with ∂Σ4 = Σ3,

and writes ∫
Σ3

A ∧ dA =

∫
Σ4

F ∧ F . (6.74)

Of course, to avoid arbitrariness in the definition, (6.74) must yield an answer which

is independent of the choice of Σ4 and the extension of the gauge field – or more

precisely, the action S(A) should depend on this choice only up to shifts by integer

multiples of 2π, so that eiS is invariant. This condition leads to a precise quantisation

of the coefficient of the Chern-Simons term.

Now, this poses a mystery, because in our system the Hall conductance takes

arbitrary rational values (once we relax the full SL(2, R) symmetry to the more

realistic SL(2, Z)). However, this does not require violation of the quantisation

condition. Rather, consider a (toy, boundary) Lagrangian of the form

S =
1

4π

∫ (
k εµνρAµ∂νAρ −

1

2π
aµεµνρ∂νAρ

)
. (6.75)

This is the sort of Lagrangian that one finds in effective field theory descriptions

of the quantum Hall effect; Aµ is to be identified with the “emergent” gauge field

(so the electromagnetic current is Jµ = 1
2π
εµνρ∂

νAρ) and aµ is the external electro-

magnetic field. Integrating out Aµ, one finds an effective Lagrangian for aµ which

gives fractional Hall conductance, and is roughly a Chern-Simons theory at level 1/k

[31]. Identifying Jµ with the global current in our boundary theory, and aµ with the

boundary gauge field, we see how “effective” fractional Hall conductances can arise

in a theory with well-quantised Chern-Simons terms. The generalisation to describe

arbitrary fractional quantum Hall states is discussed in, for instance, [31].
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6.4.2 S

The S transformation is more complicated. It action in the boundary theory has

been discussed in [30]. In 2 + 1 dimensions (at least in the absence of charged

matter) the gauge field aµ is dual to a scalar φ. The dual scalar theory has a global

symmetry, φ→ φ + c. The S transformation requires gauging this global symmetry

and turning on a magnetic field for the resulting dual gauge field. This prescription

for implementing S also roughly agrees with the discussion in [13] in which the

S duality acts by turning electrically charged particles into vortices. Electrically

charged particles of the gauge field aµ are vortices under the global symmetry for φ.

Gauging the global symmetry corresponds to turning on a gauge field which couples

(via local couplings) to these vortices.

In the bulk, SL(2, R) invariance means that the theory comes back to itself

with a different electric and magnetic field and altered dilaton-axion. This means in

the boundary too, starting with the gauge theory containing the gauge field aµ and

carrying out the SL(2, R) transformation should give back the same gauge theory

with the new magnetic field and couplings corresponding to the new dilaton-axion

and in a state with the new charge.

6.4.3 SL(2, R) vs SL(2, Z)

In string theory, one does not expect that the SL(2, R) symmetry is exact. Instead

it will be broken to an SL(2, Z) subgroup generated by the elements Tb=1, S. It is

this SL(2, Z) subgroup which should be an symmetry (in the sense described above)

of the boundary theory as well. The breaking of SL(2, R) to SL(2, Z) occurs due to

stringy or quantum corrections in the supergravity action; it can also be understood

as being related to charge quantisation. In any case, at the level of bulk solutions, if

the supergravity approximation we are working with here is good, at large values of

the charges the supergravity will have an approximate SL(2, R) symmetry and the

approximation we make discussing the full SL(2, R) is a good one. This means our

conductivity and thermodynamic calculations using the SL(2, R) to relate situations

with different electric and magnetic charges should be accurate, and the SL(2, R)

transformations in the boundary theory should be approximately valid. One can

always restrict consideration to SL(2, Z) transformations acting on the electrically

charged brane with minimal charge, to get a more accurate picture.

7. Attractor behaviour in systems with SL(2, Z) symmetry

In this section, we discuss the structure of attractor flows in the dilaton-axion plane.

We begin by discussing the flows governed by the action (5.1), and then consider a

more general action which includes an SL(2, Z) invariant potential for the dilaton-

axion. The main feature of interest here is that the SL(2, Z) symmetry acts to relate
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Figure 1: Attractor flows for various O(1) values of Qe/Qm, in the case without a bare

scalar potential. The trajectories run from r = 100 to r = 10−5, along the direction

indicated by the arrows. The various semi-circles arise for values of Qe/Qm varying from

2 (for the largest one) to 2/7 (for the smallest one); the incomplete semi-circle would hit

the real axis at λ1 = −1 if we extended the figure. The initial value of the axion is very

close to 0, but flows which would go to the left of the vertical axis have been shifted (via

the Tb=1 transformation λ1 → λ1 + 1) to appear in the figure. The initial dilaton value is

fixed by an appropriate SL(2, R) mapping of the value of λ2|r=100 in the electric solution.

different attractor flows to one another; in the field theory, this would mean that

different RG trajectories are related by the modular group. In the system without

a potential, the endpoints of the flows have rational σxy and vanishing longitudinal

conductivity, while in the system including a potential, we find (at fixed charges)

different basins of attraction for distinct attractors: some at rational values of λ1

and strong coupling, and others at λ ' i.

In addition to the intrinsic interest of the subject, we are motivated to study the

action of SL(2, Z) on these flows because SL(2, Z) (or more properly, its subgroup

Γ0(2)) has been argued to organise the phase diagrams of real systems of charged

particles in background magnetic fields. Discussions in the context of the fractional

quantum Hall system can be found in [32, 33, 34, 35], and a nice review appears

in [36]. Needless to say, it would be very interesting to modify our system to give

incompressible phases and analogues of Hall plateaux, but we do not pursue this

here. Discussions of holography and the quantum Hall system can be found in

[12, 37, 38, 39, 40, 41].

Before proceeding, we should emphasise that there is an obvious difficulty with
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controlling the RG flows of greatest interest in our system. With a magnetic field

turned on, the IR-attractor lies along the real axis in λ, at strong coupling. To the

extent that one can trust the analysis it is attractive for both the dilaton and axion

directions. More correctly, close enough to the fixed point, supergravity breaks down

and corrections would have to be included to study the nature of the RG flow in

more detail. In this section, we will simply take the attractor flows at face value.

7.1 Attractor flows in the SL(2, R) invariant theory

One wide class of attractor flows in the SL(2, R) invariant case are easily determined,

as follows. The flows in the original electric solutions of [6] are extremely simple,

involving logarithmic variation of the dilaton (running to weak coupling at the hori-

zon). Using the SL(2, R) transformation properties of the dilaton-axion (5.5), one

can translate these dilaton trajectories into more non-trivial dilaton-axion trajecto-

ries, governing the flow to dyonic black holes in the extremal limit. A plot displaying

these trajectories for various O(1) ratios of Qe/Qm appears in Figure 1. It is clear

from the nature of the SL(2, R) duality, which relates the axion to e−2φ, that the

axion is attracted to its fixed-point value in a power-law manner.

All of the fixed points in this case lie on the real λ axis, with rational values of

λ1 (and hence σxy) and vanishing σxx. Because of the extreme value of the dilaton

at infinity, these states are also incompressible. This is happily rather similar to the

flows in the quantum Hall system, but the underlying physics of our charged fluid is

quite different.

7.2 Attractor flows in the presence of a potential which breaks SL(2, R) to

SL(2, Z)

In the flows of interest in more realistic systems, there are also RG fixed points at

other fixed points of subgroups of SL(2, Z) in the upper half plane. To find additional

fixed points in our case, we must add a bare scalar potential. This modifies the

effective potential governing the attractor flow as in e.g. (2.37)-(2.39) of [6]. Here,

we discuss the most natural class of SL(2, Z)-invariant potentials (which do, however,

break SL(2, R) to SL(2, Z)).

Our dilaton-axion kinetic terms can be derived from the Kähler potential

K = −log
(
−i(λ− λ)

)
. (7.1)

It is then natural to try and derive an SL(2, Z)-invariant potential by choosing an

appropriate superpotential W and using the supergravity formula

V = eK
(
GλλDλWDλW − 3|W |2

)
. (7.2)

Here, G is the Kähler metric derived from K, and W must transform as a section of

a particular line bundle over the dilaton-axion moduli space, whose first Chern class

is determined by K [42].
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In fact, the superpotentials which are allowed by this requirement, and satisfy in

addition the physically sensible condition of vanishing at weak coupling (where we

know that potentials slope to zero in realistic string compactifications), have been

discussed extensively in earlier literature [43]. Defining

q = e2πiλ (7.3)

they take the rough form

W =
1

η(q)2
f(j(q)), (7.4)

where j is the famous j-invariant modular function

j(q) =
1

q
+ 744 + 196884 q + · · · (7.5)

and

η(q) = q1/24 Π∞i=1 (1− qn) . (7.6)

Because j has a pole at weak coupling j(q) ∼ 1
q
, one should choose f to die quickly

enough as j →∞ near weak coupling to satisfy the requirement V → 0 as gs → 0.

One simple choice [43], which suffices to add an interesting new critical point

near λ ' i in our attractor flows, is the choice

W =
1

η(q)2

1

j(q)1/3
. (7.7)

With this choice, the scalar potential takes the form

V (λ) = e−πλ2
|η̃(q)|12

λ2|E4(q)|4
(
|E4(q) +

π

3
λ2(3E2(q)E4(q)− 4Ẽ4(q))|2 − 3|E4(q)|2

)
.

(7.8)

Here, E2 and E4 are the Eisenstein functions

E2(q) = 1− 24
∞∑
n=1

nqn

1− qn
, E4(q) = 1 + 240

∞∑
n=1

n3qn

1− qn
(7.9)

and

Ẽ4(q) =
3

2πi
∂τE4(q) , η̃(q) = q−1/24η(q). (7.10)

The main feature of interest in the potential (7.8) for us, is that it has a minimum

at λ = i (in addition to runaway minima close to i∞, and a singularity at e
2πi
3 ). It

will turn out that at least in some cases, this translates into a critical point in the full

effective attractor potential for dyonic dilaton black holes, when the bare potential

(7.8) is added to the action S in (5.1).

– 34 –



To see this, let us remind ourselves of the class
Qe
Qm

λ1∗ λ2∗ bh

2 6.2× 10-3 1.004 0.76

1 7.7× 10-3 1.000 0.86

2
3

7.1× 10-3 0.997 0.97

1
2

6.2× 10-3 0.996 1.08

2
5

5.3× 10-3 0.995 1.19

1
3

4.6× 10-3 0.994 1.29

2
7

4.1× 10-3 0.994 1.38

Table 1: Precise locations of

the new attractor points near

λ ' i, and values of bh (the

value of b(r) at the horizon),

for various values of Qe/Qm.

of attractors described in [6], eqns. (2.37)-(2.39). In

the presence of a bare potential V1, in addition to the

effective potential Veff arising from the gauge kinetic

function in a charged black hole background, one can

find AdS2×R2 attractor points if there exist a bh and

λ∗ such that:

∂λVeff (λ
∗) + b4

h ∂λV1(λ∗) = 0 , (7.11)(
3

L2
− V1(λ∗)

)
b4
h = Veff (λ

∗) . (7.12)

Consider now a family of actions:

Sε = S − ε
∫
d4x
√
−gV (λ) (7.13)

with V the modular-invariant potential discussed above.

That is, we modify the action in (5.1) by adding the

potential (7.8), with strength ε (or, in terms of the

discussion above, V1 = εV (λ)).

Suppose (as is actually the case) that the potential V (λ) has an AdS minimum at

some point in field space. It is clear that at sufficiently large values of ε, at any finite

bh, the potential term will dominate over the gauge kinetic function in determining

the properties of an attractor geometry. Then, the first equation above just becomes

the condition for a critical point of V (λ), while the second equation can be solved for

bh. Of course at any finite ε, the attractor will be slightly shifted from the minimum

of V (λ) by the effects of the gauge kinetic function.21

On the other hand, it is also clear that for small b(r), the gauge kinetic contribu-

tions to the attractor potential dominate over the contributions of the bare potential.

This is because one of them scales like 1/b2, while the other scales like b2. Therefore,

one can expect to find our Lifshitz-like attractors with b→ 0 at the horizon, even in

the presence of the bare potential V .22

In fact, we find that at moderate values of ε, the resulting system exhibits mul-

tiple attractor points at fixed charges. That is, for reasonable choices of ε, and a

fixed Qe, Qm, one finds both the attractor point at λ = Qe/Qm, and an attractor

very close to λ = i. We give some representative values of the moduli at the new

21It is important that the minimum of V under discussion be an AdS minimum; if it is a dS

minimum, then for sufficiently large ε the overall effective cosmological term changes sign in the

vicinity of the minimum, and our discussion would be radically modified.
22This would not necessarily be true if V diverged sufficiently strongly at the attractor point, but

in fact V vanishes along the real λ axis – this was actually one of our conditions for reasonableness

of the potential, since the real axis is SL(2, Z) dual to weak coupling.
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attractor point near λ∗ ' i for various O(1) values of Qe/Qm and for ε = 144 in

Table 1.23 The standard attractors at λ = Qe/Qm also exist in all of these cases,

and the λ-plane is divided into different domains which flow to one attractor or the

other.

8. Attractor behaviour in more general system without SL(2, R)

symmetry

In this section, we study a more general theory which does not have SL(2, R) sym-

metry. The action we study has one parameter α 6= −1,

S =

∫
d4x
√
g

(
R− 2Λ− 2 (∂φ)2 − 1

2
e4φ (∂λ1)2 − e2αφF 2 − λ1FF̃

)
(8.1)

We will analyse the attractor mechanism for dyonic black branes in this theory.24

The effective potential is now given by

Veff (φ, λ1) = e−2αφ (Qe − λ1Qm)2 + e2αφQ2
m, (8.2)

where Qe, Qm are the electric and magnetic charges. The extremum of the potential

arises at

λ1 = λ1∗ =
Qe

Qm

, e2αφ → −∞. (8.3)

We work in the coordinate system eq.(2.2) below. If the axion takes its attractor

value λ1∗ at r → ∞, it is constant everywhere and the resulting solution is that of

a purely magnetically charged dilatonic brane. This has a near horizon metric given

in eq.(2.4) and the near-horizon dilaton

φ = K log(r), (8.4)

with the constants C2, β,K taking values given in eq.(2.8).

To investigate if this magnetic solution is an attractor, we take the asymptotic

value of the axion at infinity to be slightly different from its attractor value and

study the resulting solution. As we will see below, in the ranges α > 0 and α ≤ −1

we find attractor behaviour, with the axion settling down to its attractor value

exponentially rapidly in r (except for the special case α = −1 discussed in §6, §7,

where the attractor is power-law in nature). In the range −1 < α < 0 we find

that there is no attractor behaviour. Instead, starting with a value for the axion at

infinity which is slightly different from its attractor value, one finds that the solution

increasingly deviates from the purely magnetic case for small enough r. We have not

been able to find the end point of the attractor flow in this case.
23ε = 144 is a convenient choice, because Mathematica naturally defines the j-function in a way

that differs from the standard definition by a factor of 1728.
24Of course other parameters in the action eq.(8.1) could have also been varied from their values

in the SL(2, R)-invariant case. We do not carry out a full analysis of the resulting set of theories

here, but the limited class we do study already exhibit rather interesting phenomena.
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8.1 Attractor behaviour for α > 0, α < −1

The axion equation of motion is

∂r(e
4φa2b2∂rλ1) =

4e−2αφQ2
m

b2
(λ1 − λ1∗) (8.5)

Putting in the solution for φ, a2, b2 in the near horizon region of the purely magnetic

case gives

∂r(r
4K+2β+2∂rλ1) =

D

r2β+2αK
(λ1 − λ1∗) (8.6)

where D > 0 is a constant.

Define the variable x as

x =
1

|4K + 1 + 2β|
1

r4K+1+2β
(8.7)

In terms of x eq.(8.6) becomes a Schrödinger-type equation,

∂2
xλ1 = D̃x−P (λ1 − λ1∗) (8.8)

where D̃ > 0 is a constant and

P =
4K − 2αK + 2

4K + 1 + 2β
. (8.9)

By rescaling x the constant D̃ can be set to unity 25. To avoid notational clutter,

we continue to refer to this rescaled variable as x below. Also, to simplify things, we

henceforth take (λ1−λ1∗)→ λ1, i.e., from now on we use λ1 to denote the deviation

of the axion from its attractor value. This gives

∂2
xλ1 = x−Pλ1 (8.10)

There are two separate cases of interest.

8.1.1 Case A

The first case arises when

4K + 1 + 2β > 0 (8.11)

Here we see from eq.(8.7) that x→∞ as r → 0. When

P < 2 (8.12)

25This does not work for the case P = 2 which arises when α = 0,−1. The α = −1 case has

SL(2, R) invariance and has been extensively discussed above. The α = 0 case needs to be dealt

with separately because here the dilaton does not enter in the gauge kinetic energy or the effective

potential.
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a solution to eq.(8.10) can be found in the WKB approximation. It is of the form

λ1 ∼ e−S, (8.13)

with

S =
x1−P/2

1− P/2
. (8.14)

We see that as x→∞, S →∞ and λ1 → 0, so the axion goes to its attractor value

in the near horizon region exponentially rapidly. In finding the solution we have

neglected the backreaction of the axion on the other fields; this is now seen to be

a self-consistent approximation. Since the other fields vary in a power law fashion

with r, the backreaction of the axion on them is small.

Substituting for the constants from eq.(2.8) in the conditions eq.(8.11) eq.(8.12),

we find that the solution eq.(8.13) is valid in the range

α > 0, or α < −2. (8.15)

8.1.2 Case B

The second case arises when

4K + 2 + 2β < 0 (8.16)

Now the variable x→ 0 as r → 0.

A solution to eq.(8.10) can be found in the WKB approximation when

P > 2. (8.17)

It is again of the form given in eq.(8.13), with S being

S =
x1−P/2

P/2− 1
. (8.18)

The conditions, eq.(8.16), eq.(8.17) are valid when α lies in the range

−2 < α < −1. (8.19)

8.2 No attractor when −1 < α < 0

Our discussion above left out the region −1 < α < 0. In this region, we will see

below that there is no attractor behaviour.

First, consider the case when 4K + 1 + 2β > 0 and P > 2, which corresponds

to −2/3 < α < 0. In this case, we see from eq.(8.7) that x→∞ in the near horizon

region where r → 0. As discussed in appendix C there is only one solution to the

axion equation which does not blow up as x→∞. It takes the form

λ1 = c0 + c1x
p, p < 0 . (8.20)
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Here c0, c1 are two non-vanishing constants. Since c0 does not vanish in this solution

λ1 does not vanish as x→∞ and thus the axion does not reach its attractor value.

Next consider the case when 4K + 1 + 2β < 0 and P < 2, which corresponds to

−1 < α < −2/3. Here x→ 0, when r → 0. In this case there is a solution in which

the axion attains its attractor value as x→ 0. As discussed in appendix C this takes

the form, for small x,

a = c1x+ c2x
p, p > 1 . (8.21)

However, since the approach to the attractor value is a power-law in x and thus in r,

one now finds that the resulting back-reaction of the axion in the equations of motion

for the other fields cannot be neglected, and in fact in some cases dominates over

the other contributions. Thus, again, the resulting solution will deviate significantly

from the purely magnetic case, leading to a loss of attractor behaviour.

In this last case especially, one might hope to find a fully corrected solution

which represents the end point of the attractor flow, in which all fields behave in a

power-law fashion near the horizon, and in which the back-reaction of the axion is

completely incorporated. A reasonably thorough analysis, which we have included

in Appendix D, however failed to find any purely power-law solution of this kind.

8.3 Comments

Let us conclude this section with some comments.

In the cases where we did get attractor behaviour above, we saw that the axion

approached its attractor value exponentially rapidly in the near-horizon region. This

exponential behaviour is intriguing from the point of view of a dual field theory. The

radial direction r is roughly the RG scale in the boundary theory and a power-law

dependence on r of a field in the bulk is related to the anomalous dimension of the

corresponding operator in the boundary. In contrast an exponential dependence, of

the kind we find here, leads to a beta function for the dual operator in the boundary

in which the RG scale appears explicitly.

The exponentially rapid approach also means that in cases where we do get

attractor behaviour, the black brane in the near-horizon region can be taken to be the

purely magnetic dilatonic brane up to small corrections. This means the behaviour

of the dyonic black brane at small temperature and frequency in these cases is given

by that of the dyonic brane with the asymptotic axion set to its attractor value, up

to small corrections. For example, from eq.(6.31) we see that when λ1∞ = λ1∗ the

SL(2, R) matrix element d vanishes. The conductivity can then be read off from

eq.(6.41), eq.(6.42) keeping this in mind. Similarly the thermoelectric and thermal

transport coefficients can also be found easily from eq.(6.60), eq.(6.61).

9. Concluding comments

We have analysed charged dilatonic branes in considerable detail in this paper, fo-
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cusing on their thermodynamics and especially their transport properties. Our re-

sults show that many of the transport properties are quite similar to those of the

Reissner-Nordstrom case. This is true despite the fact that the Reissner-Nordstrom

and dilaton cases differ significantly in their thermodynamics: while the Reissner-

Nordstrom brane has a macroscopic ground-state entropy, the dilatonic black brane

has vanishing entropy at extremality.

More concretely, in [6] it was already noted that the optical conductivity at zero

temperature and small frequency has the behaviour Re(σ) ∼ ω2, and this behaviour

is independent of the parameter α which governs the dilaton coupling, eq.(2.1). In

particular, it is the same as in the Reissner-Nordstrom case which has α = 0 [44, 45].

In this paper we find something analogous for the DC conductivity at small temper-

ature, which goes like 26 Re(σ) ∼ T 2, and is independent of α again. In the presence

of a magnetic field, the DC Hall conductivity is σyx = n
B

, where n,B are the electric

charge density and the magnetic field, while the DC longitudinal conductivity van-

ishes, as required by Lorentz invariance. The DC Hall conductance is related to the

attractor value of the axion. In more detail, the frequency dependence fits the form

derived from general considerations of relativistic magnetohydrodynamics in [13].

These features in the presence of a magnetic field, being general in their origin, also

agree with the Reissner-Nordstrom case. We also found that the thermoelectric and

the thermal conductivities of the dyonic case satisfy Weidemann-Franz like relations

which relate them to their electrical conductivity. In this respect too then the dyonic

system behaves in a manner quite analogous to the Reissner-Nordstrom case.27

The overall picture, then, is that the charged dilatonic brane behaves like a

charged plasma. The electrical conductivity, which is suppressed at small tempera-

ture and grows like T 2, suggests that strong repulsion prevents the transmission of

electric currents in this system. The spectrum is not gapped in the conventional sense

above the ground state, since this would lead to a conductivity vanishing exponen-

tially quickly at small temperature. Rather, the system has a “soft” gap, resulting

in a power-law vanishing as T → 0.28 It should be pointed out that the entropy

density s also scales in a power-law fashion as s ∼ T 2β, and since β < 1, it decreases

more slowly near extremality (as T → 0) than the charge conductivity. This makes

physical sense: only some fraction of all the degrees of freedom can carry charge and

contribute to electrical conductivity.

A case we investigated in considerable detail was the one with an SL(2, R)

26There is an additional delta function strictly at ω = 0.
27It is worth pointing out that, in contrast to these similarities, the viscosity of a near-extremal

dilaton-axion system is much smaller than in the Reissner-Nordstrom case. In both cases the famous

relation η/s = 1/4π [46] is satisfied. However, the vanishing entropy of the extremal dilaton-axion

system makes its viscosity much smaller.
28Strictly speaking, our calculations break down at extremality, so these comments apply for

temperatures much smaller than the chemical potential, but not very close to zero. The precise

condition can be obtained using reasoning analogous to eq.(4.22) in the magnetic case.
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symmetry. Here, the complex conductivities σ± transform like the dilaton-axion

under an SL(2, R) transformation. Once quantum corrections to the bulk action

are included (or charge quantisation is imposed), one expects this symmetry to be

broken to an SL(2, Z) subgroup. The transformation law for σ± is an elegant result,

and one has the feeling that its full power has not been exploited in the discussion

above. Perhaps suitable modifications of the bulk theory, with an additional potential

for the dilaton-axion preserving the SL(2, Z) symmetry and/or with disorder put in,

might prove interesting in this respect. These modifications might lead to similarities

with systems exhibiting the quantum Hall effect, and the transformation law of the

conductivity could then tie in with some of the existing discussion in this subject

on RG flows between different fixed points characterised by the various subgroups

of SL(2, Z) [32, 33, 34, 35, 36]. We briefly explored the addition of a modular-

invariant potential in §7, but it seems likely that a deeper investigation of the case

with potentials could be fruitful. Such an investigation, in the case of electrically

charged dilatonic black branes, was recently undertaken in [22, 21].29

We have not shown that the dilaton-axion theories considered here can arise in

string theory. However, the Lagrangians we consider are quite simple and generic,

and as discussed above many of our results are quite robust. These facts suggest

that an embedding in string theory should be possible. String embeddings of Lifshitz

solutions have been described in [17, 47, 48], and simple generalisations of those ideas

may well suffice to capture our geometries as well (since the near-horizon physics is

governed by a Lifshitz-like metric).

Our main focus in this paper was on cases where there is no bare potential for the

dilaton-axion (i.e., where it corresponds to an exactly marginal operator in the dual

field theory). However, we did briefly discuss addition of a modular-invariant poten-

tial in §7, and one would expect that the models which arise in string theory would

generically have some potential. As we saw in §7, if this potential has a sufficiently

weak dependence on the moduli, our analysis will still go through with only small

corrections (since the gauge kinetic function is favoured by extra powers of 1/b(r) as

compared to the bare potential, and b becomes very small in the near-horizon region

in our Lifshitz-like near-horizon geometries). Of course, in the landscape of vacua,

one expects there to be many more theories where the dilaton-axion dependence of

the potential is not small. How different will these cases be? It is clear from the

study of simple model cases, e.g. in [22] and also in the very thorough treatment

of dilatonic branes in [21], that the exponents governing the power law dependence

of the optical conductivity on frequency or the DC conductivity on temperature,

29We note that in theories where the dilaton has an axion partner (e.g. supersymmetric theories),

potentials which are exponentials in e−2φ are more natural than simple exponentials in φ, because

of the axion shift symmetry (which is typically valid to all orders in perturbation theory). The

potential we investigated in §7 has this form near weak-coupling, but this has not been the case for

most potentials investigated in the literature on this subject.
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can be modified from the values we found by the presence of a potential. Different

power laws can also be found by considering U(1) gauge fields on probe branes in

Lifshitz-like backgrounds [47]. So the precise exponents we have found are, unfor-

tunately, not likely to be universal results for gravitational systems. However, the

feature that these dependences are power-laws might itself be one of considerable

generality. In gravitational systems, one expects that the far infrared of extremal

branes is characterised by an attractor geometry, with an emergent scale invariance

up to possible logarithmic corrections. As a result, the frequency and temperature

dependences should be governed by power-laws determined by the scaling dimensions

of the operators of interest.

We are not aware, at the moment, of condensed matter systems or model Hamil-

tonians which give rise to such a power-law behaviour in the conductivity.30 It would

be quite interesting to construct or find such examples, and attempt to relate their

behaviour to the kinds of gravitational systems studied here.
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A. Appendix A

In this appendix we carry out a more careful examination of the Schrödinger equation

eq.(3.18) and show that the coefficient a1 in eq.(3.28) is of order unity and not

suppressed by a power of ω.

The potential V (z) is given by eq.(3.10). In the scaling region where r � µ,

after a suitable rescaling the metric and dilaton are given by eq.(3.13), eq.(2.7), with

coefficients given in eq.(2.8). The constant Q2 which appears in the potential takes

the value (eq.(2.12) of [6])

Q2 =
6

α2 + 2
. (A.1)

We use the notation

ω̂ =
ω

rh
(A.2)

below.

At the horizon, where a2 vanishes, the potential has a first order zero and for

r̂ − 1� 1 (A.3)

it takes the form

V = A(r̂ − 1), (A.4)

where A is a coefficient of order unity. Also in this region the variable ẑ eq.(3.17) is

given by

ẑ =

∫
dr̂

â2
' 1

B
ln(r̂ − 1) (A.5)

where B is again a coefficient of order unity.

We begin in the very near horizon region where

|r̂ − 1| � ω̂2

A
. (A.6)

In this region the potential is subdominant compared to the frequency in the Schrödinger

equation and as a result, the solution with the correct normalisation to obtain the

required flux is eq.(3.19)

ψ = e−iω̂ẑ (A.7)

(there is an additional e−iwt factor but it will not be important in the discussion of

this section and we will omit it below).

Now suppose one is close enough to the horizon so that eq.(A.6) is met, but not

too close, so that

|ŵẑ| ' |ω̂ ln(r̂ − 1)

B
| � 1. (A.8)

Then the exponential in eq.(A.7) can be expanded and the solution in this region

becomes

ψ ' 1− iŵẑ. (A.9)
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The condition eq.(A.8) is

r̂ − 1� e−
B
ω̂ (A.10)

which is compatible with eq.(A.6) for ω̂ � 1.

Next consider the region

1� r̂ − 1� ŵ2

A
. (A.11)

In this region the frequency term in the Schrödinger equation is now subdominant

compared to the potential term. Moving even further away from the horizon the

frequency will continue to be unimportant all the way to the region µ � r̂ � 1

where the coefficient a1 is defined. So it is enough to understand the solution in the

region eq.(A.11) for establishing that the coefficient a1 is unsuppressed by further

powers of ω.

By carrying out a change of variables

x ≡ e
Bẑ
2

√
4A

B2
=

√
(r̂ − 1)4A

B2
, (A.12)

where in obtaining the last equality we have used the relation eq.(A.5), we can recast

the Schrödinger equation in the region eq.(A.11) in the form

−(x2d
2ψ

dx2
+ x

dψ

dx
) + x2ψ = 0. (A.13)

This is closely related to the standard Bessel equation. From eq.(A.12) and eq.(A.11)

we see that in this region

x� 1. (A.14)

The solution to eq.(A.13) then takes the form,

ψ = C0 + C1 ln(x) = C0 + C̃1ẑ. (A.15)

Now notice that eq.(A.9) and eq.(A.15) are of the same form. There is in fact a

good reason for this. As we will see below we can extend the solution from the region

eq.(A.10) where eq.(A.9) is valid to the region eq.(A.11) where eq.(A.15) is valid by

neglecting both the potential and the frequency dependent terms in the Schrodinger

equation. Neglecting these terms gives a free Schrödinger equation at zero energy,

d2ψ

dẑ2
= 0, (A.16)

with the solution which agrees with eq.(A.9), eq.(A.15).

The coefficients C0 and C̃1 can therefore be fixed by equating eq.(A.9) and

eq.(A.15) giving

C0 = 1, C̃1 = −iω̂ (A.17)
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In the region eq.(A.11) it follows from eq.(A.5) that

|C̃1z| ∼ |ω̂ ln(r̂ − 1)| ≤ |ω̂ ln(ω̂)| � 1, (A.18)

where the last inequality follows from the fact that ω̂ � 1. Thus to good approxi-

mation we can take

ψ = C0 = 1 (A.19)

in this region.

We see therefore that the solution is of order unity in this region (without any

power law suppression by a factor of ω̂). And it follows then that going further away

from the horizon to the region where µ/T � r̂ � 1 the coefficient a1 will also be of

order unity.

To complete the argument let us discuss how to extend the solution from the

region eq.(A.10) to eq.(A.11). Choose a point with coordinate

r̂1 − 1 = c1
ω̂2

A
. (A.20)

Here c1 is a constant which does not scale with ω̂ and meets the condition c1 � 1 so

that the condition eq.(A.6) is met. Since ω̂ � 1 and c1 does not scale with ω̂ we see

that eq.(A.10) is also met and this point lies in the region eq.(A.10). Next choose a

second point with coordinate

r̂2 − 1 = c2
ω̂2

A
, c2 � 1 (A.21)

such that r̂2 � 1. This point lies in the region eq.(A.11). Using eq.(A.5) we see that

the change in ẑ in going from r̂1 to r̂2 is

δẑ =
1

B
ln(

c2

c1

) (A.22)

and is independent of ω̂.

For the frequency dependent term in the Schrodinger equation to be neglected

in the process of continuing the solution from r̂1 to r̂2, the condition

ω2(δẑ)2 � 1 (A.23)

must be met. Since ω̂ � 1 we see that this is true. Similarly for the potential

dependent term to be negligible the condition

V (z)(δẑ)2 ∼ (r̂ − 1)(δẑ)2 ∼ ω̂2(δẑ)2 � 1 (A.24)

must be met. This condition is also true, thereby completing the argument.
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B. Appendix B

Here we discuss how eq.(6.67) is obtained. In AdS/CFT the metric is dual to the

boundary stress tensor. So eq.(6.67) is obtained by doing a bulk path integral with

a fixed boundary metric and then obtaining the two-point function from it. It is

well known that after using the equations of motion, the resulting answer is obtained

in terms of the extrinsic curvature of the boundary. In the SL(2, R) invariant case

we are dealing with here, this calculation is particularly simple since the metric is

invariant under SL(2, R). Thus one can work in the purely electric case which is

a considerable simplification. This gives the result eq.(6.67) as we will see shortly.

Transforming to the dyonic frame then keeps the result unchanged since the energy

density is invariant.

To calculate eq.(6.67) in the purely electric case we go back to eq.(6.54) but

now are more careful since a non-normalisable mode for gtx is also turned on. This

requires the first subleading corrections in a2, b2 to be kept,

a2 = r2(1− κ2ρ

r3
) (B.1)

b2 = r2 + · · · (B.2)

Here we have reinstated the factors of κ2; the action eq.(5.1) has an overall factor

of 2κ2 in front of it. We are also working in units where radius of AdS space is set

to unity L = 1. The ellipses on the rhs of the equation for b2 indicate corrections

which fall sufficiently fast and can be neglected in the calculation below. Keeping

these corrections in eq. (6.54) leads to

〈Ttx〉 = (
1

2κ2
)[a3∂r(

gtx
a2

) + 2gtx(∂ra− 1)] (B.3)

= (
1

2κ2
)[a3∂r(

gtx
a2

) + 2
gtxκ

2ρ

r3
] (B.4)

Eq.(6.55) then becomes

∂r(
gtx
a2

)
a2

b2
+
gtx
a2

(
a2

b2
)′ =

2

iω
(
a2

b2
)[2λ2 − FrtFtxgtt] (B.5)

Leading to

〈Ttx〉 = −ρgtx
2r3
− 4

iω
[
Q′eE

′
x

a
] (B.6)

Now differentiating with respect to gtx and converting to gauge theory variables

gives eq.(6.67) for i = j = x. In the absence of a magnetic field there is no cross-talk

between the gxt and gyt perturbations so 〈Ttx, Tty〉 = 0, which is the second relation

contained in eq.(6.67).
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C. Appendix C

Here we provide a more detailed analysis of some of the results discussed in §8.

For the case where 4K + 2 + 2β > 0 and P > 2, which was discussed in §8.2, the

equation for the axion eq.(8.10) has two solutions in the near-horizon region where

x→∞. Both solutions can be expressed as a power series in x. The first is

λ1 = c1x+ c2x
α + · · · . (C.1)

For the second term on rhs to be subdominant compared to the first when x→∞

α < 1. (C.2)

Substituting eq.(C.1) in eq.(8.10) and equating powers of x gives,

α = 3− P. (C.3)

Requiring that condition eq.(C.2) is met gives,

P > 2 (C.4)

which is indeed true. This solution blows up as x→∞.

The second solution to eq.(8.10) is

λ1 = c0 + c1x
α + · · · , (C.5)

with the condition,

α < 0. (C.6)

Substituting in eq.(8.10) and equating powers of x gives

α = 2− P, (C.7)

so that eq.(C.6) is again met. Equating coefficients determines c1 in terms of c0.

In summary we learn that for the axion to be non-zero (i.e. away from its

attractor value ) and for it to not blow up at the horizon, it must be of the form

eq.(C.5) with c0 non-vanishing. Thus, λ1 does not vanish as x → ∞ and we do not

get attractor behaviour in this case.

Next consider the case where 4K+ 2 + 2β < 0 and P < 2, also discussed in §8.2.

Now x → 0 at the horizon. An analysis, very similar to the one above, shows that

there is a solution to the axion equation eq.(8.10) of the form

λ1 = c1x+ c2x
α + · · · . (C.8)

with α > 1. In this solution λ1 → 0 and does indeed reach its attractor value at the

horizon. However, as was discussed in §7.2 one must examine the backreaction due

to the varying axion on the other equations of motion.
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One of the Einstein equations is

∂2
r b

b
= −(∂rφ)2 − 1

4
e4φ(∂rλ1)2 (C.9)

In the purely magnetic dilaton black brane the axion contribution vanishes and the

lhs is balanced by the first term on the rhs with both terms scaling like 1/r2. From

the solution for the axion eq.(C.8) and eq.(8.4) and eq.(8.7) we see that the second

term on the rhs of eq.(C.9) scales like 1
r2r4K+4β+2 . It is easy to see using eq.(2.8) that

4K + 4β + 2 > 0 and therefore the axion contribution always dominates for small

enough r. This establishes that the axion backreaction cannot be neglected.

D. Appendix D

In this appendix, we study the theory described by the action (8.1) and attempt to

find purely power-law near-horizon solutions for α 6= −1.

The equations of motion for the system can be obtained following section 6 of

[24]. Using our usual metric ansatz:

ds2 = −aR(r)2 dt2 + aR(r)−2 dr2 + b(r)2 (dx2 + dy2), (D.1)

we obtain a one-dimensional action,

S =

∫
dr

(
2− (a2

Rb
2)
′′ − 2a2

Rbb
′′ − 2a2

Rb
2(∂rφ)2 − 1

2
e4φa2

Rb
2(∂ra)2 − 2

Veff
b2

+
3b2

L2

)
(D.2)

The equations of motion arising from this action are:

2∂r
(
a2
Rb

2∂rφ
)

=
∂φVeff (φ, a)

b2
+ e4φa2

Rb
2 (∂ra)2 , (D.3)

∂r
(
e4φa2

Rb
2∂ra

)
= 2

∂aVeff (φ, a)

b2
, (D.4)

∂2
r b

b
= −(∂rφ)2 − 1

4
e4φ(∂a)2 , (D.5)

∂2
r

(
a2
Rb

2
)

= −4Λb2 . (D.6)

We look for solutions of the following form:

ds2 = −C2
R (r − rh)2 dt2 + C−2

R (r − rh)−2 dr2 + C2
β (r − rh)2β (dx2 + dy2

)
,

eφ = Cφ (r − rh)K , λ1 = a = Ca (r − rh)γ + a∗ (D.7)

where CR, Cβ, Cφ, Ca are constants, and a∗ ≡ λ1∗ is the attractor value for axion

given by (8.3), which minimises the effective potential

Veff (φ, a) = e−2αφ (Qe − aQm)2 + e2αφQ2
m . (D.8)
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Substituting this ansatz into the above equations of motion yields,

2(1 + 2β)C2
RC

2
βK (r − rh)2β = −2αC−2

β C−2α
φ C2

aQ
2
m (r − rh)−2αK+2γ−2β

+2αC−2
β C2α

φ (r − rh)2αK−2β + C4
φC

2
RC

2
βC

2
aγ

2 (r − rh)4K+2β+2γ , (D.9)

γ(4K + 2β + γ + 1)C4
φC

2
RC

2
β (r − rh)4K+4β = 4Q2

mC
−2
β C−2α

φ (r − rh)−2αK , (D.10)

β(β − 1) (r − rh)−2 = −K2 (r − rh)−2 −
γ2C4

φC
2
a

4
(r − rh)4K+2γ−2 , (D.11)

(2β + 2)(2β + 1)C2
R (r − rh)2β = −4Λ (r − rh)2β . (D.12)

We now seek to determine if a solution for the coefficients CR, Cφ, Ca, Cβ and

exponents β, γ,K exists that solves the above equations for general values of α 6=
0,−1.

For the attractor mechanism to work, the dilaton and axion must flow to minima

of the effective potential. In terms of our power law ansatz,

∂aVeff = −Qme
−2αφ(Qe − aQm) = Q2

mC
−2α
φ Ca (r − rh)−2αK+γ , (D.13)

∂φVeff = −2αC−2α
φ C2

a (r − rh)−2αK+2γ +Q2
mC

2α
φ (r − rh)2αK . (D.14)

Requiring ∂aVeff → 0 and ∂φVeff → 0 as r → rH then results in the inequality

γ > 2αK > 0 . (D.15)

We first consider the metric equation (D.11). To satisfy this equation in the

near-horizon region where r → rh, we must impose the following inequality:

4K + 2γ ≥ 0 (D.16)

We next consider the axion equation of motion (D.10). Note that if the coefficient

on the LHS vanishes, i.e., 4K + 2β + γ + 1 = 0, we must also take into account

the subleading behaviour for the axion. We, therefore, separately consider case A)

4K+2β+γ+1 6= 0 and case B) 4K+2β+γ+1 = 0. (Assuming β 6= −1/2,−1, 0, 1,

the inequality (D.15) implies all other coefficients are nonzero.)

A) Case: 4K + 2β + γ + 1 6= 0.

(D.10) gives the relation

4K + 4β = −2αK . (D.17)

We must separately consider the case where (D.16) is a strict inequality, and the

special case where 4K + 2γ = 0.

A-1) Case: 4K + 2β + γ + 1 6= 0 with 4K + 2γ > 0.

We consider the dilaton equation of motion (D.9). From eq. (D.17) and the

inequality (D.16), the LHS of (D.9) always dominates the first term and third terms
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on the RHS of (D.9) in the r− rh → 0 limit. Therefore, LHS must be balanced with

the second term on the RHS, which gives

4β = 2αK (D.18)

For α 6= −1, (D.17) and (D.18) admit no solution.

Of course, for α = −1 the power-law solution exists. This is consistent with the

results of §6, §7 – for α = −1, the Lagrangian has an SL(2,R) duality symmetry,

so starting from the purely electric (or purely magnetic) case with no axion, we can

construct dyonic black brane solution where the flow of the axion is governed by a

power-law using SL(2,R) duality transformations.

A-2) Case: 4K + 2β + γ + 1 6= 0 with 4K + 2γ = 0.

In this case,

γ = −2K > 0 (D.19)

and all terms in the dilaton equation (D.9) have exponent equal to 2β except the

second term on the right hand side, whose exponent is 2αK−2β. If this second term

were to dominate the others, we would not be able to satisfy the dilaton equation

(unless α = 0). Therefore, we require that the exponent of the second term is greater

than or equal to 2β, i.e.,

4β ≤ 2αK . (D.20)

Using (D.17) with K < 0 and α 6= −1, this implies

α < −1 . (D.21)

On the other hand, (D.15) and (D.19) give

α > −1 , (D.22)

which is a contradiction. Again, we do not find a power-law solution.

B) Case: 4K + 2β + γ + 1 = 0.

In this case, we have to consider the sub-leading correction in the axion equation

(D.4) instead of (D.10). Again we consider separately the cases when (D.16) is an

equality or a strict inequality.

B-1) Case: 4K + 2β + γ + 1 = 0 with 4K + 2γ > 0.

By (D.15), the second term on the RHS of the dilaton equation (D.9) is always

greater than the first term, and since 4K+2γ > 0, the LHS is always greater than the

third term on the RHS of (D.9). Therefore, the term on the LHS must be balanced

with the second term in the RHS, yielding

2β = αK . (D.23)
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Using 4K+2γ > 0, matching the coefficients of the metric equation (D.11) gives

β(β − 1) = −K2 (D.24)

Using these two results (D.23) and (D.24) and 4K+2β+γ+1 = 0, we can solve

for nonzero K and β in terms of α:

K =
2α

α2 + 4
, β =

α2

α2 + 4
, γ = −3 + 8

1− α
α2 + 4

(D.25)

However, for any real α,

4K + 2γ = −6(α + 2/3)2 + 16/3

α2 + 4
< 0 , (D.26)

which is in contradiction with the assumption that 4K + 2γ > 0. Therefore, there is

no power-law solution in this case.

B-2) Case: 4K + 2β + γ + 1 = 0 with 4K + 2γ = 0.

These two conditions imply that

β = −1 + 2K

2
, γ = −2K (D.27)

We now attempt to solve for the coefficients in the metric equation (D.11). We

obtain:

γ2C2
aC

4
φ/4 = −β(β − 1)−K2 = −2(K + 1/2)2 − 1/4 < 0 (D.28)

Therefore, (D.11) cannot be satisfied and there is no power law solution.

The above analysis seems to be fairly exhaustive, and we conclude that no power

law solution exists for α 6= −1. The special cases of β = −1/2,−1, 0, 1 were not

studied – it would be interesting to see if one of these special cases permits a power

law solution for some other values α. It is also conceivable that for other values of

α, the axion approaches the attractor value as a power law in r− rh with additional

logarithmic corrections. We do not, however, explore such possibilities here.
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