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Abstract: In 2009 Hořava proposed a power-counting renormalizable quantum gravity

theory. Afterwards a term in the action that softly violates the detailed balance condition

has been considered with the attempt of obtaining a more realistic theory in its IR-limit.

This term is proportional to ωR(3), where ω is a constant parameter and R(3) is the spatial

Ricci scalar. In this paper we derive constraints on this IR-modified Hořava theory using

the late-time cosmic accelerating expansion observations. We obtain a lower bound of |ω|
that is nontrivial and depends on ΛW , the cosmological constant of the three dimensional

spatial action in the Hořava gravity. We find that to preserve the detailed balance condition,

one needs to fine-tune ΛW such that −2.29× 10−4 < (c2ΛW )/(H2
0ΩDE)− 2 < 0, where H0

and ΩDE are the Hubble parameter and dark energy density fraction in the present epoch,

respectively. On the other hand, if we do not insist on the detailed balance condition, then

the valid region for ΛW is much relaxed to −0.39 < (c2ΛW )/(H2
0ΩDE)− 2 < 0.12. We find

that although the detailed balance condition cannot be ruled out, it is strongly disfavored.ar
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1. Introduction

In 2009 Hořava proposed a power-counting renormalizable quantum gravity theory, which

is non-relativistic in the high-energy, or UV, limit and recovers the Lorentz symmetry in the

low-energy, or IR, limit [1, 2]. Various aspects of this theory have been widely pursued [3–

30]. In addition to the theory itself, its various implications in cosmology have also drawn

wide attention [31–34]. Specifically, there has been a large amount of effort in studying

the cosmological perturbations [35–43], black hole properties [44–54], gravitational waves

[55–59], dark energy phenomenology [60–63], observational constraints on the parameters

of the theory [64, 65], and many others.

With regard to the background space-time expansion, Hořava gravity in principle mod-

ifies the GR Friedmann equation with additional terms stemming from its non-conventional

gravity, thereby contributing to the dark sector. Accordingly, the current and future cos-

mic observations may provide significant constraints on Hořava gravity, especially when

connecting it with the cosmic accelerating expansion.

In this context it was found that the effective Friedmann equation derived from Hořava

gravity with the detailed balance condition would include a cosmological constant (CC)

term and a radiation-like a−4 term [31, 32], where a is the scale factor in the Friedmann-

Robertson-Walker (FRW) metric. This radiation-like term originates from the fourth-order

spatial derivative terms in the Hořava action. On the other hand, if the detailed balance

condition is violated, then there would be other dark terms induced.

Although the gravity action of the Hořava theory with the detailed balance condition

recovers that of GR in the IR limit, its solution may not be so. For example, in [66] it

was shown that the black hole solution does not recover the usual AdS-Schwarzschild black
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hole solution in GR. In order to attain a more desirable IR behavior without abandoning

the simplicity provided by the detailed balance condition in the UV limit, several authors

introduced a soft violation of the detailed balance condition [1, 67, 68], namely, a term

proportional to the spatial three-curvature R(3). In particular, an IR-modified Hořava the-

ory that accommodates flat Minkowski vacuum was studied in [68]. The exact solutions of

spherical symmetry with and without matter were obtained in [69].

A question then naturally arises: to what extent can the Hořava gravity violate the

detailed balance condition? One possible means to address this question would be to

derive constraints on the IR-modification terms and those obeying the detailed balance

condition from cosmological observations. For this purpose we consider a cosmological

model studied in [60] based on the IR-modified Hořava gravity, with the FRW metric

describing the background space-time and with the energy content that includes radiation

and dust matter.

In [60] Park showed that the Friedmann equation of this cosmological model contains

additional a−4, a−2, and CC terms beyond that in GR. Park identified these terms as the

effective dark energy (DE) that is responsible for the cosmic acceleration. The observa-

tions about the expansion history can in principle constrain the behavior of the (effective)

dark energy and thereby constrain the Hořava gravity. To constrain this Hořava Effective

Dark Energy (HEDE ) by observations, an efficient approach is via a phenomenological

parametrization of the relevant physical quantities that have been well studied. Once the

relation between the model parameters and the phenomenological parameters is estab-

lished, the constraints on the model can be obtained from those on the phenomenological

parameters that have been derived from observations. Park considered the widely used

Chevallier-Polarski-Linder (CPL) parameterization of the equation of state of dark energy

[70, 71],

wde(a) ≡ pde/ρde = w0 + wa(1− a), (1.1)

where the constraints on the phenomenological parameters w0 and wa from the updated

observations have been well studied (see, for example, [72–76]).

Park [60] explored the feasibility of HEDE by considering three best-fit values of

(w0, wa) obtained in [72, 73] where a non-flat universe was considered. It was suggested

by Park that the existence of some HEDE models that satisfy these three best-fit values

indicates the validity of HEDE. We note, however, that in principle the dark energy den-

sity of HEDE is determined once the values of (w0, wa) are given. As will be shown in the

present paper, these three best-fit models predict the dark energy densities that are much

smaller than that required by observations, and have thus already been ruled out.

In the present paper we pursue a more comprehensive test of the IR-modified Hořava

theory and its resultant HEDE based on the current observations. We particularly em-

phasize that a complete test of HEDE based on the cosmic expansion must take into

consideration not only the evolution of the dark energy density ρde(a), which involves both

the present value of ΩDE and the equation of state wde(a), but also the present value of

the fractional density Ωk of the spatial curvature.
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Specifically, the present density fraction of dark energy ΩDE should be around 0.74

and that of the spatial curvature Ωk < 0.01 [75]. In addition, since in the dark sector the

radiation-like term would be dominant in the early universe, its energy density must be

smaller than the true radiation energy density Ωr, otherwise HEDE would predict a later

epoch of the matter-radiation equality and that in turn would be in conflict with the cos-

mic microwave background (CMB) and the big-bang nucleosynthesis (BBN) observational

results. As will be shown in the present paper, the observational constraint on the dark

energy equation of state wde, together with the above three observational requirements,

very tightly constrains HEDE. These observational constraints on HEDE favor the viola-

tion of detailed balance of Hořava gravity. We will present a lower bound on the extent of

the violation.

This paper is organized as follows. In Sec. 2 we give a brief review of HEDE, a cos-

mological model based on the IR-modified Hořava theory. In Sec. 3 we discuss the general

strategy that we utilize for the model test, which involves an approximate relation between

the model parameters and the phenomenological parameters. In Sec. 4 we investigate the

observational constraints on HEDE that are presented in the phenomenological parameter

space. In Sec. 5 we show how the constraints on the phenomenological parameters are tran-

scribed into that on the model parameters, and investigate its impact on the IR-modified

Hořava gravity. In Sec. 6 we show the evolution patterns of the effective dark energy in

the HEDE models that are consistent with observations. We conclude in Sec. 7.

2. Setup of the Model

To be self-contained, in this section we give a brief review of the IR-modified Hořava-gravity

cosmological model that was investigated by Park [60]. The action of the IR-modified

Hořava gravity reads

Sg =

∫
dtd3x

√
gN

[
2

κ2
(
KijK

ij − λK2
)
− κ2

2ν4
CijC

ij +
κ2µ

2ν2
εijkR

(3)
il ∇jR

(3)l
k (2.1)

−κ
2µ2

8
R

(3)
ij R

(3)ij +
κ2µ2

8(3λ− 1)

(
4λ− 1

4
(R(3))2 − ΛWR

(3) + 3Λ2
W

)
+

κ2µ2ω

8(3λ− 1)
R(3)

]
,

where the extrinsic curvature

Kij =
1

2N
(ġij −∇iNj −∇jNi) (2.2)

(the dot denotes the time derivative), the Cotton tensor

Cij = εik`∇k
(
R(3)j

` −
1

4
R(3)δj`

)
, (2.3)

and κ, λ, ν, µ,ΛW , ω are constant parameters. Note that on the right-hand side of Eq.(2.1)

the last term proportional to ωR(3) induces the soft violation of the detailed balance con-

dition. For a homogeneous and isotropic universe we consider a FRW metric of the form

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2/R2
0

+ r2
(
dθ2 + sin2 θdφ2

)]
, (2.4)
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where k = +1, 0,−1 corresponds to a closed, a flat, and an open universe, respectively, and

R0 is the radius of spatial curvature of the universe in the present epoch. Assuming that

the matter contribution is in the form of an ideal fluid with energy density ρ and pressure

p, Park obtained [45](
ȧ

a

)2

=
κ2

6(3λ− 1)

[
ρ± 3κ2µ2

8(3λ− 1)

(
−k2

R4
0a

4
+

2k(ΛW − ω)

R2
0a

2
− Λ2

W

)]
, (2.5)

ä

a
=

κ2

6(3λ− 1)

[
−1

2
(ρ+ 3p)± 3κ2µ2

8(3λ− 1)

(
k2

R4
0a

4
− Λ2

W

)]
, (2.6)

where the analytic continuation µ2 → −µ2 for ΛW has been employed [45, 66, 77]. The

upper (lower) sign corresponds to the case where ΛW < 0 (ΛW > 0).

Comparing them with the Einstein equations derived from GR with the FRW metric,(
ȧ

a

)2

=
8πG

3c2
(ρm + ρde)− c2k

R2
0a

2
, (2.7)

ä

a
= −4πG

3c2
[(ρm + ρde) + 3(pm + pde)] , (2.8)

one can connect the Hořava parameters κ, λ, µ,ΛW , ω with the speed of light c, the Newton’s

constant G, and the effective dark energy density ρde and pressure pde, although the

connection is not unique. Park defined the fundamental constants c and G as

c2 =
κ4µ2|ΛW |
8(3λ− 1)2

, G =
κ2c2

16π(3λ− 1)
. (2.9)

To ensure the positivity of the dark energy density as required by observations, we consider

the case where ΛW > 0 and identified the dark energy density and pressure as

ρde =
3c4

16πGΛW

(
H4

0Ω2
k

c4a4
− 2H2

0ωΩk

c2a2
+ Λ2

W

)
, (2.10)

pde =
3c4

16πGΛW

(
H4

0Ω2
k

3c4a4
+

2H2
0ωΩk

3c2a2
− Λ2

W

)
, (2.11)

where Ωk = −(c2k)/(R2
0H

2
0 ). The equation of state parameter is then

wde ≡
pde
ρde

=
H4

0Ω2
k + 2c2H2

0ωΩka
2 − 3c4Λ2

Wa
4

3H4
0Ω2

k − 6c2H2
0ωΩka2 + 3c4Λ2

Wa
4
. (2.12)

From Eq. (2.10) we obtain

ρde
ρc

=

(
H2

0Ω2
k

2c2ΛW

)
1

a4
−
(

Ωkω

ΛW

)
1

a2
+

c2

2H2
0

ΛW (2.13)

≡ Ω1a
−4 + Ω2a

−2 + Ω3, (2.14)

where the critical energy density ρc = (3H2
0c

2)/(8πG) and

Ω1 =
H2

0Ω2
k

2c2ΛW
≥ 0, Ω2 = −Ωkω

ΛW
, Ω3 =

c2ΛW
2H2

0

> 0. (2.15)
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As shown by the above formulae, this effective dark energy consists of three components

that are radiation-like, curvature-like and CC-like, respectively. It involves three model

parameters: {Ωk, ω,ΛW }. The first parameter stems from the FRW metric ansatz, and the

last two from the Hořava gravity action. Note that for a flat universe this effective dark

energy behaves as a CC and accordingly this model is the same as the CC dark energy

model in GR, i.e. flat ΛCDM, which is consistent with all the current observational results.

In the present paper we will consider a nonzero Ωk for possible deviation from ΛCDM.

3. Model Parameters and Phenomenological Parameters

To compare the Hořava Effective Dark Energy (HEDE ) model with observational results,

one effective approach is to employ a phenomenological parametrization of the relevant

quantities, whose observational constraints have been well studied, as a mediator to facil-

itate the comparison. The observational constraints on the model can be obtained from

those on the phenomenologically parametrized quantities by invoking an approximate re-

lation between the model parameters and the phenomenological parameters.

In HEDE the model parameters include {Ωk, ω,ΛW }, which determine the dark energy

behavior. That is, the dark energy density ρde(a), as well as wde(a), is a function of

{Ωk, ω,ΛW }. Phenomenologically, the evolution of dark energy is determined by the present

density fraction ΩDE and its equation of state parameter wde. Here we invoke the widely

used CPL parameterization [70, 71] of wde in Eq. (1.1): wde = w0 + wa(1 − a). In

addition, since the spatial curvature Ωk is involved in the model parameters, it should also

be included in the phenomenological parameter space when connecting to the model space.

In summary, the phenomenological parameters are {Ωk,ΩDE, w0, wa}. Accordingly, we

have a three-dimensional model parameter space and a four-dimensional phenomenological

parameter space. A mapping between them is required for constraining the model via the

observational constraints on the phenomenological parameters.

The relation between ΩDE and {Ωk, ω,ΛW } can be obtained from Eq. (2.13) by setting

a = 1:

ΩDE(Ωk, ω,ΛW ) =
H2

0Ω2
k

2c2ΛW
− Ωkω

ΛW
+

c2

2H2
0

ΛW . (3.1)

Following Park [60], we connect the model parameters {ω,ΛW } with the phenomenological

parameters by firstly expanding wde in (2.12) around a = 1 as

wde = wde|a=1 − w′de
∣∣
a=1

(1− a) + · · · , (3.2)

where the prime denotes the derivative with respect to a, and then identify wde|a=1 and

−w′de|a=1 as w0 and wa in the CPL parameterization. As a result, the approximate relation

between {ω,ΛW } and {w0, wa} reads

w0(Ωk, ω,ΛW ) =
H4

0Ω2
k + 2c2H2

0ωΩk − 3c4Λ2
W

3H4
0Ω2

k − 6c2H2
0ωΩk + 3c4Λ2

W

, (3.3)

wa(Ωk, ω,ΛW ) = −
8c2H2

0Ωk

(
H4

0ωΩ2
k − 2c2H2

0ΩkΛ
2
W + c4ωΛ2

W

)
3
(
H4

0Ω2
k − 2c2H2

0ωΩk + c4Λ2
W

)2 , (3.4)
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or equivalently,

ω = −(1− 2w0 − 3w2
0 − wa)H2

0Ωk

(1 + 4w0 + 3w2
0 + wa)c2

, (3.5)

Λ2
W =

(−1 + 9w2
0 + 3wa)H

4
0Ω2

k

3(1 + 4w0 + 3w2
0 + wa)c4

. (3.6)

The required mapping between {Ωk, ω,ΛW } and {Ωk,ΩDE, w0, wa} is given by Eqs. (3.1),

(3.3) and (3.4). It maps the 3D model space to a 3D hypersurface in the 4D phenomeno-

logical parameter space.

Regarding the observational constraints, as stated in Sec. 1, we assume ΩDE ≈ 0.74,

Ωk < 0.01 [75], Ω1 < Ωr, and the constraint on wde obtained in [74]. For simplicity, we

fix ΩDE = 0.74. This reduces the dimension of the phenomenological parameter space

from four to three: {Ωk, w0, wa}, and that of the model space from three to two, i.e. a

2-dimensional surface in the 3D space {Ωk, ω,ΛW }. This 2D surface corresponds to the

relation Ωk = Ωk(ω,ΛW ) obtained from Eq. (2.13) with ρde(a = 1)/ρc = 0.74. In this case

the relations in Eqs. (3.1), (3.3) and (3.4) become ΩDE = ΩDE(ω,ΛW ), w0 = w0(ω,ΛW )

and wa = wa(ω,ΛW ). They map the reduced 2D model space {Ωk(ω,ΛW ), ω,ΛW } to a 2D

surface {Ωk(ω,ΛW ), w0(ω,ΛW ), wa(ω,ΛW )} in the reduced 3D phenomenological param-

eter space {Ωk, w0, wa}. Then, the observational constraint on the model is represented

by the intersection of this 2D surface and the well-studied, observationally allowed re-

gions of the 3D phenomenological parameter space. We note that the spatial curvature

is well constrained. The upper bound of |Ωk| is around 0.01 and could be even smaller

[75]. Thus, the allowed region in the 3D phenomenological parameter space is very thin

in the Ωk direction. Accordingly, as a good approximation after imposing the constraint

Ωk < 0.01, we will simply consider the constraints on the {w0, wa} plane when taking the

above-mentioned intersection that presents the valid region of the model.

4. Constraints on the Phenomenological Parameter Space

x As commented in [60], for the sake of self-consistency one should require Λ2
W ≥ 0. From

Eq. (3.6), this in turn requires that{
wa > −1− 4w0 − 3w2

0, wa ≥ (1− 9w2
0)/3

}
or

{
wa < −1− 4w0 − 3w2

0, wa ≤ (1− 9w2
0)/3

}
. (4.1)

To simplify the following calculations, we define

A = 1 + 4w0 + 3w2
0 + wa, (4.2)

B = −1 + 9w2
0 + 3wa. (4.3)

The self-consistency condition in Eq. (4.1) then reads

{A > 0, B ≥ 0} or {A < 0, B ≤ 0}. (4.4)
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The valid region on the {w0, wa} plane for this self-consistency condition is presented in

Figure 1 by the shaded area.

Figure 1: The valid (shaded) region for the self-consistency condition Λ2
W > 0.

Rewriting Eqs. (3.5) and (3.6) in terms of A and B, we have

ω =
3A+B − 8

6A

(
H2

0Ωk

c2

)
, ΛW =

√
B

3A

(
H2

0

c2

)
|Ωk|. (4.5)

Substituting Eq. (4.5) into Eq. (3.1), we obtain

|Ωk| = sgn(A)

√
3

4

√
AB ΩDE, (4.6)

where sgn(A) denotes the sign of A. For a positive dark energy density, this relation

requires A ≥ 0, which, as combined with Eq. (4.4), leads to

{A > 0, B ≥ 0}, (4.7)

thereby excluding the bottom middle shaded area in Figure 1.

The current observations suggest ΩDE ≈ 0.74 and |Ωk| < 0.01 [75]. With Eqs. (4.6)

and (4.7), these two requirements give a stringent constraint on the parameters A and B

(i.e. w0 and wa):

0 < AB <

(
4√
3

0.01

0.74

)2
∼= 9.74× 10−4. (4.8)

This constraint largely shrinks the allowed region in the parameter space, which is presented

by the shaded region in Figure 2.
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Figure 2: The shaded area shows the largely reduced allowed region for the observational

requirements, ΩDE ≈ 0.74 and |Ωk| < 0.01, that lead to the constraint in Eq. (4.8).

As indicated in Eq. (2.14), the effective dark energy sector of the (IR-modified) HEDE

model consists of a radiation-like (Ω1), a curvature-like (Ω2), and a constant (Ω3) term.

In the early universe when a is small, the radiation-like term dominates the effective dark

energy sector. Such a term, if too large, would cause the epoch of the matter-radiation

equality happened at a time that is later than that suggested by the observational results

about CMB and BBN. Specifically, this term may contribute to the effective relativistic

degrees of freedom in the early universe. In the CMB analysis the radiation is usually

subdivided into two categories: (i) photons and (ii) effective neutrinos (including neutrinos

and other effective relativistic particles). Accordingly,

Ωr = Ωγ + Ων = Ωγ(1 + 0.2271Neff ), (4.9)

where Ωr is the present radiation energy density fraction, and Neff is the number of

effective neutrino species. The WMAP results suggest that Ωr
∼= 8.47×10−5 and Neff ≈ 4

[75]. Accordingly the effective neutrinos have a comparable contribution to the radiation

energy density. Regarding the radiation-like term from Hořava gravity as a source of the

effective neutrinos, we obtain an upper bound of Ω1 given by 0.2271NeffΩγ , which is of

the same order as Ωr. This leads us to impose the constraint,

Ω1 < Ωr
∼= 8.47× 10−5. (4.10)

Substituting Eqs. (4.5) and (4.6) into the definition of Ω1 in Eq. (2.15), we obtain

Ω1 = 3|A|ΩDE/8, from which and Eq. (4.7) the above constraint requires

0 < A <
8Ωr

3ΩDE
≈ 3.05× 10−4. (4.11)

This tightly constrained region is presented in Figure 3 by the black area which is so narrow

that it looks like a black curve. In this figure we also show the constraint given in Eq. (4.8),
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which is presented by the gray area. For w0 < −1/3, it largely overlaps with the black

narrow region.

In addition, in Figure 3 we show the 1σ (long-dashed contour) and the 2σ (dot-dashed

contour) observational constraints of w0 and wa obtained in [74] from the combined data set

that includes the SN-Ia data from the Constitution Set, the CMB measurement from the

five-year WMAP, and the BAO measurement from SDSS and 2dFGRS. The intersection of

all the above-mentioned allowed regions gives the valid IR-modified Hořava Effective Dark

Energy model, which is the black narrow region enclosed by the long-dashed (1σ) or the

dot-dashed (2σ) contour.

Figure 3: Various constraints on the w0-wa plane for the IR-modified Hořava Effective

Dark Energy (HEDE ) model. The constraints are given in Eqs. (4.8) and (4.11), and in

[74]. The long-dashed and the dot-dashed contour respectively present the 1σ and the 2σ

constraint on {w0, wa}, which is obtained in [74] from the current SN Ia, CMB and BAO

data. The narrow gray region presents the constraint in Eq. (4.8) for the requirement

|Ωk| < 0.01. The narrow black region that nearly overlaps with the narrow gray region

for w0 < −1/3 presents the constraint in Eq. (4.11) for the requirement Ω1 < Ωr. The

intersection of these three kinds of allowed regions gives the valid HEDE model. The three

black dots denote the best-fit models Park considered in [60], none of which is in the valid

region.
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5. Constraining the IR-modified Hořava Gravity

To constrain the IR-modified Hořava gravity, here we transfer the observational constraints

on the phenomenological parameters to the HEDE model via the mapping between the

phenomenological parameter space and the model space. This mapping is given in Eqs.

(3.5) and (3.6), i.e., in Eq. (4.5), where |Ωk| is a function of A and B, as given in Eq. (4.6),

after we fix ΩDE = 0.74. With Eqs. (4.6) and (4.7) substituted into Eq. (4.5), this mapping

can be rewritten as

ω̃ = sk

√
3

24
(3A+B − 8)

√
B

A
, (5.1)

Λ̃W =
1

4
B, (5.2)

where the two dimensionless parameters ω̃ and Λ̃W are defined as

ω̃ =
c2ω

H2
0ΩDE

, Λ̃W =
c2ΛW
H2

0ΩDE
, (5.3)

and sk denotes the sign of Ωk.

In the valid region, i.e. the black narrow region enclosed by the 2σ contour in Figure 3,

we have the constraints 0 < A < 3.05×10−4, as required in Eq. (4.10), and 6.44 < B < 8.48.

From the above mapping and the constraints on A and B, we obtain

ω̃
(
ε, Λ̃W

)
=
sk
2

[(
Λ̃W − 2

)
+ ε
]√ Λ̃W

ε
, (5.4)

where

0 < ε ≡ 3

4
A < 2.29× 10−4, (5.5)

−0.39 < Λ̃W − 2 < 0.12. (5.6)

For more details, the constraint on {ω̃, Λ̃W } can be read as follows.

−∞ < skω̃ < skω̃(εmax) < 0 as Λ̃W ≤ 2− εmax ,
−∞ < skω̃ < skω̃(εmax) > 0 as 2− εmax < Λ̃W < 2 ,

0 < skω̃ <
√
εmax/2 as Λ̃W = 2 ,√

Λ̃W (Λ̃W − 2) < skω̃ <∞ as 2 < Λ̃W ≤ 2 + εmax ,

0 < skω̃(εmax) < skω̃ <∞ as Λ̃W > 2 + εmax , (5.7)

where εmax = 2.29× 10−4. This constraint is presented in Figure 4, where the dark region

and the light region correspond to sk = + and sk = −, i.e. Ωk > 0 and Ωk < 0, respectively.
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Figure 4: The valid ω̃-Λ̃W region corresponding to the valid region in the w0-wa space.

The dark and the light region correspond to Ωk > 0 and Ωk < 0, respectively.

As shown in Figure 4, Λ̃W is restricted to values between 1.61 and 2.12, and |ω̃| has a

nontrivially lower limit but no upper limit. We note that for ω̃ = 0 the allowed region is

almost a point, specifically,

−2.29× 10−4 < Λ̃W − 2 < 0. (5.8)

That is, in the case where detailed balance is preserved (ω = 0) we need to fine-tune

the value of Λ for the HEDE model to be consistent with observational results. Thus,

the cosmological test strongly disfavors, although does not rule, the Hořava action that

preserves detailed balance. On the contrary, for large |ω̃| the full range of Λ̃W , (1.61, 2.12),

is allowed. Moreover, there is no upper limit to |ω̃|. Accordingly, the observational results

suggest the breaking of the detailed balance condition.

Note that the curvature-like effective energy term in Eq. (2.14), as originated from the

soft violation of detailed balance, remains finite when ω̃ goes to infinity. This can be seen

in the following.

Ω2 = −Ωkω

ΛW
=

ΩDE

8
(8− 3A−B), (5.9)

where ΩDE ≈ 0.74, 0 < A < 3.05 × 10−4 and 6.44 < B < 8.48 for the valid region. We

emphasize that even though at the action level the magnitude of the soft violation can be

arbitrarily large with no upper limit, the corresponding effective energy may still be tightly

constrained.
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6. Possible Behavior of the Effective Dark Energy

Recall Eqs. (2.13) and (2.14), the HEDE consists of the radiation-like (Ω1a
−4), the curvature-

like (Ω2a
−2) and the constant-like (Ω3) sectors:

ρde
ρc

=

(
H2

0Ω2
k

2c2ΛW

)
1

a4
−
(

Ωkω

ΛW

)
1

a2
+

c2

2H2
0

ΛW (6.1)

≡ Ω1a
−4 + Ω2a

−2 + Ω3. (6.2)

Substituting Eqs. (3.5), (3.6) and (4.6) into Eq. (2.15), we obtain

Ω1 =
3ΩDE

8
(1 + 4w0 + 3w2

0 + wa), (6.3)

Ω2 =
−3ΩDE

4
(−1 + 2w0 + 3w2

0 + wa), (6.4)

Ω3 =
ΩDE

8
(−1 + 9w2

0 + 3wa). (6.5)

Note that Ω1+Ω2+Ω3 = ΩDE as required. The requirement ΩDE = 0.74 and the constraint

on {w0, wa} give an allowed region in the {Ω1,Ω2,Ω3} space: a plane Ω1 + Ω2 + Ω3 =

0.74 bounded by the box {0 < Ω1 < 8 × 10−6,−0.05 < Ω2 < 0.15, 0.59 < Ω3 < 0.78}
corresponding to the 2σ contour on {w0, wa}.

To show the possible evolution patterns of the HEDE, we consider three sample cases,

DE.1, DE.2 and DE.3, corresponding to three points in the narrow valid region in Figure

3. The values of {w0, wa; Ω1,Ω2,Ω3} in these three cases are as follows.

w0 wa Ω1 Ω2 Ω3

DE.1 −1.00 1.14× 10−4 3.18× 10−5 −6.35× 10−5 0.740

DE.2 −0.95 9.27× 10−2 4.24× 10−5 5.54× 10−2 0.685

DE.3 −0.90 1.70× 10−1 3.18× 10−6 1.11× 10−1 0.629

(6.6)

The evolution of the energy density in these three cases is shown in Figure 5. These three

cases have the same density fraction at present, ΩDE = 0.74, and share similar evolution

patterns in the late times up to ln(1 + z) ≈ 0.25. DE.1 resembles ΛCDM at low redshifts.

Its energy density remains nearly constant for ln(1 + z) < 2.0. This is because Ω1 and Ω2

are both extremely small in this case. In the cases of DE.2 and DE.3 the energy densities

increase with z rapidly for ln(1+z) > 0.25 due to the Ω2 term. Generally speaking, it is the

difference in Ω2 that makes the evolution patterns distinct from each other in the interval

0.25 < ln(1 + z) < 3.5. In the early universe, the radiation-like term in HEDE would

dominate. Hence for ln(1 + z) > 5 the slopes of ln(ρ/ρc) versus ln(1 + z) in different cases

are roughly the same. The value of Ω1 determines the value of ln(ρ/ρc) at high redshifts.

The cases with larger Ω1 have larger energy densities in the early times. Nevertheless, in

the early times the energy density of HEDE should be smaller than that of radiation, as

required in Eq. (4.10).

In Figure 6 we show the redshift dependence of the ratio ρi/ρt, where ρi stands for

the energy density of DE.1, DE.2, DE.3, matter or radiation, and ρt for the total energy
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Figure 5: The energy density evolution patterns in three sample cases. The solid, the dot-

dashed and the double-dot-dashed line correspond to DE.1, DE.2 and DE.3, respectively.

Figure 6: The redshift dependence of the contribution of different energy contents to the

total energy density. The solid, dot-dashed, double-dot-dashed, long-dashed, and short-

dashed lines correspond to DE.1, DE.2, DE.3, matter and radiation, respectively.

density. The evolution of the three cases nearly coincide with each other after the time

when ln(1 + z) ≈ 0.5 (i.e. z ≈ 0.65), around which the crossing between the HEDE and

the matter energy density at low redshift happens. This is because after the crossing the

constant-like (Ω3) term dominates the dark sector, while these three cases have similar Ω3.

Before this crossing, the three cases behave differently. For ln(1+z) < 4 the contribution of

the HEDE to the total energy decreases with z, and the decreasing is more rapid in DE.1

than in DE.2 and DE.3. The main reason is that Ω2 in DE.1 is negative. In general,

ρde/ρt decreases with z more rapidly for smaller Ω2. For ln(1+z) > 4 (i.e., for z > 50), the
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contribution of the HEDE to the total energy increases with z. This is a reflection of the

dominance of the radiation-like (Ω1) term over the other two terms in the dark sector. The

slop of this increment and the contribution of the HEDE at high redshifts are determined

by the value of Ω1. In the case with larger Ω1, ρde increases with z more rapidly and ρde/ρt
is larger for ln(1 + z) > 4. However, the contribution of the HEDE would be smaller than

that of radiation in the early times, as required in Eq. (4.10).
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Figure 7: The redshift dependence of the contribution of the three dark terms in the

HEDE energy density for the three cases, DE.1, DE.2 and DE.3. The solid, the long-

dashed, and the short-dashed line correspond to the constant-like, the curvature-like, and

the radiation-like term, respectively.

In Figure 7 we show the redshift dependence of the contribution of the three terms,

{Ω1(1 + z)4,Ω2(1 + z)2,Ω3}, in the HEDE energy density for the three cases in Eq. (6.6).

For all the three cases, the constant-like (Ω3) term dominates the dark sector in the late

times, while the radiation-like (Ω1) term dominates in the early times. Whether there

exists a period of the dominance of the curvature-like (Ω2) term depends on the magnitude

of Ω2. For DE.1, the contribution of the term Ω2(1 + z)2 is much smaller than the other

two terms. Hence in Figure 7a the line corresponding to this term cannot be seen. For

the DE.2 and DE.3 cases, the curvature-like term dominates the dark sector during a

“middle age”. The precise period of such “middle age” varies from case to case. In general,
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for larger Ω2, the dominance of the curvature-like term starts earlier and ends later, with

larger contribution from this term to the HEDE.

7. Summary and Discussion

In this paper we test the IR-modified Hořava gravity from the cosmological point of view, in

particular, from the viewpoint of cosmic expansion. We conclude that the Hořava gravity

with soft violation of the detailed balance condition is consistent with the current observa-

tional results on the expansion history of the universe. Specifically, this gravity theory can

generate the late-time cosmic acceleration with the behavior that is well consistent with

observations. We note that the Hořava gravity with the detailed balance condition, though

not ruled out, requires fine-tuning ΛW such that −2.29×10−4 < (c2ΛW )/(H2
0ΩDE)−2 < 0

in order to fit the observational data. This result, together with previous studies [66, 78],

suggests that the breaking of the detailed balance condition, at least softly, is necessary to

render Hořava gravity a more realistic IR-limit.

We obtained the observational constraints on two model parameters, ΛW and ω, i.e.,

the cosmological constant of the three dimensional Einstein-Hilbert action and the coeffi-

cient of the soft violation term. The parameter ΛW is well-constrained and it should be

of the order of the inverse square of the Hubble length, H2
0/c

2. More precisely, we found

that ΛW , in units of (H2
0/c

2), is bounded within a small range, (1.61ΩDE, 2.12ΩDE), i.e.,

(1.19, 1.57) after imposing ΩDE = 0.74. On the other hand, we obtained a lower bound,

but without an upper bound, to |ω| with regard to the extent of the soft violation of the

detailed balance condition. The lower bound depends on ΛW , and in most cases it is also

around the order of the inverse square of the Hubble length, H2
0/c

2.

With our more comprehensive investigation into the cosmic-expansion test of Hořava

gravity, we found the Hořava effective dark energy (HEDE ) much more restrictive than that

deduced in [60]. Specifically, the allowed parameter space {w0, wa} is now much smaller. It

is a narrow strip beside the parabola 1+4w0+3w2
0+wa = 0 around (w0, wa) = (−1, 0). The

energy density of the HEDE, with different values of the model parameters, can give rise to

a cosmological constant as well as non-constant behaviors. For the latter cases with non-

constant energy density, the main difference between the models therein is the evolution

of the dark energy density in the “middle age”. This is because during the “middle age”

the curvature-like (Ω2) term dominates, while the range of allowed Ω2 is not small, namely

from −0.04 to +1.03. As a result the dark energy behavior in the non-constant cases

almost coincide with each other at high redshifts. This is because in the early times the

dark energy is dominated by the radiation-like (Ω1) term that is highly restricted, namely

Ω1 . 8.47× 10−5.

In our analysis we compare HEDE with observational results by invoking the CPL

parametrization of the equation of state of dark energy: wde = w0+wa(1−a), as a mediator.

We then transfer the constraint on the phenomenological parameters {Ωk,ΩDE, w0, wa} to

that on the model parameters {Ωk, ω,ΛW } via an approximate relation between {w0, wa}
and {Ωk, ω,ΛW }. Naively, since the dimension of the phenomenological parameter space

is larger than that of the model space, the 4D parameter space seems flexible enough to
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accommodate the mapping from the 3D model space. Nevertheless, to be prudent, the

validity of this approximation should be checked. In particular, it is important to verify

that the two energy densities, ρHEDE(z; Ωk, ω,ΛW ) and ρCPL(z; ΩDE, w0, wa), are consistent

with each other, where ρHEDE is given in Eqs. (2.10) or (2.13) and

ρCPL = ρ0e
3wa(a−1)a−3(1+w0+wa). (7.1)

The approximation is valid when the difference between these two energy densities is sig-

nificantly smaller than the observational accuracy in the relevant redshift range. This

consistency check requires further investigation. One way to avoid the possible incompat-

ibility between the model space and the phenomenological parameter space is to use the

model to fit data directly, e.g., invoking the χ2 fitting to obtain the observational con-

straints on the model parameters {Ωk,ΛW , ω}. This is under our investigation and will be

reported in our follow-up paper.

Hořava gravity, an interesting alternative gravity theory that breaks the Lorentz sym-

metry, should ideally be constrained by observations and experiments ranging from micro-

scopic, solar, astronomical, to cosmological scales. From the cosmological point of view, a

modified gravity theory changes not only the cosmic expansion history but also the struc-

ture formation. In the present paper we have shown how the IR-modified Hořava gravity

can be tightly constrained by the observations about the cosmic expansion. In addition

to the expansion history, we expect the observations about the cosmic structures, such as

galaxy surveys and weak lensing observations, would also provide important constraints on

Hořava gravity. This is worthy of further investigations.
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