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Figure 1: Tree (left) and penguin (right) diagrams for b → uud processes,

1. Introduction

Over-constraint of the so-called Unitarity Triangle (UT) [1] is a principal goal of the B-
factory experiments, Babar at SLAC and Belle at KEK, allowing non-trivial tests of the Cabibbo-
Kobayashi-Maskawa (CKM) mechanism for quark-flavor mixing and violation of the combined
charge-parity (CP) symmetry, as well as searches for the effects of physics beyond the Standard
Model (SM). Here, a summary is given of the current status of direct measurements of the UT
angle α . The angle α is sometimes referred to as φ2. For simplicity, we use the common notation
in which the three UT angles are denoted α , β , and γ . In terms of the CKM matrix elements Vi j ,
where i = u,c, t and j = d,s,b are quark indices, α is defined by α = arg(−VtdV ∗

tb)/(VudV ∗
ub).

Direct measurements of α are provided by b → uud quark-level processes, corresponding to
such two-body B meson decays as B → ππ , ρρ , ρπ , or a1(1260)π . The tree-level amplitudes of
these decays (Fig. 1 left) contain the CKM matrix element Vub. In the Wolfenstein parametriza-
tion [1], Vub contains the phase term exp(−iγ). Mixing of neutral B mesons (B0 → B

0 transitions)
introduces a phase term exp(−2iβ ) [1]. Restricting attention to mixing-induced CP asymmetries,
namely CP asymmetries that arise due to interference between direct decays of B0 mesons to a
certain final state and decays to that same final state after the B0 mixes to form a B

0, one therefore
obtains a relative phase of −2β from the mixing and −2γ from the difference between the b → u
(from the B0) and b → u (from the B

0) transitions. Since α +β + γ = π , this makes measurements
of CP asymmetries in tree-level b → uud processes directly sensitive to α , i.e., −2β −2γ ∼−2α .

The well-known formalism for the time-dependent CP asymmetry aCP(t) in decays of neutral
B mesons to a CP eigenstate fCP, such as π+π−, ρ+ρ−, or ρ0ρ0, is given in [1]. To briefly
summarize,

aCP(t) ≡ Γ[B0(t) → fCP]−Γ[B
0
(t) → fCP]

Γ[B0(t) → fCP]+Γ[B
0
(t) → fCP]

(1.1)

= S sin(∆mt)−C cos(∆mt) (1.2)

where S and C are CP violating (CPV) coefficients that depend on a parameter denoted λ , with λ
defined by the ratio of the B

0 and B0 decay amplitudes to fCP:

S = − 2Imλ
1+ |λ |2 ; C = 1−|λ |2

1+|λ |2 ; λ = e−2iβ A
A

(1.3)

A = 〈 fCP|H|B0〉 A = 〈 fCP|H|B0〉. (1.4)
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Figure 2: The time-dependent CP asymmetry aCP(t) from B0 → π+π− decays measured by Belle [2] (left)
and Babar [3] (right).

The phase of 2β in λ comes from the mixing. If a single diagram dominates the decays, then
|A|= |A| so that |λ |= 1 and C = 0. If this single diagram is the tree diagram, then A/A = exp(−2iγ)

as discussed above, leading to S = sin2α . Thus, measurement of aCP in b → uud processes directly
determines α , assuming that tree-level diagrams dominate. On the other hand, if the C coefficient
is found to be non-zero, then |A| 6= |A|, implying that other diagrams are present, such as loop
(penguin) diagrams (Fig. 1 right). These penguin amplitudes are not directly proportional to Vub

and thus spoil the determination of α .
The principal channels that have been used for the direct determination of α are B → ππ , ρρ ,

and ρπ . In addition, the B → a1(1260)π channel should soon provide independent information
on α . The ρ and a1 mesons are reconstructed through their decays to ππ and πππ , respectively.
Therefore all the channels used to measure α are reconstructed through all-pionic final states. Belle
and Babar use Cherenkov radiation and specific energy loss to identify charged pions. The typical
detection efficiencies are better than 95% and the mis-identification rates around 10%. Neutral pi-
ons are reconstructed primarily through their decays to two photons, with efficiencies and purities
around 50% and 70%, respectively. Key variables in the reconstruction of B mesons are the energy
difference ∆E = E∗

B −E∗
beam and beam-energy-substituted (or beam-energy-constrained) mass mES

(or mbc) =
√

(E∗
beam)2 − (p∗B)2, where EB (pB) is the energy (3-momentum) of the B meson can-

didate, Ebeam is the beam energy, and the asterisk denotes the center-of-mass frame. For correctly
reconstructed B mesons, ∆E peaks at zero and mES at the B meson mass.

2. B → ππ

The time-dependent CP asymmetry aCP(t) measured in B0 → π+π− decays is shown in Fig. 2.
The left-hand side shows the results from Belle [2] and the right-hand side from Babar [3]. These
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results are based on event samples of 535×106 and 467×106 e+e− → ϒ(4S) → BB events, respec-
tively. This Babar sample is their complete and final one. The CPV parameters are determined to be
S =−0.61±0.10±0.04 (−0.68±0.10±0.03) and C =−0.55±0.08±0.05 (−0.25±0.08±0.02)

for Belle (Babar). There is a difference of 1.9 standard deviations between the Belle and Babar re-
sults for C [4]. The more important point is that both experiments find C to be non-zero, implying
that penguin diagrams are present and that S in the π+π− channel does not directly measure α .

In the presence of penguin terms, one can still define aCP(t) = S sin(∆mt)−C cos(∆mt) as
in eq. (1.2), but now the CPV parameter S determines an effective angle α e f f given by S ≡√

1−C2 sin2αe f f . A famous paper by Gronau and London [5] shows how to apply isospin sym-
metry to the family of B → ππ decays to determine the difference δα = α −α e f f . Combining
the result for αe f f (from aCP(t) in B0 → π+π− decays) with the result for δα (from the isospin
analysis) then leads to a measurement of α .

The basic idea of the isospin analysis is that in B+ → π+π0 decays, the two pions must have
total isospin I = 1 or 2, since I3 = 1. For the penguin terms (Fig. 1 right), only I = 0 or 1 is allowed
since the gluon carries I = 0 and isospin is conserved in strong interactions. However, I = 1 is
forbidden by Bose-Einstein statistics. Thus B+ → π+π0 decays must proceed uniquely through the
tree diagram. By combining the information from B+ → π+π0 decays with that from B0 → π+π−

and π0π0 decays assuming isospin symmetry, one can therefore disentangle the contributions of
the tree and penguin terms and use the tree terms to determine α . There are three B → ππ charge
states: π+π−, π+π0 and π0π0. The relationship between the three complex amplitudes yields a
triangle, and similarly for the three B amplitudes. The difference between the B and B triangles
determines δα [5]. There are four possible relative orientations of the two triangles. Furthermore,
there is a two-fold ambiguity in the solution to α e f f ∼ arcsin(S) (i.e., either α e f f or 90◦−αe f f ).
The Gronau-London method is therefore characterized by an eight-fold discrete ambiguity in the
determination of α .

The required measurements to determine α using the Gronau-London isospin method are the
branching fractions for all three charge modes, B→ π+π−, π+π0 and π0π0, the time integrated CP
asymmetry for B0 → π0π0, and the S and C results for B0 → π+π−. All these measurements have
been made based on data samples of at least 227×106 BB, and typically many more, events [3, 6].
Although not necessary for the isospin analysis, the CP asymmetry in B+ → π+π0 decays has also
been measured [7] and found to be consistent with zero, i.e., the rates of B+ → π+π0 and B− →
π−π0 decays are the same. This is a necessary consistency check to verify that B+ → π+π0 decays
are dominated by a single (i.e., tree) diagram and that isospin-violating terms such as electroweak
penguin diagrams can be neglected.

The results of the isospin analysis are shown in Fig. 3, on the left for Belle [2] and on the right
for Babar [3]. These plots are so-called α-scans, produced by finding the minimum χ 2 value in
a fit of the isospin triangle to the data, for an assumed value of α . The results are converted to a
confidence level (C.L.) using frequentist statistical techniques. The value assumed for α is then
changed and the process repeated. The multiple spikes seen in the plots arise from the discrete
ambiguities discussed above. Babar excludes the region 23 < α < 67◦ at 90% C.L. Belle excludes
a wider region: 11 < α < 79◦ at 95% C.L.
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Figure 3: α scans from B → ππ decays from Belle [2] (left) and Babar [3] (right).

3. B → ρρ

B → ρρ decays are more complex than B → ππ decays since ρ mesons have non-zero spin.
Because the B meson has spin 0, the two spin 1 ρ mesons must have relative orbital angular mo-
mentum L = 0, 1 or 2. The CP eigenvalue of the ρρ system is (−1)L and thus depends on L. The
formalism described in the Introduction to determine α requires definite CP eigenstates fCP.

To identify a group of B→ ρρ events with a definite CP eigenvalue, it is convenient to describe
the decays as a superposition of three polarization amplitudes: one longitudinal (helicity = 0)
amplitude with L = 0 or 2 (thus CP = +1) and two transverse (helicity ±1) amplitudes with L = 0,
1, or 2 (thus CP is mixed). The contributions of the longitudinal and transverse amplitudes can be
separated by considering the distribution of the two ρ helicity angles θ1 and θ2, after integrating
over the azimuthal angle between the two ρ decay planes:

1
Γ

d2Γ
d cosθ1d cos θ2

=
9

16 [4 fL cos2 θ1 cos2 θ2 +(1− fL)sin2 θ1 sin2 θ2], (3.1)

where θ1 is the angle between the direction of flight of the charged pion from the ρ decay and
the boost from the B rest frame, evaluated in the rest frame of one of the ρ mesons, and θ2 is the
analogous angle with respect to the other ρ meson. The longitudinal polarization fraction fL is
determined by fitting Eq. (3.1) to data (this is done simultaneously with the fit to determine the
branching fractions). Since the longitudinally-polarized events represent a CP eigenstate, they may
be used to determine the CPV parameters S and C from aCP(t) and for the Gronau-London isospin
analysis, exactly as described for B → ππ decays. It turns out that the longitudinal component
dominates B → ρρ decays (see below) and it is not necessary to further consider the transverse
terms.

The results for aCP(t) for longitudinally-polarized B0 → ρ+ρ− decays are shown in Fig. 4.
The results from Belle [8] (Babar [9]) are based on 535×106 (384×106) BB events. The CPV pa-
rameters are found to be S = 0.19±0.30±0.08 (−0.17±0.20±0.06) and C =−0.16±0.21±0.08
(−0.01± 0.15± 0.06) for Belle (Babar). Babar determines fL = 0.992± 0.024+0.026

−0.013 while Belle
assumes fL = 1.0. Thus, in contrast to the observation in B0 → π+π− decays, the C coefficient in
B0 → ρ+ρ− decays is consistent with zero, implying that penguin contributions are small. There-
fore the value of αe f f extracted from the S coefficient should be close to the true value α . It is
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Figure 4: The time-dependent CP asymmetry aCP(t) from B0 → ρ+ρ− decays measured by Belle [8] (left)
and Babar [9] (right).

Figure 5: Babar results for the constraint δα = α −α e f f , obtained by applying the Gronau-London isospin
analysis, incorporating updated results for B0 → ρ0ρ0 [10] (left) and B+ → ρ+ρ0 [11] (right) events.

further observed that the S coefficient is consistent with zero (no CPV), meaning that α e f f (or α)
is either around 0◦ or 90◦.

The ρρ system also allows measurement of S and C coefficients in B0 → ρ0ρ0 decays (the
analogous possibility in B0 → π0π0 decays is not practical since the two photons from π 0 decay
cannot be used to construct a decay vertex). Using their final data sample of about 465× 106BB
events, Babar observes B0 → ρ0ρ0 decays with a significance of 3.3 standard deviations [10],
measures fL = 0.75+0.11

−0.14 ±0.05, and determines S = 0.3±0.7±0.2 and C = 0.2±0.8±0.3 for the
longitudinally-polarized component.

For the Gronau-London isospin analysis, one also needs the branching fraction of the B+ →
ρ+ρ0 channel. The B+ → ρ+ρ0 analysis is difficult because of large backgrounds and correlations.
Babar has recently updated this study [11] using their final data sample. They find a result for the
branching fraction, (23.7±1.4±1.4)×10−6 , that is significantly larger than their previous result
(16.8 ± 2.2 ± 2.3)× 10−6 [12]. The reason for the increase is an improved method to account
for correlations. The CP asymmetry in B+ → ρ+ρ0 decays is found to be consistent with zero,
implying that contributions from non-isospin-conserving amplitudes are small, analogous to the
result mentioned above for B+ → π+π0 decays.

Babar results on the constraint δα = α −α e f f , obtained by applying the isospin analysis, are
shown in Fig. 5. In this case there are 10 inputs: the three branching fractions, the three fL values,
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Figure 6: α scans from B → ρρ decays from Belle [13] (left) and Babar [11] (right).

and the two S and two C coefficients. The left plot illustrates the impact of S and C from ρ 0ρ0

events. The horizontal dashed line shows the constraint without S or C. The dotted curve shows
the result if C is used but not S. The solid line shows the constraint if both S and C are used. It
is seen that using the S and C values measured in B0 → ρ0ρ0 decays helps to resolve the discrete
ambiguities. The right plot shows the effect of the updated B+ → ρ+ρ0 branching fraction. The
dotted curve shows the constraint using the previous [12] measurement (this is the same as the
solid curve in the left plot). The solid curve shows the constraint using the new (larger) branching
fraction [11] measurement. The larger branching fraction found in the new study flattens both the
B and B isospin triangles, effectively removing the four-fold discrete ambiguity associated with the
unknown relative orientation of the two triangles.

The α scans from the B → ρρ isospin analyses are shown in Fig. 6, for Belle [13] (left)
and Babar [11] (right). Neglecting the SM-disfavored solution near α = 0 or 180◦, Belle obtains
α = (91.7±14.9)◦ and Babar (92.4+6.0

−6.5)
◦. The more stringent result for Babar is due primarily to

the updated branching fraction result for B+ → ρ+ρ0. It is seen that the results for α are much
more precise than those obtained from B → ππ (Fig. 3).

4. B → ρπ

ρπ is not a CP eigenstate, so to extract α from this channel the formalism discussed in the
Introduction needs to be generalized to simultaneously consider B0(B

0
) → ρ+π− and B0(B

0
) →

ρ−π+ decays.
Two methods have been proposed to eliminate penguin contributions and extract α from the

ρπ channel. The first method [14] is an isospin analysis based on the three neutral (B0 → ρ+π−,
ρ−π+, ρ0π0) and two charged (B+ → ρ+π−, ρ0π+) modes, and is effectively an extension of the
Gronau-London isospin triangle method used for ππ and ρρ events. Since there are five ampli-
tudes, the method leads to B and B pentagons. There are discrete ambiguities in the determination
of α , as in the ππ or ρρ studies. The precision of this method is expected to be small. The second
method [15] is a time-dependent Dalitz plot analysis of the three neutral (ρπ)0 modes. One deter-
mines the relative phases and moduli of the six amplitudes in which either the B0 or B

0 decays to
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Figure 7: α scans from B → ρπ decays from Belle [16] (left) and Babar [17] (right).

one of the three neutral ρπ states, through their interference in the B0(B
0
) → π+π−π0 Dalitz plot.

Isospin relations allow the six amplitudes to be combined to extract α without discrete ambiguities.
The π+π−π0 Dalitz plot analysis has been performed by both Belle [16] and Babar [17]. An

amplitude A3π is written as the sum of the amplitudes for a B0 to decay to the three neutral ρπ
states. A similar amplitude A3π is the corresponding sum of the three B

0 → (ρπ)0 amplitudes.
The expression for the time-dependent and Dalitz plot-position-dependent B0 → πππ decay rate
depends on A3π , A3π , and sine and cosine terms analogous to those in Eq. (1.2) [15]. Inserting
the expressions for A3π and A3π into the expression for the time-dependent decay rate leads to an
expression with 26 real-valued coefficients denoted U and I that are determined in a fit to the time-
sliced Dalitz plot. The Belle and Babar results for the U and I coefficients are in good agreement
with each other (see, e.g., [4]). Results for α are then derived from the measured U and I terms.
The α scans are shown in Fig. 7. The Belle (left) results are shown both with (solid) and without
(dotted) information from the charged B+ → (ρπ)+ modes. The information from the charged
modes is incorporated using the pentagon relations mentioned above.

The Babar (right) results exhibit the resolution of discrete ambiguities that is expected, namely
a single preferred solution around α ≈ 90◦. The result α = (87+45

−13)
◦ obtained from ρπ decays is

less precise than the result from ρρ decays but does not contain the ambiguity around 0 or 180◦

seen in Fig. 6.

5. Combined ππ , ρρ and ρπ results

The shaded (green) curve in Fig. 8 shows the results on α from the CKMfitter group [18],
obtained by combining the Belle and Babar results from the B → ππ , ρρ and ρπ channels, i.e.,
by combining the results shown in Figs. 3, 6, and 7. This scan is constructed using frequentist
techniques similar to those used by the experiments. Analogous combinations of data have been
presented by the UTfit group [19]. However, these latter results, unlike those of Fig. 8, do not at the
time of this writing incorporate the final Babar measurement of the B+ → ρ+ρ0 branching fraction.

The combined result for α is α = (89±4.3)◦ , a precision of 4.8%. This can be compared with
a precision of 6.2% in the summer of 2008. The increase in precision is mostly due to the updated
measurement of the B+ → ρ+ρ0 branching fraction by Babar.
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Figure 8: Combined α results from B → ππ , B → ρρ , and B → ρπ decays [18].

Most of the precision in the measurement of α comes from the ρρ data, as discussed above,
while the ρπ data are important to resolve the discrete ambiguity of the ρρ analysis at α ≈ 0 and
180◦. The data point with horizontal error bars in Fig. 8 shows the result for α obtained from
indirect SM constraints such as measurements of |Vus|, |Vud |, |Vub|, |Vcb| and CPV in kaon decays.
The indirect result is seen to agree well with the direct result, establishing an important non-trivial
test of the SM description of CPV.

6. B → a1(1260)π

Finally, a brief mention will be made of the B→ a1(1260)π channel, with a1 → πππ . A Dalitz
plot analysis, such as that performed for the B → ρπ channel, is considered to be too complex
to undertake and so a quasi-two-body approach [20] is taken instead. This method contains an
inherent four-fold discrete ambiguity. Combining the results from B0 → a+

1 π− and a−1 π+ decays
with the corresponding B

0 decays, and selecting the solution that is consistent with the SM, Babar
obtains an effective result α e f f = (78.6 ± 7.3)◦ [21]. To evaluate the contributions of penguin
terms and determine the correction δα = α −α e f f , SU(3) flavor symmetry is invoked [20]. The
SU(3) relations to constrain δα require measurement of the branching fractions of the SU(3)-
related channels B → a1K and B → K1A(1270)π . The a1K branching fraction has been measured
by Babar [22]. The K1A(1270)π analysis is complicated since the K1A(1270) is a mixture of the
K1(1270) and K1(1400) states and their interference must be considered. Preliminary results [23]
from Babar on the K1A(1270)π channel are being finalized and are expected to contrain δα with
accuracy 16◦ or smaller.
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7. Summary

The precision on the determination of α has improved considerably since the summer of 2008,
mostly because of a new measurement of the B+ → ρ+ρ0 branching fraction by Babar. α is
now known to better than 5% accuracy, making its precision roughly comparable to that of the
CKM phase angle β . Although the main constraints on α come from B → ρρ and ρπ decays,
independent results from B → a1(1260)π decays are expected soon, which may further improve
the measurement of α .
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