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Matos, Guzmán and Nuñez (MGN) proposed a model of galactic halo based on an exponential-
potential scalar field that could induce a rotation curve that is constant for all radii. We demonstrate
that with suitable boundary conditions, such scalar field dark matter (SDM) can not only produce
the observed constant rotation curve at large radii but also give rise to the correct power-law scaling
near the galactic core region. This solves the existing cusp-core problem faced by the conventional
cold dark matter (CDM) model.

PACS numbers: 98.35.Gi, 95.30.Sf, 95.35.+d

I. INTRODUCTION

The nature of dark matter has always been an im-
portant issue in the study of cosmology. The Cold Dark
Matter (CDM) model, which assumes the dark matter as
weakly interacting massive particles (WIMPs), has been
very successful in explaining the CMB anisotropies and
the large scale structures in the Universe. However, it
also has encountered several challenges such as the miss-
ing satellites problem [1–3] and the cusp-core problem
[4, 5].

The cusp-core problem arises from the mismatch be-
tween the density profile obtained from the simulations
based on the CDM model and the actual observations. In
the core region of the galactic halos, the density profile
has been found to follow the power law scaling with the
galactocentric radius r, that is, ρ(r) ∝ r−α [4, 6]. The
computer simulations based on the CDM model predict
that α & 0.8 [5, 7–15], while the observations suggest
that α ∼ 0.2 instead [6, 16, 17]. (Note that some au-
thors, based on CDM, found α ∼ 0.7 instead [18].) In
particular, the NFW profile [7, 8] with α = 1 (cusp) at
the center of the galactic halo has been found to agree
with the result of CDM simulations [7, 8, 11, 12]. The
pseudo-isothermal profile with α = 0 (core) at the cen-
ter, on the other hand, fits the observation data with
a smaller χ2 than NFW does. Evidently, a core is pre-
ferred over a cusp. This implies that if the dark matter
is truly dust-like and if the CDM simulations are correct,
then there would be an under-supply of gravity near the
galactic center.

One can entertain multiple explanations to this cusp-
core problem. For example, at small scales the galac-
tic dynamics may become so complex that the straight-
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forward CDM ceases to be valid. That means it is likely
that the current state of CDM simulations may not have
included additional physics, such as baryon physics [19–
25], necessary for addressing this problem. On the other
hand, the cusp-core problem may indeed be a signal that
reveals the deficiency of CDM model, despite its great
success at large scales. In this paper we choose to take
the latter approach.

Within the framework of the CDM model, the rotation
curve is directly related to the density profile through the
relation [16],

4πGρ(r) = 2
v

r

∂v

∂r
+ (

v

r
)2. (1)

One can see that under the CDM model, a power-law
density profile implies a power-law rotation curve, i.e.,
v ∝ rβ , where α = 2β − 2. Therefore the mismatch
of the density profiles in the CDM cusp-core problem is
equivalent to the mismatch of the rotation curves, which
is what one obtains directly from observations. Accord-
ing to Eq.(1), there is a one-to-one correspondence be-
tween the rotation curve and the density profile under
CDM model. In principle, therefore, there exists a CDM
density profile solution for every given rotation curve.
However, computer simulations based on CDM model
can only produce the cusp density profile, which does
not conform with the observed rotation curve near the
center.

Several attempts have been made to build alternative
DM models with non-zero pressure. Models consider-
ing dark matter as an ideal fluid with isotropic pressure
is known to be inconsistent with observations. Models
with anisotropic pressure, therefore DM behaves as a
nonideal fluid, have been investigated and shown to be
self-consistent [26–28]. It has been suggested that scalar
fields can be a good candidate for this type of dark mat-
ter. Several scalar field dark matter (SDM)models have
been proposed [28–33], although their considerations are
not same as ours.
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The behavior of such scalar field dark matter, however,
is greatly dependent on the form of its self-interaction
potential. Among the various proposals, the exponential
potential is often considered [34]. Matos, Guzmán and
Nuñez (MGN), for example, showed that a consistent so-
lution of Einstein equation giving rise to a flat rotation
curve exists, if the self-interaction potential is of the form
of an exponential function. Such solution reproduces the
rotation curve in the outer region of the galactic halo.
[28, 35] Matos et al. also showed that their model could
well explain other observations such as that of type Ia su-
pernovae [36]. The exponential potential scalar field may
find its theoretical connections with, for example, the ra-
dion or dilaton field in higher-dimensional gravity theo-
ries [37, 38]. It can also be found in higher-order gravity
theories [39, 40]. In addition, the exponential-potential
scalar field can be induced by non-perturbative effects
such as gaugino condensation [41]. It is therefore quite
natural to wonder, would such nonconventional SDM be
able to solve the existing cusp-core problem associated
with the conventional CDM model?

In this paper, we consider a novel scalar field with a
potential V (Φ) = −a exp(−b|Φ|) as dark matter. This
potential is essentially the same as that in MGN: V (Φ) =
−a exp(−bΦ) except that we take the absolute value of
the field in the exponent, so as to ensure the field is
bounded from below in the system. We demonstrate that
such a novel scalar field DM can readily reproduce the
profile of the observed rotation curve from the galactic
core to its outer region where the rotation curve is flat.
Furthermore, the corresponding χ2 of our model is in
general smaller than that of the NFW profile but com-
parable to that of the pseudo-isothermal (ISO) profile.
It is noteworthy that, by invoking only two parameters,
which is the case in NFW and ISO, we are able to resolve
the problem. That is, the exponential-potential SDM
model is able to solve the existing cusp-core problem as-
sociated with the conventional CDM model in a simple
construction. In the CDM model the rotation curve can-
not be uniquely determined owing to the degeneracy of
the Einstein equation under zero pressure [6]. The de-
termination of the rotation curve should therefore rely
on simulations. In contrast, the rotation curve and the
profile of energy-momentum tensor can be uniquely de-
termined in our SDM model once the potential of the
scalar field is given. Therefore, further simulation under
our model is unnecessary once the unique solution that
fits the observation is found.

The organization of this paper is as follows. In Sec. II,
we introduce the basic setting of the galactic model pro-
posed by Matos, Guzmán and Nuñez. But instead of a
constant, we invoke a hyperbolic tangent function for the
rotation curve, which rather faithfully represents the ob-
served generic rotation curve as a function of the galactic
radius. This represents the first step of our attempt to
solve the cusp-core problem in one stroke. We then show
that the SDM with an exponential self-interaction poten-
tial can indeed induce the desired rotation curve. In the

Sec. III, we numerically compute the rotation curve in-
duced by an exponential-potential scalar field dark mat-
ter with suitable boundary conditions. The resulting
rotation curves are shown to fit the observational data
very well. We also include the baryonic energy density in
the Einstein equation and show that such setting is self-
consistent. In the last section we discuss the implications
of our results.

II. THE SELF-INTERACTION POTENTIAL

Assuming spherical symmetry of galactic mass distri-
bution, which includes both DM and baryons, we write
down the general form of the metric:

ds2 = −e2σ(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2sin2θdφ2.
(2)

We note that the actual mass distribution is not exactly
spherically symmetric since the stellar distribution is of-
ten non-spherical. Nevertheless, spherical symmetry has
been shown to be a good approximation in the calcula-
tion of the rotation curve [42]. To investigate the rotation
curve governed by a scalar field DM, we write the Ein-
stein equations as

Rµν = 8πG(T totµν −
1

2
T totgµν), (3)

where the total energy-momentum tress tensor is con-
tributed by the SDM and the baryon matter:

T totµν = TSDMµν + T bµν . (4)

With the aid of the Klein-Gordon equation that governs
the SDM,

Φ;µ
;µ −

dV

dΦ
= 0, (5)

the energy-momentum tensor TSDMµν can be expressed as

TSDMµν = Φ,µΦ,ν −
1

2
gµνΦ,σΦ,σ − gµνV (Φ). (6)

On the other hand, in our treatment of the baryonic
energy-momentum tensor T bµν , which is predominantly
contributed by the stellar mass, is an input that is deter-
mined through the observation of the galactic luminosity.
The Einstein equation then reads

Rµν = 8πG[Φ,µΦ,ν + gµνV (Φ) + baryonic terms]. (7)

This is the only equation that governs our model.
Under spherical symmetry, the gtt component of the

metric is directly related to the rotation velocity of the
galactic halo through the equation [26]

rσ(r)′ =
[v(r)

c

]2
. (8)
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From Eqs.(7) and (8), we see that once the rotation curve
is determined the number of independent equations is the
same as the number of undetermined variables: V (Φ),
Φ(r), σ(r) and λ(r).

In their model, Matos, Guzmán and Nuñez assumed
the flatness of the rotation curve, with which they ob-
tained the form of σ(r) through Eq.(8). Inserting it into
the Einstein equation, they found V (Φ) to be an expo-
nential function [28].

To investigate the property of SDM near the galactic
core, where the rotation curve is no longer flat, we replace
the constant by a hyperbolic tangent function to model
the rotation curve for the entire range of radius, i.e.,

v(r) = v0 tanh(βrα), (9)

where the radius r is in units of kpc. This rotation veloc-
ity follows a power-law function at small r but saturates
to a constant, v0, at large r. Such function fits the ro-
tation curve reasonably well as shown in Fig. 1. When
inserting the corresponding form of σ(r) in the Einstein
equation, we keep only the leading order terms of σ(r),
λ(r) and v2/c2 in order to streamline the calculation. We
note that such simplification is reasonable since the ro-
tation velocity is small compared with the speed of light
and that the gravity inside the halo is weak [26]. In par-
ticular, it can be verified that the Matos-Guzmán-Nuñez
solution remains unchanged under such approximation.
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FIG. 1: Using the hyperbolic tangent function to fit the dark
matter contribution of the rotation curve of NGC 6689.

Neglecting the baryonic contribution for the time be-
ing, the Einstein equation reads:

λ′

r
− 2αv20d

c2
rα−2sech2(drα) tanh(drα)

=
1

κ
[(1 + 2λ)V (Φ) +

1

2
Φ′(r)2]

2λ

r
+

2λ

r2
=

1

κ
[(1 + 2λ)V (Φ) +

1

2
Φ′(r)2]

−2λ

r2
+

2v20
c2r2

tanh2(drα) =
1

κ
[−(1 + 2λ)V (Φ) +

1

2
Φ′(r)2],

(10)

where κ = 1/8πG. These equations are still too tedious
to render simple analytic solution. However if we solve
them numerically, we see, as shown in Fig. 2, that the
actual solution for the potential comes very close to an
exponential function. This gives us confidence that the
exponential potential may indeed generate the desired
rotation curve under suitable boundary conditions.

FIG. 2: Numerical solution for the potential V (Φ) in Eq.(10).
The values of v0, d and α used in this calculation are taken
from the fitting of the rotation curve data of NGC 6689. The
dot-dashed curve is the numerical solution of V (Φ) while the
solid curve is the exponential fit.

III. CONSEQUENCES OF THE EXPONENTIAL
POTENTIAL

A. Rotation Curve

Guided by the numerical solution, we now turn around
and assume that the SDM potential is indeed exponen-
tial: V = −a exp(−bΦ), where a and b are positive. We
substitute it into the Einstein equations and solve for the
rotation curve. Ignoring the higher order terms as we did
in Eq.(10), we have

2λ

r2
+

2λ′

r
=

1

κ
[V (Φ)(1− 2λ) + ρb(r) +

1

2
Φ′(r)2],

−σ
′

r
+
λ′

r
− σ′′ =

1

κ
[V (Φ)(1− 2λ) +

1

2
Φ′(r)2],

−2λ

r2
+

2σ′

r
=

1

κ
[−V (Φ)(1− 2λ) +

1

2
Φ′(r)2], (11)

where ρb is the baryon density.
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FIG. 3: Comparisons of the numerical solutions with the ob-
servational data. The black dots are the observed rotation
curves. The gray dots are the contribution of the dark mat-
ter, and the dotted curve is the contribution of the stellar
disk. The dashed curve is our result that includes only the
dark matter, while the dot-dashed curve is our result with the
baryonic contribution taken into account. For NGC 2976 the
long dashed curve represents the contribution of HI and the
solid curve represents the contribution of H2

The task of obtaining an explicit solution to these
equations is still formidable. We therefore resort again
to the numerical solution. We observe that in every term
of these equations the lowest order of the σ derivatives
is one. Thus we only need to specify the boundary con-
ditions of λ, σ′ and Φ. We find that if the boundary
conditions of all these three quantities are zero when r
is extremely small, then the resulting rotation curve has
the same shape as that obtained from observations. Fur-
thermore, the resulting Φ(r) is always positive definite in
our model, the same as in MGN. This indicates that our
replacement of −a exp(−bΦ) by −a exp(−b|Φ|) does not
alter any basic notions of MGN except to insure that the
quantum states are bounded from below.

Based on this solution, we analyze the five galaxies
from Simon et al. [43, 44] and two of the 19 galaxies
from Blok et al. [45] whose χ2

NFW surpasses χ2
ISO the

most, meaning that in these samples cores are greatly
preferred over cusps. Among all of the analyzed galaxies,
NGC 5963 is the only one with χ2

SDM larger than χ2
NFW .

Simon et al. [43, 44] have considered both the maxi-
mum and the minimum disks. We note that in their anal-
ysis of the maximum disk, they subtract the contribution
of the stellar disk from the observed rotation curve before
they fit it to the NFW and the pseudo-isothermal profiles.
In their analysis of the minimum disk, however, they fit
the observed rotation curves directly without subtract-
ing the stellar disk contribution. Therefore we choose
to compare our model with the other two mass models
under the assumption of maximum disk only, which, as
commented by Simon et al., is more physical. Before do-
ing that we first use Eq.(8) and Eq.(11) without including
the baryonic density profile to calculate the SDM contri-
bution alone. The comparison of χ2

SDM and the χ2 of the
other two profiles are shown in Table.1, from which we
see that except NGC 5963, all χ2

SDM are smaller than
χ2
NFW and comparable to χ2

ISO. In the case of NGC
4605, χ2

SDM is even smaller than χ2
ISO. Comparisons of

our numerical solutions to the rotation curve with the
observational data are shown in Fig.3.

In our calculation of the total rotation
curve, we include the stellar disk contribu-
tion by invoking the fitting function, v2b (r) =

1.97v2b (ropt)(r/ropt)
1.22/

[
(r/ropt)

2 + 0.782
]1.43

, which is
commonly used [29, 46]. However the gas contribution
differs from galaxy to galaxy, so in our actual calculation
we used a four-to-six term polynomial to spline the
discrete data points. We see from Fig. 3 that both
results, the inclusion and the exclusion of the stellar
disk contributions, fit the data reasonably well. Note
that in order not to make the graphs too busy, only the
error bars of the dark matter contribution are included.
After all, that is what we need for the calculation of the
χ2
SDM under the maximum disk assumption.
In the paper of Blok et al. [45], the data was ana-

lyzed through a different method. They considered two
cases where the γ3.6? , that is, the light-to-mass ratio at
3.6µm, is either fixed through the mass model or kept
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as a free parameter. They then considered two probable
descriptions of the dark matter distribution, the NFW
profile and the pseudo-isothermal profile. The total ro-
tation curve, which is the square root of the quadratic
sum of the rotation curves contributed by all the compo-
nents, is then fitted to the observed rotation curve from
which the corresponding χ2 is calculated.

FIG. 4: Comparisons of the numerical solutions with the ro-
tation curves based on the observational data from Blok et
al. [45]. The black dots are the observed rotation curves, the
dotted curve is the contribution of stellar disk, and the long
dashed curve is the contribution of gas. The black curve is
our result that takes the baryonic contribution into account.
The dashed curve is our result that considers only the dark
matter.

For the two galaxies from Blok et al. [45], we assume
that γ3.6? is the value that minimizes the χ2

ISO and use
Eq.(11) and Eq.(8) to calculate the total rotation curve
and the corresponding χ2

SDM . We find that although we
do not treat γ3.6? as a free parameter, we readily obtain
a χ2

SDM that is much smaller than χ2
NFW . Comparisons

of our numerical solutions to the rotation curves with
the observational data from Blok et al. [45] are shown
in Fig.4. Once again, we find that our solutions fit the
observations quite well.

B. Energy-Momentum Tensor and Energy
Conditions

Having the desired rotation curve successfully deduced
from the SDM exponential potential, we now inspect the
property of the corresponding energy and pressure den-

TABLE I: χ2 of the data from Simon et al. under maximum
disk.

χ2a NFW Pseudo-Isothermal SDM

NGC 2976 > 5.8 0.43 . 0.44

NGC 4605 < 8.03 1.53 . 1.23

NGC 5949 < 1.24 0.24 . 0.30

NGC 5963 0.43 1.46 . 2.01

NGC 6689 < 1.31 0.46 . 0.50

aχ2 per degree of freedom.

TABLE II: χ2 of the data from Blok et al.

χ2a NFW b Pseudo-Isothermalc SDMd

NGC 2976 1.65 0.51 . 0.64

DDO 154 0.81 0.28 . 0.39

aχ2 per degree of freedom.
bFree γ3.6

?
cFree γ3.6

?
dγ3.6

? minimizing χ2
ISO

sity profiles of the SDM halo. The density and the pres-
sure profiles of the dark matter can be expressed in terms
of the potential and the field via Eq.(6):

ρdark =
1

2
e2λ(r)Φ′(r)2 + V (r),

pr =
1

2
e2λ(r)Φ′(r)2 − V (r),

pt = −1

2
e2λ(r)Φ′(r)2 − V (r). (12)

It is evident from these equations that the SDM model
satisfies the non-ideal fluid equation of state, ρdark(r) =
−pt(r).

We again take NGC 4605 as an example. Fig.5 shows
the energy density profiles, where ρdark corresponds to
the SDM halo and ρtot includes both DM and the bary-
onic matter. The radial and tangential components of
the pressure are shown in Fig. 6. From these figures we
see that the density and the pressures are of the same
order of magnitude. This implies that the two terms,
including the potential, on the RHS of Eq.(12) are also
having the comparable magnitude.

We see that although the energy density profile of the
SDM is negative, the total energy density that includes
the contribution from the baryons is always positive def-
inite and therefore the system satisfies the weak energy
condition [38]. We note that the dark matter sector it-
self, though violating the weak energy condition, still sat-
isfies the null and the strong energy conditions [38]. We
therefore consider our solution reasonable. In addition to
NGC 4605, we analyzed five additional objects: DDO154,
NGC 2976, NGC 5949,NGC 5963, and NGC 6689. Again
the null energy condition and the strong energy condition
are satisfied in the region of interest, although the weak
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FIG. 5: The solid is the density profile for the dark matter.
The dotted curve is the density profile considering both the
baryon and dark matter.

FIG. 6: The dotted curve is the profile of tangential pressure.
The dashed curve is the profile corresponding to the radial
part of the pressure.

energy condition is not always satisfied.

A negative density profile may seem unphysical at first
sight. However, this is not true. In the conventional
CDM model, owing to the fact that it provides no pres-
sure, the energy density profile must be positive so as to
render a positive, or attractive, gravity, which is the only
required property for DM based on observations. For
galactic models that are semi-Newtonian, this require-
ment remains unchanged. However, in our model the
magnitude of the pressure is comparable to that of the
energy density. This changes the situation drastically.
That is, in our case the strong energy condition ensures
the attraction of the gravity without relying on the posi-
tivity of the energy density, thanks to the nontrivial and
substantial contribution of the pressure.

To be more specific, it can be seen in the work of Faber
and Visser [47] that the effective mass distributions as-
sociated with the rotation curve and the gravitational

lensing are

mRC(r) =

∫
dr4πr2 [ρ(r) + pr(r) + 2pt(r)] (13)

and

mlens(r) =

∫
dr4πr2

[
ρ(r) +

1

2
(pr(r) + 2pt(r))

]
(14)

respectively. In our model both [ρ(r) + pr(r) + 2pt(r)]
and

[
ρ(r) + 1

2 (pr(r) + 2pt(r))
]

are positive definite for all
r, which ensures that our effective mass distributions are
positive and that the gravity is attractive.

We note that negative energy density profiles do exist
in physics. For example the energy density of Casmir
energy is often negative. There also exist dark matter
models that imply a negative energy density profile [28,
29]. In the model of Arbey et al., a repulsive gravity in
some region was even considered.

In the conventional CDM model the rotation curve
is solely governed by the DM density profile through
Eq.(1). In our model where the pressure is nonzero and
anisotropic, the energy-momentum that drives the stel-
lar rotation velocity ρ(r) is replaced by ρdark(r)+pr(r)+
2pt(r) [47]. That is,

4πG[ρdark(r) + pr(r) + 2pt(r)] = 2
v

r

∂v

∂r
+ (

v

r
)2. (15)

However, we also know that in our model ρdark(r) =
−pt(r). This means that the rotation curve is determined
by the sum of the two pressure components, pr + pt (but

not the total pressure ptot ≡
√
p2r + p2t , however). It is

interesting to note that while in CDM the rotation curve
is dictated entirely by the density, in contrast in SDM it
is entirely governed by the pressure. As for the relative
contributions between the two pressure components, we
see from Fig.5 that both the radial and the tangential
pressures exhibit similar radial dependence with roughly
the same magnitude, except that the radial component is
consistently a few times larger than that of the tangential
one over essentially the entire range of the radius.

Evidently the derivative of our potential,
−a exp(−b|Φ|), is discontinuous at Φ = 0 and the
model is therefore ill-defined. On the other hand, we
found that the resulting rotation curve in our model is
totally insensitive to the the profile of potential around
Φ = 0. One may therefore regard our potential as a
phenomenological model that is valid for all values of
Φ except 0. We assume that the true potential is the
combination of this exponential potential and a small
correction term that rounds off its sharp edge at Φ = 0.
Being minute and effective only at Φ ∼ 0, such addition
to the potential would not affect any of our profile
analysis.

IV. CONCLUSION

We have shown that the scalar field dark matter with
an exponential self-interacting potential can successfully
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generate a unified and universal stellar rotation curve
that covers from the galactic core to its outer region.
Moreover, the χ2

SDM based on our scalar dark matter
model is found to be generally comparable with χ2

ISO
and smaller than χ2

NFW . In some of the galaxies, we
even found χ2

SDM smaller than χ2
ISO. The only galaxy

with χ2
SDM > χ2

NFW , i.e., NGC 5963, may be an excep-
tional case as commented by Blok et al. The brightness
of its inner disk indicates that it may not be dark mat-
ter dominated all the way to the center [6]. We recall
that the pseudo-isothermal profile (ISO) agrees with the
observation data whereas the NFW profile, which con-
forms with the CDM-based simulations, does not agree
with the observation data near the galactic center. Being
more consistent with the ISO profile and thus the obser-
vations, the scalar dark matter (SDM) model ameliorates
the cusp-core problem associated with the CDM model.

In the conventional CDM model, there are in general
three unknowns to be solved in the Einstein equations un-
der the assumption of spherical symmetry. These are the
DM density profile ρdark(r) and the two metrics gtt(r)
and grr(r). However, since the CDM has no pressure,
the Einstein equations are degenerate and that renders
only two independent equations in the leading order ex-
pansion [26]. As a consequence, only the relationship
between these three unknowns, instead of their absolute
values, can be deduced. This is why it is not possible to
derive the rotation curve from CDM model based on first
principles. One usually relies on numerical simulations
to discriminate possible solutions [6]. In our SDM model
there are also three unknown quantities, Φ(r), gtt(r) and
grr(r), to be determined after the form of V (Φ) is speci-
fied. However the difference is that in our case the pres-
sure is nonzero and thus all three Einstein equations are
non-degenerate. The three unknowns can then be deter-
mined explicitly. The profiles based on the SDM model
are thus attainable from first principles without the need
to resort to simulations. The core (instead of cusp) pro-
file so deduced from SDM is therefore unambiguous. We
find this aspect rather novel.

We have demonstrated the universality of the form of
our SDM potential among the galaxies that we investi-
gated, with a ∼ O(10−2)eV and b ∼ O(10−24)(eV)−1, al-
though these values differ slightly from galaxy to galaxy.

Comparing these values with that in MGN [28], we find
that the exponent of our potential comes very close to
that in their model, where b ∼ 2

√
κc2/v20 . Such cor-

respondence is expected. MGN considered only the case
where the rotation curve is a constant, which corresponds
to our model at large r. If the rotation curve is constant
for all r, the Einstein equation is analytically solvable,
which has been carried out in MGN’s work. Since our
result should approach that of MGN at large r, the value
of our b is expected to be similar to theirs.

Although we mentioned in the introduction that the
exponential potential is quite common in higher dimen-
sional or higher order gravity theories, so far we are not
able to deduce the coefficients in the exponential poten-
tial from first principles. Our model should therefore be
viewed as a phenomenological or effective theory for dark
matter halo. Even so, from the phenomenological point
of view it is remarkable that by replying on no more pa-
rameters than that in NFW, our model can solve the
cusp-core problem.

It is encouraging that our novel scalar field dark matter
model with an exponential potential is able to resolve the
cusp-core problem that stems from the cold dark matter
model. Before this SDM model can be taken more seri-
ously, however, it is essential that this non-conventional
SDM can reproduce the large scale structure formation
history of the universe, which is what the conventional
SDM does its best. Another challenge is the need of an
explicit SDM production scenario in the early universe
based on a fundamental theory that would give rise to
the desired amount of such SDM that would saturate the
DM content of the universe.
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