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1 Introduction

A theoretically clean measurement of the angle γ ≡ arg
[

−VudV
∗
ub

VcdV
∗
cb

]

(also denoted as

φ3 in the literature) can be obtained using CP -violating B → D(∗)K(∗) decays. The
interference between the b → cus and b → ucs tree amplitudes results in observables
that depend on the relative weak phase γ, the magnitude ratio rB ≡

∣

∣

∣

A(b→u)
A(b→c)

∣

∣

∣, and
the relative strong phase δB between the two amplitudes. The hadronic parameters,
rB and δB, depend on the B decay under investigation; they can not be precisely
calculated from theory, but can be extracted directly from data by simultaneously
reconstructing several different D final states.

In this contribution we present the most recent γ determinations obtained by
BABAR, based on the full sample (≈ 468×106 B± decays) of charged B mesons pro-
duced in e+e− → Υ(4S) → B+B− and accumulated in the years 1999-2007. The fol-
lowing decays have been reconstructed: (i) B± → D(∗)K± and B± → DK∗±(K∗± →
K0

S
π±), with D → K0

S
h+h−, h = π,K; (ii) B± → DK±, with D decaying to CP -

eigenstates fCP ; (iii) B± → D(∗)K±, with D decaying to K±π∓. The results are
statistically limited, as the effects that are being searched for are tiny, since: (i)
the branching fractions of the B meson decays considered here are on the order of
5 × 10−4 or lower; (ii) the branching fractions for D(∗) decays, including secondary
decays, range between O(10−2) and O(10−4); (iii) the interference between the b → c
and b → u mediated B decay amplitudes is low, as the ratios rB are around 0.1 due
to CKM factors and the additional color-suppression of A(b → u).

The B decay final states are completely reconstructed, with efficiencies between
40% (for low-multiplicity, low-background decay modes) and 5% (for high-multiplicity
decays). The selection is optimized to maximise the statistical sensitivity S/

√
S +B,

where the number of expected signal (S) and background (B) events is estimated
from simulated samples and data control samples. Signal B decays are distinguished
from BB and continuum qq background by means of maximum likelihood fits to
two variables exploiting the kinematic constraint from the known beam energies:

the energy-substituted invariant mass mES≡
√

E∗2
beam − p∗2B and the energy difference

∆E≡E∗
B−E∗

beam. Additional continuum background discrimination is achieved by
including in the likelihood a variable built, using multivariate analysis tools, from the
combination (either a linear Fisher discriminant, F , or a non-linear neural-network,
NN) of several event-shape quantities. These variables distinguish spherical BB
events from more jet-like qq events and exploit the different angular correlations in
the two event categories. B → D(∗)π decays, which are 12 times more abundant than
B → D(∗)K and are expected to show negligible CP -violating effects (rB ≈ 0.01 in
such decays), are discriminated by means of the excellent pion and kaon identification
provided by dE/dx measured in the charged particle tracking devices and by the
radiation detected in the Cherenkov detector, and are used as control samples.
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2 Dalitz-plot method: B± → D(∗)K(∗)±, D → K0
S
h+h−

We reconstruct B±→DK±, D∗K± (D
∗→Dγ and Dπ0), and DK∗± (K∗±→K0

Sπ
±)

decays, followed by neutral D meson decays to the 3-body self-conjugate final states
K0

Sh
+h− (h = π,K) [1]. From an extended maximum likelihood fit to mES, ∆E and

F (Fig. 1) we determine the signal and background yields in each channel: we find
268 B candidates with D → K0

SK
+K− and 1507 B candidates with D → K0

Sπ
+π−.
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Figure 1: The mES (a), ∆E (b), and F (c) distributions for B±→DK±, D→K0
S
π+π−.

for events in the signal region (mES > 5.272 GeV/c2, |∆E| < 30 MeV, and F > −0.1),
after all the selection criteria, except the one on the plotted variable, are applied. The
curves represent the fit projections: signal plus background (solid black lines), qq+BB
background (dotted red lines), qq +BB +B → Dπ background (dashed blue lines).

Following the technique proposed in [2], from a fit to the Dalitz-plot distri-
bution of the D daughters we determine 2D confidence regions for the variables
x± ≡ rB cos(δB ± γ) and y± ≡ rB sin(δB ± γ) (Fig. 2). In the fit we model the

D0 and D
0
decay amplitudes to K0

Sh
+h− as the coherent sum of a non-resonant part

and several intermediate two-body decays that proceed through known K0
Sh or h+h−

resonances. The model is determined from large (≈ 6.2×105) and very pure (≈ 99%)
control samples of D mesons produced in D∗→Dπ decays [3]. The results for x and
y are summarized in Table 1.

Parameter B± → DK± B± → D∗K± B± → DK∗±

x+ −0.103± 0.037± 0.006± 0.007 0.147± 0.053± 0.017± 0.003 −0.151 ± 0.083 ± 0.029 ± 0.006
y+ −0.021± 0.048± 0.004± 0.009 −0.032± 0.077± 0.008± 0.006 0.045 ± 0.106 ± 0.036 ± 0.008
x− 0.060± 0.039± 0.007± 0.006 −0.104± 0.051± 0.019± 0.002 0.075 ± 0.096 ± 0.029 ± 0.007
y− 0.062± 0.045± 0.004± 0.006 −0.052± 0.063± 0.009± 0.007 0.127 ± 0.095 ± 0.027 ± 0.006

Table 1: Values of x± and y± measured with the Dalitz-plot analysis of B±→D(∗)K(∗)±

From the (x±, y±) confidence regions we determine, using a frequentist procedure,
1σ confidence intervals for γ, rB and δB (Fig. 3). We obtain γ mod 180◦ = (68±14±
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Figure 2: 1σ and 2σ contours in the x±, y± planes for (a) B → DK, (b) B → D∗K
and (c) B → DK∗, for B− (solid lines) and B+ (dotted lines) decays.

4±3)◦, where the three uncertainties are respectively the statistical, the experimental
systematic and the Dalitz-model systematic ones. We find values of rB around 0.1,
confirming that interference is low in these channels: rDK±

B = 0.096±0.029; rD
∗K±

B =
0.133+0.042

−0.039; kr
DK∗±

B = 0.149+0.066
−0.062 (k=0.9±0.1 takes into account the K∗ finite width).

We also measure the strong phases (modulo 180◦): δDK±

B =(119+19
−20)

◦; δD
∗K±

B =(−82±
21)◦; δDK∗±

B =(111 ± 32)◦. A 3.5σ evidence of direct CP violation is found from the
distance between (x+, y+) and (x−, y−) (0 in absence of CPV) in the three B decay
channels.
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Figure 3: 1-confidence level (CL) as a function of γ (left), rB (center) and δB (right)
from the B → D(∗)K(∗) Dalitz-plot analysis.

3 GLW method: B± → DK(∗)±, D → f(CP)

We reconstruct B± → DK± decays, with D mesons decaying to non-CP (D0 →
K−π+), CP -even (K+K−, π+π−) and CP -odd (K0

S
π0, K0

S
φ, K0

S
ω) eigenstates [4].
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The partial decay rate charge asymmetries ACP± for CP -even and CP -odd D final
states and the ratios RCP± of the charged-averaged B meson partial decay rates in CP
and non-CP decays provide a set of four observables from which the three unknowns
γ, rB and δB can be extracted (with an 8-fold discrete ambiguity for the phases) [5].

The signal yields, from which the partial decay rates are determined, are obtained
from maximum likelihood fits to mES, ∆E and F . An example is shown in Fig. 4.
We identify about 500 B± → DK± decays with CP -even D final states and a similar
amount of B± → DK± decays with CP -odd D final states. We measure ACP+ =
0.25± 0.06± 0.02 and and ACP− = −0.09± 0.07± 0.02, respectively, where the first
error is the statistical and the second is the systematic uncertainty. The parameter
ACP+ is different from zero with a significance of 3.6 standard deviations, constituting
evidence for direct CP violation. We also measure RCP+ = 1.18 ± 0.09 ± 0.05 and
RCP− = 1.07± 0.08± 0.04.
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Figure 4: ∆E projections of the fits to the data: (a) B−→DCP+K
−, (b)

B+→DCP+K
+. The curves are the full PDF (solid, blue), and B→Dπ (dash-dotted,

green) stacked on the remaining backgrounds (dotted, purple). We require candidates
to lie inside a signal-enriched region: 0.2 < F < 1.5, 5.275 < mES < 5.285GeV/c2,
charged particle from the B passing kaon identification criteria.

Using a frequentist technique, including statistical and systematic uncertainties,
we obtain 0.24 < rB < 0.45 (0.06 < rB < 0.51) and, modulo 180◦, 11.3◦ < γ <
22.7◦ or 80.9◦ < γ < 99.1◦ or 157.3◦ < γ < 168.7◦ (7.0◦ < γ < 173.0◦) at the
68% (95%) confidence level (Fig. 5). To facilitate the combination of these mea-
surements with the results of the Dalitz-plot analysis, we exclude the D → K0

S
φ,

φ → K+K− channel from this analysis – thus removing events common to the
two measurements – and express our results in terms of the variables x± using
x± = 1

4
[RCP+(1∓ ACP+)−RCP−(1∓ ACP−)]. We find: x+ = −0.057 ± 0.039 ± 0.015

and x− = 0.132± 0.042± 0.018, in good agreement with the results from the Dalitz-
plot analysis.
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Figure 5: 1-CL as a function of γ mod 180◦ (left) and rB (right) from the B→DK
GLW study.

4 ADS method: B± → D(∗)K±, D → K±π∓

We reconstruct B±→DK± and D∗K± (D
∗→Dγ and Dπ0), followed by D decays to

both the doubly-Cabibbo-suppressed D0 final state K+π− and the Cabibbo-allowed
final state K−π+, which is used as normalization and control sample [6]. Final states
with opposite-sign kaons are produced from the interference of the CKM favored
B decay followed by the doubly Cabibbo-suppressed D decay and the CKM- and
color- suppressed B decay followed by the Cabibbo-allowed D decay, and the CP
asymmetries may be potentially very large. On the other hand, their overall branching
fractions are very small (O(10−7)) and background suppression is crucial. The three
branching fraction ratios (RADS) between B decays with opposite-sign and same-sign
kaons and the three charge asymmetries (AADS) in B decays with opposite-sign kaons
provide six observables that can be used, together with the measurements by c- and
B-factories of the amplitude ratio rD and the strong phase difference δD between the
two D decay amplitudes, to determine γ (with a 4-fold discrete ambiguity) and the
two sets of rB, δB [7].

The yields are determined from fits to mES and NN (Fig. 6). We see indications
of signals for the B → DK and B → D∗

Dπ0K opposite-sign modes, with significances
of 2.1σ and 2.2σ, respectively. The measured branching fration ratios are RDK

ADS =
(1.1±0.5±0.2)×10−2 and RDπ0K

ADS = (1.8±0.9±0.4)×10−2. The CP asymmetries are
large, ADK

ADS = −0.86±0.47 +0,12
−0.16 and ADπ0K

ADS = +0.77±0.35±0.12. We see no evidence

of opposite-sign B → D∗
DγK decays, and measure RDγK

ADS = (1.3 ± 1.4 ± 0.8) × 10−2

and ADγK
ADS = +0.36 ± 0.94 +0.25

−0.41. From these results we infer rDK±

B = 0.095+0.051
−0.041,

rD
∗K±

B = 0.096+0.035
−0.051 and 54◦ < γ < 83◦ (Fig. 7).
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Figure 6: mES projection of the fit to the data for the B± → DK±, D → K∓π±

decays, for samples enriched in signal (NN > 0.94), for (a) B+ and (b) B− candidates.
The curves represent the fit projections for signal plus background (solid), the sum
of all background components (dashed), and the qq background only (dotted).
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Figure 7: 1-CL as a function of γ (left) and rB (right) from the B→D(∗)K ADS study.

5 Conclusion

The full BABAR dataset has been exploited to measure the CKM angle γ in several
B± → D(∗)K(∗)± decays using three alternative techniques. A coherent set of results
on γ and on the hadronic parameters characterizing the B decay amplitudes has been
obtained. The central value for γ, around 70◦, is consistent with indirect determi-
nations from the CKM fits. We attained a precision on γ around 15◦, and confirm
the theoretical expectations of significant suppression (rB ≈ 0.1) of the b → u medi-
ated decay amplitud with respect to the b → c one. Finally, two direct CP violation
evidences at the level of 3.5σ have been observed.
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