Time-integrated measurements of the CKM angle γ / ϕ_{3} in BABAR

Giovanni Marchior ${ }^{11}$
on behalf of the babar Collaboration
Laboratoire de Physique Nucléaire et de Hautes Energies
IN2P3/CNRS, F-75252 Paris, FRANCE

The most recent determinations of the CKM angle γ / ϕ_{3} by the BABAR Collaboration, using time-integrated observables measured in charged $B \rightarrow$ $D^{(*)} K^{(*)}$ decays, are presented. The measurements have been performed on the full sample of 468 million $B \bar{B}$ pairs collected by the $B A B A R$ detector at the SLAC PEP-II asymmetric-energy B factory in the years 1999-2007.

> PROCEEDINGS OF

CKM2010, the 6th International Workshop on the CKM Unitarity Triangle
University of Warwick, UK 6-10 September 2010

[^0]
1 Introduction

A theoretically clean measurement of the angle $\gamma \equiv \arg \left[-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right]$ (also denoted as ϕ_{3} in the literature) can be obtained using $C P$-violating $B \rightarrow D^{(*)} K^{(*)}$ decays. The interference between the $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ tree amplitudes results in observables that depend on the relative weak phase γ, the magnitude ratio $r_{B} \equiv\left|\frac{A(b \rightarrow u)}{A(b \rightarrow c)}\right|$, and the relative strong phase δ_{B} between the two amplitudes. The hadronic parameters, r_{B} and δ_{B}, depend on the B decay under investigation; they can not be precisely calculated from theory, but can be extracted directly from data by simultaneously reconstructing several different D final states.

In this contribution we present the most recent γ determinations obtained by $B A B A R$, based on the full sample $\left(\approx 468 \times 10^{6} B^{ \pm}\right.$decays) of charged B mesons produced in $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B^{+} B^{-}$and accumulated in the years 1999-2007. The following decays have been reconstructed: (i) $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$and $B^{ \pm} \rightarrow D K^{* \pm}\left(K^{* \pm} \rightarrow\right.$ $K_{S}^{0} \pi^{ \pm}$), with $D \rightarrow K_{S}^{0} h^{+} h^{-}, h=\pi, K$; (ii) $B^{ \pm} \rightarrow D K^{ \pm}$, with D decaying to $C P$ eigenstates $f_{C P}$; (iii) $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$, with D decaying to $K^{ \pm} \pi^{\mp}$. The results are statistically limited, as the effects that are being searched for are tiny, since: (i) the branching fractions of the B meson decays considered here are on the order of 5×10^{-4} or lower; (ii) the branching fractions for $D^{(*)}$ decays, including secondary decays, range between $O\left(10^{-2}\right)$ and $O\left(10^{-4}\right)$; (iii) the interference between the $b \rightarrow c$ and $b \rightarrow u$ mediated B decay amplitudes is low, as the ratios r_{B} are around 0.1 due to CKM factors and the additional color-suppression of $A(b \rightarrow u)$.

The B decay final states are completely reconstructed, with efficiencies between 40% (for low-multiplicity, low-background decay modes) and 5% (for high-multiplicity decays). The selection is optimized to maximise the statistical sensitivity $S / \sqrt{S+B}$, where the number of expected signal (S) and background (B) events is estimated from simulated samples and data control samples. Signal B decays are distinguished from $B \bar{B}$ and continuum $q \bar{q}$ background by means of maximum likelihood fits to two variables exploiting the kinematic constraint from the known beam energies: the energy-substituted invariant mass $m_{\mathrm{ES}} \equiv \sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}}$ and the energy difference $\Delta E \equiv E_{B}^{*}-E_{\text {beam }}^{*}$. Additional continuum background discrimination is achieved by including in the likelihood a variable built, using multivariate analysis tools, from the combination (either a linear Fisher discriminant, \mathcal{F}, or a non-linear neural-network, $N N$) of several event-shape quantities. These variables distinguish spherical $B \bar{B}$ events from more jet-like $q \bar{q}$ events and exploit the different angular correlations in the two event categories. $B \rightarrow D^{(*)} \pi$ decays, which are 12 times more abundant than $B \rightarrow D^{(*)} K$ and are expected to show negligible $C P$-violating effects $\left(r_{B} \approx 0.01\right.$ in such decays), are discriminated by means of the excellent pion and kaon identification provided by $d E / d x$ measured in the charged particle tracking devices and by the radiation detected in the Cherenkov detector, and are used as control samples.

2 Dalitz-plot method: $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}, D \rightarrow K_{S}^{0} h^{+} h^{-}$

We reconstruct $B^{ \pm} \rightarrow D K^{ \pm}, D^{*} K^{ \pm}\left(D^{*} \rightarrow D \gamma\right.$ and $\left.D \pi^{0}\right)$, and $D K^{* \pm}\left(K^{* \pm} \rightarrow K_{S}^{0} \pi^{ \pm}\right)$ decays, followed by neutral D meson decays to the 3-body self-conjugate final states $K_{S}^{0} h^{+} h^{-}(h=\pi, K)$ [1]. From an extended maximum likelihood fit to $m_{\mathrm{ES}}, \Delta E$ and \mathcal{F} (Fig. (1) we determine the signal and background yields in each channel: we find $268 B$ candidates with $D \rightarrow K_{S}^{0} K^{+} K^{-}$and $1507 B$ candidates with $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$.

Figure 1: The $m_{\mathrm{ES}}(\mathrm{a}), \Delta E$ (b), and \mathcal{F} (c) distributions for $B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$. for events in the signal region ($m_{\mathrm{ES}}>5.272 \mathrm{GeV} / c^{2},|\Delta E|<30 \mathrm{MeV}$, and $\mathcal{F}>-0.1$), after all the selection criteria, except the one on the plotted variable, are applied. The curves represent the fit projections: signal plus background (solid black lines), $q \bar{q}+B \bar{B}$ background (dotted red lines), $q \bar{q}+B \bar{B}+B \rightarrow D \pi$ background (dashed blue lines).

Following the technique proposed in [2], from a fit to the Dalitz-plot distribution of the D daughters we determine 2D confidence regions for the variables $x_{ \pm} \equiv r_{B} \cos \left(\delta_{B} \pm \gamma\right)$ and $y_{ \pm} \equiv r_{B} \sin \left(\delta_{B} \pm \gamma\right)$ (Fig. 21). In the fit we model the D^{0} and \bar{D}^{0} decay amplitudes to $K_{S}^{0} h^{+} h^{-}$as the coherent sum of a non-resonant part and several intermediate two-body decays that proceed through known $K_{S}^{0} h$ or $h^{+} h^{-}$ resonances. The model is determined from large $\left(\approx 6.2 \times 10^{5}\right)$ and very pure ($\approx 99 \%$) control samples of D mesons produced in $D^{*} \rightarrow D \pi$ decays [3]. The results for x and y are summarized in Table 1.

Parameter	$B^{ \pm} \rightarrow D K^{ \pm}$	$B^{ \pm} \rightarrow D^{*} K^{ \pm}$	$B^{ \pm} \rightarrow D K^{* \pm}$
x_{+}	$-0.103 \pm 0.037 \pm 0.006 \pm 0.007$	$0.147 \pm 0.053 \pm 0.017 \pm 0.003$	$-0.151 \pm 0.083 \pm 0.029 \pm 0.006$
y_{+}	$-0.021 \pm 0.048 \pm 0.004 \pm 0.009$	$-0.032 \pm 0.077 \pm 0.008 \pm 0.006$	$0.045 \pm 0.106 \pm 0.036 \pm 0.008$
x_{-}	$0.060 \pm 0.039 \pm 0.007 \pm 0.006$	$-0.104 \pm 0.051 \pm 0.019 \pm 0.002$	$0.075 \pm 0.096 \pm 0.029 \pm 0.007$
y_{-}	$0.062 \pm 0.045 \pm 0.004 \pm 0.006$	$-0.052 \pm 0.063 \pm 0.009 \pm 0.007$	$0.127 \pm 0.095 \pm 0.027 \pm 0.006$

Table 1: Values of $x_{ \pm}$and $y_{ \pm}$measured with the Dalitz-plot analysis of $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$

From the $\left(x_{ \pm}, y_{ \pm}\right)$confidence regions we determine, using a frequentist procedure, 1σ confidence intervals for γ, r_{B} and δ_{B} (Fig. (3). We obtain $\gamma \bmod 180^{\circ}=(68 \pm 14 \pm$

Figure 2: 1σ and 2σ contours in the $x_{ \pm}, y_{ \pm}$planes for (a) $B \rightarrow D K$, (b) $B \rightarrow D^{*} K$ and (c) $B \rightarrow D K^{*}$, for B^{-}(solid lines) and B^{+}(dotted lines) decays.
$4 \pm 3)^{\circ}$, where the three uncertainties are respectively the statistical, the experimental systematic and the Dalitz-model systematic ones. We find values of r_{B} around 0.1, confirming that interference is low in these channels: $r_{B}^{D K^{ \pm}}=0.096 \pm 0.029 ; r_{B}^{D^{*} K^{ \pm}}=$ $0.133_{-0.039}^{+0.042} ; k r_{B}^{D K^{* \pm}}=0.149_{-0.062}^{+0.066}\left(k=0.9 \pm 0.1\right.$ takes into account the K^{*} finite width $)$. We also measure the strong phases (modulo $\left.180^{\circ}\right): \delta_{B}^{D K^{ \pm}}=\left(119_{-20}^{+19}\right)^{\circ} ; \delta_{B}^{D^{*} K^{ \pm}}=(-82 \pm$ $21)^{\circ} ; \delta_{B}^{D K^{* \pm}}=(111 \pm 32)^{\circ}$. A 3.5σ evidence of direct $C P$ violation is found from the distance between $\left(x_{+}, y_{+}\right)$and $\left(x_{-}, y_{-}\right)$(0 in absence of CPV) in the three B decay channels.

Figure 3: 1-confidence level (CL) as a function of γ (left), r_{B} (center) and δ_{B} (right) from the $B \rightarrow D^{(*)} K^{(*)}$ Dalitz-plot analysis.

3 GLW method: $B^{ \pm} \rightarrow D K^{(*) \pm}, D \rightarrow f_{(\mathrm{CP})}$

We reconstruct $B^{ \pm} \rightarrow D K^{ \pm}$decays, with D mesons decaying to non- $C P\left(D^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+}\right), C P$-even $\left(K^{+} K^{-}, \pi^{+} \pi^{-}\right)$and $C P$-odd ($\left.K_{S}^{0} \pi^{0}, K_{S}^{0} \phi, K_{S}^{0} \omega\right)$ eigenstates 4].

The partial decay rate charge asymmetries $A_{C P \pm}$ for $C P$-even and $C P$-odd D final states and the ratios $R_{C P \pm}$ of the charged-averaged B meson partial decay rates in $C P$ and non- $C P$ decays provide a set of four observables from which the three unknowns γ, r_{B} and δ_{B} can be extracted (with an 8 -fold discrete ambiguity for the phases) [5].

The signal yields, from which the partial decay rates are determined, are obtained from maximum likelihood fits to $m_{\mathrm{ES}}, \Delta E$ and \mathcal{F}. An example is shown in Fig. (4. We identify about $500 B^{ \pm} \rightarrow D K^{ \pm}$decays with $C P$-even D final states and a similar amount of $B^{ \pm} \rightarrow D K^{ \pm}$decays with $C P$-odd D final states. We measure $A_{C P+}=$ $0.25 \pm 0.06 \pm 0.02$ and and $A_{C P-}=-0.09 \pm 0.07 \pm 0.02$, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter $A_{C P+}$ is different from zero with a significance of 3.6 standard deviations, constituting evidence for direct $C P$ violation. We also measure $R_{C P+}=1.18 \pm 0.09 \pm 0.05$ and $R_{C P-}=1.07 \pm 0.08 \pm 0.04$.

Figure 4: ΔE projections of the fits to the data: (a) $B^{-} \rightarrow D_{C P+} K^{-}$, (b) $B^{+} \rightarrow D_{C P+} K^{+}$. The curves are the full PDF (solid, blue), and $B \rightarrow D \pi$ (dash-dotted, green) stacked on the remaining backgrounds (dotted, purple). We require candidates to lie inside a signal-enriched region: $0.2<\mathcal{F}<1.5,5.275<m_{\mathrm{ES}}<5.285 \mathrm{GeV} / c^{2}$, charged particle from the B passing kaon identification criteria.

Using a frequentist technique, including statistical and systematic uncertainties, we obtain $0.24<r_{B}<0.45\left(0.06<r_{B}<0.51\right)$ and, modulo 180°, $11.3^{\circ}<\gamma<$ 22.7° or $80.9^{\circ}<\gamma<99.1^{\circ}$ or $157.3^{\circ}<\gamma<168.7^{\circ}\left(7.0^{\circ}<\gamma<173.0^{\circ}\right)$ at the 68% (95%) confidence level (Fig. 5). To facilitate the combination of these measurements with the results of the Dalitz-plot analysis, we exclude the $D \rightarrow K_{S}^{0} \phi$, $\phi \rightarrow K^{+} K^{-}$channel from this analysis - thus removing events common to the two measurements - and express our results in terms of the variables $x_{ \pm}$using $x_{ \pm}=\frac{1}{4}\left[R_{C P+}\left(1 \mp A_{C P+}\right)-R_{C P-}\left(1 \mp A_{C P-}\right)\right]$. We find: $x_{+}=-0.057 \pm 0.039 \pm 0.015$ and $x_{-}=0.132 \pm 0.042 \pm 0.018$, in good agreement with the results from the Dalitzplot analysis.

Figure 5: 1-CL as a function of $\gamma \bmod 180^{\circ}$ (left) and r_{B} (right) from the $B \rightarrow D K$ GLW study.

4 ADS method: $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}, D \rightarrow K^{ \pm} \pi^{\mp}$

We reconstruct $B^{ \pm} \rightarrow D K^{ \pm}$and $D^{*} K^{ \pm}\left(D^{*} \rightarrow D \gamma\right.$ and $\left.D \pi^{0}\right)$, followed by D decays to both the doubly-Cabibbo-suppressed D^{0} final state $K^{+} \pi^{-}$and the Cabibbo-allowed final state $K^{-} \pi^{+}$, which is used as normalization and control sample [6]. Final states with opposite-sign kaons are produced from the interference of the CKM favored B decay followed by the doubly Cabibbo-suppressed D decay and the CKM- and color- suppressed B decay followed by the Cabibbo-allowed D decay, and the $C P$ asymmetries may be potentially very large. On the other hand, their overall branching fractions are very small $\left(O\left(10^{-7}\right)\right)$ and background suppression is crucial. The three branching fraction ratios $\left(R_{A D S}\right)$ between B decays with opposite-sign and same-sign kaons and the three charge asymmetries $\left(A_{A D S}\right)$ in B decays with opposite-sign kaons provide six observables that can be used, together with the measurements by c - and B-factories of the amplitude ratio r_{D} and the strong phase difference δ_{D} between the two D decay amplitudes, to determine γ (with a 4 -fold discrete ambiguity) and the two sets of r_{B}, δ_{B} [7].

The yields are determined from fits to m_{ES} and $N N$ (Fig. 6). We see indications of signals for the $B \rightarrow D K$ and $B \rightarrow D_{D \pi^{0}}^{*} K$ opposite-sign modes, with significances of 2.1σ and 2.2σ, respectively. The measured branching fration ratios are $R_{A D S}^{D K}=$ $(1.1 \pm 0.5 \pm 0.2) \times 10^{-2}$ and $R_{A D S}^{D \pi^{0} K}=(1.8 \pm 0.9 \pm 0.4) \times 10^{-2}$. The $C P$ asymmetries are large, $A_{A D S}^{D K}=-0.86 \pm 0.47_{-0.16}^{+0,12}$ and $A_{A D S}^{D \pi^{0} K}=+0.77 \pm 0.35 \pm 0.12$. We see no evidence of opposite-sign $B \rightarrow D_{D \gamma}^{*} K$ decays, and measure $R_{A D S}^{D \gamma K}=(1.3 \pm 1.4 \pm 0.8) \times 10^{-2}$ and $A_{A D S}^{D \gamma K}=+0.36 \pm 0.94{ }_{-0.41}^{+0.25}$. From these results we infer $r_{B}^{D K^{ \pm}}=0.095_{-0.041}^{+0.051}$, $r_{B}^{D^{*} K^{ \pm}}=0.096_{-0.051}^{+0.035}$ and $54^{\circ}<\gamma<83^{\circ}$ (Fig. (7).

Figure 6: $m_{\text {ES }}$ projection of the fit to the data for the $B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow K^{\mp} \pi^{ \pm}$ decays, for samples enriched in signal ($N N>0.94$), for (a) B^{+}and (b) B^{-}candidates. The curves represent the fit projections for signal plus background (solid), the sum of all background components (dashed), and the $q \bar{q}$ background only (dotted).

Figure 7: 1-CL as a function of γ (left) and r_{B} (right) from the $B \rightarrow D^{(*)} K$ ADS study.

5 Conclusion

The full BABAR dataset has been exploited to measure the CKM angle γ in several $B^{ \pm} \rightarrow D^{(*)} K^{(*) \pm}$ decays using three alternative techniques. A coherent set of results on γ and on the hadronic parameters characterizing the B decay amplitudes has been obtained. The central value for γ, around 70°, is consistent with indirect determinations from the CKM fits. We attained a precision on γ around 15°, and confirm the theoretical expectations of significant suppression $\left(r_{B} \approx 0.1\right)$ of the $b \rightarrow u$ mediated decay amplitud with respect to the $b \rightarrow c$ one. Finally, two direct CP violation evidences at the level of 3.5σ have been observed.

References

[1] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. Lett. 105, 121801 (2010).
[2] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).
[3] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. Lett. 105, 081803 (2010).
[4] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. D 82, 072004 (2010).
[5] M. Gronau and D. Wyler, Phys. Lett. B265, 172; M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
[6] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. D 82, 072006 (2010).
[7] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).

[^0]: ${ }^{1}$ e-mail: giovanni.marchiori@lpnhe.in2p3.fr

