Time-integrated measurements of the CKM angle γ/ϕ_3 in BABAR

GIOVANNI MARCHIORI¹ ON BEHALF OF THE BABAR Collaboration

Laboratoire de Physique Nucléaire et de Hautes Energies IN2P3/CNRS, F-75252 Paris, FRANCE

The most recent determinations of the CKM angle γ/ϕ_3 by the BABAR Collaboration, using time-integrated observables measured in charged $B \rightarrow D^{(*)}K^{(*)}$ decays, are presented. The measurements have been performed on the full sample of 468 million $B\overline{B}$ pairs collected by the BABAR detector at the SLAC PEP-II asymmetric-energy B factory in the years 1999-2007.

PROCEEDINGS OF

CKM2010, the 6th International Workshop on the CKM Unitarity Triangle University of Warwick, UK 6-10 September 2010

Published in arXiv:1012.4979.

Work supported in part by US Department of Energy contract DE-AC02-76SF00515. SLAC National Accelerator Laboratory, Menlo Park, CA 94025

 $^{^{1}}$ e-mail: giovanni.marchiori@lpnhe.in2p3.fr

1 Introduction

A theoretically clean measurement of the angle $\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}}{V_{cd}V_{cb}} \right]$ (also denoted as ϕ_3 in the literature) can be obtained using *CP*-violating $B \to D^{(*)}K^{(*)}$ decays. The interference between the $b \to c\overline{u}s$ and $b \to u\overline{c}s$ tree amplitudes results in observables that depend on the relative weak phase γ , the magnitude ratio $r_B \equiv \left| \frac{A(b \to u)}{A(b \to c)} \right|$, and the relative strong phase δ_B between the two amplitudes. The hadronic parameters, r_B and δ_B , depend on the *B* decay under investigation; they can not be precisely calculated from theory, but can be extracted directly from data by simultaneously reconstructing several different *D* final states.

In this contribution we present the most recent γ determinations obtained by BABAR, based on the full sample ($\approx 468 \times 10^6 B^{\pm}$ decays) of charged B mesons produced in $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+B^-$ and accumulated in the years 1999-2007. The following decays have been reconstructed: (i) $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ and $B^{\pm} \rightarrow DK^{*\pm}(K^{*\pm} \rightarrow K_s^0\pi^{\pm})$, with $D \rightarrow K_s^0h^+h^-$, $h = \pi, K$; (ii) $B^{\pm} \rightarrow DK^{\pm}$, with D decaying to CPeigenstates f_{CP} ; (iii) $B^{\pm} \rightarrow D^{(*)}K^{\pm}$, with D decaying to $K^{\pm}\pi^{\mp}$. The results are statistically limited, as the effects that are being searched for are tiny, since: (i) the branching fractions of the B meson decays considered here are on the order of 5×10^{-4} or lower; (ii) the branching fractions for $D^{(*)}$ decays, including secondary decays, range between $O(10^{-2})$ and $O(10^{-4})$; (iii) the interference between the $b \rightarrow c$ and $b \rightarrow u$ mediated B decay amplitudes is low, as the ratios r_B are around 0.1 due to CKM factors and the additional color-suppression of $A(b \rightarrow u)$.

The B decay final states are completely reconstructed, with efficiencies between 40% (for low-multiplicity, low-background decay modes) and 5% (for high-multiplicity decays). The selection is optimized to maximise the statistical sensitivity $S/\sqrt{S+B}$, where the number of expected signal (S) and background (B) events is estimated from simulated samples and data control samples. Signal B decays are distinguished from $B\overline{B}$ and continuum $q\overline{q}$ background by means of maximum likelihood fits to two variables exploiting the kinematic constraint from the known beam energies: the energy-substituted invariant mass $m_{\rm ES} \equiv \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$ and the energy difference $\Delta E \equiv E_B^* - E_{\rm beam}^*$. Additional continuum background discrimination is achieved by including in the likelihood a variable built, using multivariate analysis tools, from the combination (either a linear Fisher discriminant, \mathcal{F} , or a non-linear neural-network, NN) of several event-shape quantities. These variables distinguish spherical BBevents from more jet-like $q\bar{q}$ events and exploit the different angular correlations in the two event categories. $B \to D^{(*)}\pi$ decays, which are 12 times more abundant than $B \to D^{(*)}K$ and are expected to show negligible *CP*-violating effects ($r_B \approx 0.01$ in such decays), are discriminated by means of the excellent pion and kaon identification provided by dE/dx measured in the charged particle tracking devices and by the radiation detected in the Cherenkov detector, and are used as control samples.

2 Dalitz-plot method: $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}, D \rightarrow K^0_S h^+ h^-$

We reconstruct $B^{\pm} \rightarrow DK^{\pm}$, D^*K^{\pm} $(D^* \rightarrow D\gamma \text{ and } D\pi^0)$, and $DK^{*\pm}$ $(K^{*\pm} \rightarrow K_S^0 \pi^{\pm})$ decays, followed by neutral D meson decays to the 3-body self-conjugate final states $K_S^0 h^+ h^ (h = \pi, K)$ [1]. From an extended maximum likelihood fit to $m_{\rm ES}$, ΔE and \mathcal{F} (Fig. 1) we determine the signal and background yields in each channel: we find 268 B candidates with $D \rightarrow K_S^0 K^+ K^-$ and 1507 B candidates with $D \rightarrow K_S^0 \pi^+ \pi^-$.

Figure 1: The $m_{\rm ES}$ (a), ΔE (b), and \mathcal{F} (c) distributions for $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K_{s}^{0}\pi^{+}\pi^{-}$. for events in the signal region ($m_{\rm ES} > 5.272 \text{ GeV}/c^{2}$, $|\Delta E| < 30 \text{ MeV}$, and $\mathcal{F} > -0.1$), after all the selection criteria, except the one on the plotted variable, are applied. The curves represent the fit projections: signal plus background (solid black lines), $q\bar{q} + B\bar{B}$ background (dotted red lines), $q\bar{q} + B\bar{B} + B \rightarrow D\pi$ background (dashed blue lines).

Following the technique proposed in [2], from a fit to the Dalitz-plot distribution of the D daughters we determine 2D confidence regions for the variables $x_{\pm} \equiv r_B \cos(\delta_B \pm \gamma)$ and $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma)$ (Fig. 2). In the fit we model the D^0 and \overline{D}^0 decay amplitudes to $K_S^0 h^+ h^-$ as the coherent sum of a non-resonant part and several intermediate two-body decays that proceed through known $K_S^0 h$ or $h^+ h^-$ resonances. The model is determined from large ($\approx 6.2 \times 10^5$) and very pure ($\approx 99\%$) control samples of D mesons produced in $D^* \rightarrow D\pi$ decays [3]. The results for x and y are summarized in Table 1.

Parameter	$B^{\pm} \to DK^{\pm}$	$B^{\pm} \rightarrow D^* K^{\pm}$	$B^{\pm} \rightarrow DK^{*\pm}$
x_+	$-0.103 \pm 0.037 \pm 0.006 \pm 0.007$	$0.147 \pm 0.053 \pm 0.017 \pm 0.003$	$-0.151 \pm 0.083 \pm 0.029 \pm 0.006$
y_+	$-0.021 \pm 0.048 \pm 0.004 \pm 0.009$	$-0.032 \pm 0.077 \pm 0.008 \pm 0.006$	$0.045 \pm 0.106 \pm 0.036 \pm 0.008$
x_{-}	$0.060 \pm 0.039 \pm 0.007 \pm 0.006$	$-0.104 \pm 0.051 \pm 0.019 \pm 0.002$	$0.075 \pm 0.096 \pm 0.029 \pm 0.007$
y_{-}	$0.062 \pm 0.045 \pm 0.004 \pm 0.006$	$-0.052\pm0.063\pm0.009\pm0.007$	$0.127 \pm 0.095 \pm 0.027 \pm 0.006$

Table 1: Values of x_{\pm} and y_{\pm} measured with the Dalitz-plot analysis of $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$

Figure 2: 1σ and 2σ contours in the x_{\pm}, y_{\pm} planes for (a) $B \to DK$, (b) $B \to D^*K$ and (c) $B \to DK^*$, for B^- (solid lines) and B^+ (dotted lines) decays.

 $(4\pm3)^{\circ}$, where the three uncertainties are respectively the statistical, the experimental systematic and the Dalitz-model systematic ones. We find values of r_B around 0.1, confirming that interference is low in these channels: $r_B^{DK^{\pm}} = 0.096\pm0.029$; $r_B^{D^*K^{\pm}} = 0.133^{+0.042}_{-0.039}$; $kr_B^{DK^{*\pm}} = 0.149^{+0.066}_{-0.062}$ ($k=0.9\pm0.1$ takes into account the K^* finite width). We also measure the strong phases (modulo 180°): $\delta_B^{DK^{\pm}} = (119^{+19}_{-20})^{\circ}$; $\delta_B^{D^*K^{\pm}} = (-82\pm21)^{\circ}$; $\delta_B^{DK^{*\pm}} = (111\pm32)^{\circ}$. A 3.5σ evidence of direct *CP* violation is found from the distance between (x_+, y_+) and (x_-, y_-) (0 in absence of CPV) in the three *B* decay channels.

Figure 3: 1-confidence level (CL) as a function of γ (left), r_B (center) and δ_B (right) from the $B \to D^{(*)} K^{(*)}$ Dalitz-plot analysis.

3 GLW method: $B^{\pm} \rightarrow DK^{(*)\pm}, D \rightarrow f_{(CP)}$

We reconstruct $B^{\pm} \to DK^{\pm}$ decays, with D mesons decaying to non-CP ($D^0 \to K^-\pi^+$), CP-even (K^+K^- , $\pi^+\pi^-$) and CP-odd ($K^0_s\pi^0$, $K^0_s\phi$, $K^0_s\omega$) eigenstates [4].

The partial decay rate charge asymmetries $A_{CP\pm}$ for CP-even and CP-odd D final states and the ratios $R_{CP\pm}$ of the charged-averaged B meson partial decay rates in CPand non-CP decays provide a set of four observables from which the three unknowns γ , r_B and δ_B can be extracted (with an 8-fold discrete ambiguity for the phases) [5].

The signal yields, from which the partial decay rates are determined, are obtained from maximum likelihood fits to $m_{\rm ES}$, ΔE and \mathcal{F} . An example is shown in Fig. 4. We identify about 500 $B^{\pm} \rightarrow DK^{\pm}$ decays with *CP*-even *D* final states and a similar amount of $B^{\pm} \rightarrow DK^{\pm}$ decays with *CP*-odd *D* final states. We measure $A_{CP+} =$ $0.25 \pm 0.06 \pm 0.02$ and and $A_{CP-} = -0.09 \pm 0.07 \pm 0.02$, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A_{CP+} is different from zero with a significance of 3.6 standard deviations, constituting evidence for direct *CP* violation. We also measure $R_{CP+} = 1.18 \pm 0.09 \pm 0.05$ and $R_{CP-} = 1.07 \pm 0.08 \pm 0.04$.

Figure 4: ΔE projections of the fits to the data: (a) $B^- \rightarrow D_{CP+}K^-$, (b) $B^+ \rightarrow D_{CP+}K^+$. The curves are the full PDF (solid, blue), and $B \rightarrow D\pi$ (dash-dotted, green) stacked on the remaining backgrounds (dotted, purple). We require candidates to lie inside a signal-enriched region: $0.2 < \mathcal{F} < 1.5$, $5.275 < m_{\rm ES} < 5.285 \,{\rm GeV}/c^2$, charged particle from the *B* passing kaon identification criteria.

Using a frequentist technique, including statistical and systematic uncertainties, we obtain 0.24 < r_B < 0.45 (0.06 < r_B < 0.51) and, modulo 180°, 11.3° < γ < 22.7° or 80.9° < γ < 99.1° or 157.3° < γ < 168.7° (7.0° < γ < 173.0°) at the 68% (95%) confidence level (Fig. 5). To facilitate the combination of these measurements with the results of the Dalitz-plot analysis, we exclude the $D \rightarrow K_s^0 \phi$, $\phi \rightarrow K^+ K^-$ channel from this analysis – thus removing events common to the two measurements – and express our results in terms of the variables x_{\pm} using $x_{\pm} = \frac{1}{4} [R_{CP+}(1 \mp A_{CP+}) - R_{CP-}(1 \mp A_{CP-})]$. We find: $x_{+} = -0.057 \pm 0.039 \pm 0.015$ and $x_{-} = 0.132 \pm 0.042 \pm 0.018$, in good agreement with the results from the Dalitzplot analysis.

Figure 5: 1-CL as a function of $\gamma \mod 180^\circ$ (left) and r_B (right) from the $B \rightarrow DK$ GLW study.

4 ADS method: $B^{\pm} \rightarrow D^{(*)}K^{\pm}, D \rightarrow K^{\pm}\pi^{\mp}$

We reconstruct $B^{\pm} \rightarrow DK^{\pm}$ and D^*K^{\pm} $(D^* \rightarrow D\gamma$ and $D\pi^0$), followed by D decays to both the doubly-Cabibbo-suppressed D^0 final state $K^+\pi^-$ and the Cabibbo-allowed final state $K^-\pi^+$, which is used as normalization and control sample [6]. Final states with opposite-sign kaons are produced from the interference of the CKM favored B decay followed by the doubly Cabibbo-suppressed D decay and the CKM- and color- suppressed B decay followed by the Cabibbo-allowed D decay, and the CPasymmetries may be potentially very large. On the other hand, their overall branching fractions are very small $(O(10^{-7}))$ and background suppression is crucial. The three branching fraction ratios (R_{ADS}) between B decays with opposite-sign and same-sign kaons and the three charge asymmetries (A_{ADS}) in B decays with opposite-sign kaons provide six observables that can be used, together with the measurements by c- and B-factories of the amplitude ratio r_D and the strong phase difference δ_D between the two D decay amplitudes, to determine γ (with a 4-fold discrete ambiguity) and the two sets of r_B, δ_B [7].

The yields are determined from fits to $m_{\rm ES}$ and NN (Fig. 6). We see indications of signals for the $B \to DK$ and $B \to D_{D\pi^0}^* K$ opposite-sign modes, with significances of 2.1σ and 2.2σ , respectively. The measured branching fration ratios are $R_{ADS}^{DK} = (1.1 \pm 0.5 \pm 0.2) \times 10^{-2}$ and $R_{ADS}^{D\pi^0 K} = (1.8 \pm 0.9 \pm 0.4) \times 10^{-2}$. The *CP* asymmetries are large, $A_{ADS}^{DK} = -0.86 \pm 0.47 \stackrel{+0.12}{_{-0.16}}$ and $A_{ADS}^{D\pi^0 K} = +0.77 \pm 0.35 \pm 0.12$. We see no evidence of opposite-sign $B \to D_{D\gamma}^* K$ decays, and measure $R_{ADS}^{D\gamma K} = (1.3 \pm 1.4 \pm 0.8) \times 10^{-2}$ and $A_{ADS}^{D\gamma K} = +0.36 \pm 0.94 \stackrel{+0.25}{_{-0.041}}$. From these results we infer $r_B^{DK^{\pm}} = 0.095 \stackrel{+0.051}{_{-0.041}}$, $r_B^{D^* K^{\pm}} = 0.096 \stackrel{+0.035}{_{-0.051}}$ and $54^{\circ} < \gamma < 83^{\circ}$ (Fig. 7).

Figure 6: $m_{\rm ES}$ projection of the fit to the data for the $B^{\pm} \to DK^{\pm}$, $D \to K^{\mp}\pi^{\pm}$ decays, for samples enriched in signal (NN > 0.94), for (a) B^+ and (b) B^- candidates. The curves represent the fit projections for signal plus background (solid), the sum of all background components (dashed), and the $q\bar{q}$ background only (dotted).

Figure 7: 1-CL as a function of γ (left) and r_B (right) from the $B \rightarrow D^{(*)}K$ ADS study.

5 Conclusion

The full BABAR dataset has been exploited to measure the CKM angle γ in several $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ decays using three alternative techniques. A coherent set of results on γ and on the hadronic parameters characterizing the *B* decay amplitudes has been obtained. The central value for γ , around 70°, is consistent with indirect determinations from the CKM fits. We attained a precision on γ around 15°, and confirm the theoretical expectations of significant suppression ($r_B \approx 0.1$) of the $b \rightarrow u$ mediated decay amplitud with respect to the $b \rightarrow c$ one. Finally, two direct CP violation evidences at the level of 3.5σ have been observed.

References

- P. del Amo Sanchez *et al.* [BABAR Collaboration], Phys. Rev. Lett. **105**, 121801 (2010).
- [2] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).
- [3] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. Lett. 105, 081803 (2010).
- [4] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. D 82, 072004 (2010).
- [5] M. Gronau and D. Wyler, Phys. Lett. B265, 172; M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
- [6] P. del Amo Sanchez et al. [BABAR Collaboration], Phys. Rev. D 82, 072006 (2010).
- [7] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).