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Abstract: We present an analysis of the forward–backward asymmetry in the production of
top quark pairs at the Tevatron collider. We use novel Monte Carlo methods for
merging matrix elements and parton showers to combine NLO QCD predictions
for tt̄ and tt̄+jet production. Theoretical uncertainties are quantified in detail. We
find agreement with experimental data on the transverse momentum dependence
of the asymmetry.

1 Introduction

The forward–backward asymmetry in the production of top quark pairs offers great opportunities to study
the physics both within and beyond the Standard Model (SM). At pp̄ colliders, the asymmetry in dependence
on the observable O is defined as

AFB(O) =
dσtt̄/dO|∆y>0 − dσtt̄/dO|∆y<0

dσtt̄/dO|∆y>0 + dσtt̄/dO|∆y<0
, (1.1)

where ∆y = yt − yt̄ is the rapidity difference between the top and the antitop quark.

Unexpectedly large inclusive and differential asymmetries were found in various measurements at the Teva-
tron [1]. By now, both the CDF and DØ collaborations observed values that cannot be described by pre-
dictions based on the Standard Model [2, 3, 4]. The CDF collaboration has reported on forward–backward
asymmetries at

√
s = 1.96 TeV using the full Run II data set [5]. Their result was compared to theoretical

predictions from various Monte Carlo event generators and next-to-leading order (NLO) calculations in the
Standard Model. This analysis confirmed a discrepancy between theory and experiment which was observed
earlier. It is most significant for those tt̄ events with large invariant mass, mtt̄ ≥ 450 GeV. The inclusive
parton-level asymmetry was measured as 0.164 ± 0.047 considering all pair masses, and 0.295 ± 0.067 for
mtt̄ ≥ 450 GeV. This needs to be compared to theoretical predictions from various event generators in the
unrestricted and high tt̄ mass region: 0.067 ± 0.020 and 0.089 ± 0.027 from MC@NLO [6, 7], 0.066 ± 0.020
and 0.100± 0.030 from POWHEG [8, 9], and 0.073± 0.022 and 0.110± 0.033 from MCFM [4, 10]. In all cases,
electroweak corrections had been applied. The linear behavior of AFB with increasing ∆y and mtt̄ persists,
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but the prediction for the slope is reduced by ∼ 2σ compared to earlier measurements for both the mtt̄ and
the ∆y dependence.

The observation of a large asymmetry has triggered substantial theoretical investigation. Various new physics
models have been proposed to explain the discrepancy seen within the SM, such as tt̄ production via a heavy
axial color octet or a flavor changing Z ′ boson [11]. However, in order to ensure that the asymmetry is indeed
a first hint of new physics beyond the Standard Model, a systematic study of QCD and Electroweak (EW)
corrections at NLO and beyond must be performed to reduce theoretical uncertainties as much as possible.
It was pointed out in [12] that color flows from incoming quarks to the top quark and from antiquarks
to the antitop quark lead to more radiation when the top quark goes backward. This generates a positive
asymmetry already at the level of parton showers that include color coherence effects. NLO QCD predictions
for tt̄ and tt̄+jet [13, 14] exhibit a non-constant K-factor, such that additional effects are expected. Much
attention has also been paid to the calculation of the EW contributions to the asymmetry from pure EW
interactions and the interplay between EW and QCD processes [15]. A combined correction of 26% on top
of the QCD prediction was determined at O(α2

sα) and O(α2). Tremendous efforts have been recently made
to complete the full NNLO QCD cross section calculation [16]. Soft-gluon resummation was also performed
in this context [17].

It is important to note, that all general-purpose Monte Carlo event generators which are currently being
used by experiments provide at most the inclusive prediction for tt̄ production at the NLO matched to a
parton shower [7, 9]. While calculations of tt̄+jet production at NLO have been matched to parton showers
independently [18], they have not yet been combined with the inclusive simulation of tt̄ production in a
manner that allows for improved predictions of AFB. We remedy this situation in the present publication,
providing a merged simulation of tt̄ and tt̄+jet production at hadron colliders, which preserves both the NLO
accuracy of the fixed-order prediction and the logarithmic accuracy of the parton shower. We are thus able
to make predictions for both, the transverse momentum dependent asymmetry above a certain threshold and
the inclusive asymmetries, which depend strongly on both, real and virtual higher-order QCD corrections.
We do not include electroweak corrections in this publication, these can be inferred from [15].

We employ the MEPS@NLO technique for combining multiple NLO parton-level calculations with par-
ton showers. The method was introduced in [19] and is implemented in the general-purpose event gen-
erator SHERPA [20]. Virtual corrections are computed using the GOSAM [21] package, which makes use
of the program SAMURAI [22] based on integrand reduction techniques [23], and the tensor integral li-
brary GOLEM95 [24]. The interface between SHERPA and GOSAM [25] uses the Binoth–Les–Houches accord
(BLHA) [26].

A fair amount of uncertainty is involved in parton-shower simulations of AFB, both inclusive and differential
AFB [12]. Some of these uncertainties will be eliminated by a combination of higher-multiplicity NLO
calculations with the inclusive result. Some of them remain, such as the uncertainty related to the choice
of exponent in the Sudakov factor of the parton shower. This has been discussed extensively in [27]. We
do not attempt to systematically improve the parton shower here. Therefore, our ability to describe the
inclusive asymmetry is still somewhat limited. However, we can quantify the possible impact of a systematic
improvement at higher parton multiplicity by judging the impact of matrix-element plus parton-shower
merging at the NLO. Moreover, we readily provide an NLO-accurate prediction for the transverse momentum
dependent asymmetry for all but the first bin in pT,tt̄.

1

The paper is organized as follows: Section 2 introduces the MC@NLO method, as implemented in SHERPA,
and discusses color-coherence effects on AFB. Section 3 briefly reviews the MEPS@NLO technique and
discusses related uncertainties. Section 4 presents our final predictions, and Sec. 5 contains some concluding
remarks.

2 MC@NLO for massive particles

The MC@NLO method is a modified subtraction scheme, which relies on the unitarity condition of the
parton shower. Virtual corrections are approximated by the parton shower as the counterpart of real-
emission corrections, integrated over the phase space of the emission. This implies that parton showers do
not change the weight of a Monte Carlo event. They simply move events from the n-parton phase space to

1 Note that this is a major difference between our results and the predictions from [28]. Other differences include the
treatment of color (cf. Sec. 2) and truncated shower effects (cf. Sec. 3).
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the (n+ 1)-parton phase space by means of branching processes.

Parton branching as implemented in MC@NLO can be described by the following equation, which determines
the expectation value of an arbitrary, infrared-safe observable, denoted by O,

〈O〉 =

∫
dΦB B̄(A)(ΦB)F (A)(µ2

Q, O) +

∫
dΦR H(A)(ΦR)F1(t, O) . (2.1)

In this context,

F (A)(µ2
Q, O) = ∆(A)(tc, µ

2
Q)O(ΦB) +

∫ µ2
Q

tc

dΦ1
D(A)(ΦB ,Φ1)

B(ΦB)
∆(A)(t, µ2

Q)F1(t, O) (2.2)

is the generating functional of the MC@NLO, while Fn(t, O) denotes the generating functional of the parton
shower. ΦB and ΦR denote the Born- and real-emission phase space, and Φ1 is the phase space associated
with the emission of an additional parton, i.e. dΦR = dΦB · dΦ1. It is parametrized in the standard manner
as dΦ1 = dtdz dφJ(t, z), where t is called the evolution variable, z is called the splitting variable, φ is an
azimuthal splitting angle and J(t, z) is a Jacobian factor. Thus, where appropriate, t ≡ t(Φ1) is understood.
The functions B̄(A) and H(A) are called the NLO-weighted Born differential cross section and the hard
remainder function, defined as

B̄(A)(ΦB) = B(ΦB) + Ṽ(ΦB) + I(S)(ΦB) +

∫
dΦ1

[
D(A)(ΦB ,Φ1) Θ

(
µ2
Q − t

)
−D(S)(ΦB ,Φ1)

]
,

H(A)(ΦR) = R(ΦR)−D(A)(ΦR) Θ
(
µ2
Q − t

)
.

(2.3)

The terms B and R represent Born- and real-emission matrix elements, including flux and parton luminosity
factors; D(S) and I(S) are the subtraction and integrated subtraction terms, respectively. Ṽ represents the
virtual corrections, including collinear mass-factorization counterterms. D(A) is the resummed part of the
real-emission correction, which must approach R in both the collinear and the soft limit.

Within the event generator SHERPA, D(A) is defined by the dipole subtraction terms employed in the method
of Catani and Seymour (CS) [29]. Their phase space is restricted by the resummation scale µ2

Q [27]. The
corresponding dipole insertion operators are modified such that their helicity summed splitting operator is
positive definite, while negative values induced through spin dependence and color insertion operators are
kept. Thus, spurious negative terms arising from arbitrary finite corrections are not resummed through D(A).

So far, the MC@NLO method had been implemented only for massless partons in SHERPA. In the con-
text of this work, we extended the implementation to massive partons, using kinematics and phase-space
factorization in the method of Catani, Seymour, Dittmaier and Trocsanyi (CDST) [30]. The evolution vari-
able is chosen to be a Lorentz invariant transverse momentum. Using the definitions of [29], for final-state
branchings {ı̃, k̃} → {i, j, k} we have (denoting parton masses by m)

t(FS) = 2 pipj z̃i,jk(1− z̃i,jk)− (1− z̃i,jk)2m2
i − z̃2

i,jkm
2
j , (2.4)

while for initial-state branchings {ã, k̃} → {a, j, k} we use

t(IS) = 2 papj (1− xaj,k) . (2.5)

Note that these definitions are independent of the type of the spectator parton, and they are also used in
the parton shower.

The generating functional of the corresponding parton shower, which was described in [31] is given by

Fn(t, O) =

∞∑
l=n

l∏
i=n+1

[ ∫ ti−1

tc

dΦ1,i Ki(Φ1,i) ∆i−1(ti, ti−1)

]
∆l(tc, tl)O(Φl)

∣∣∣∣∣
tn= t

(2.6)

where Kl is the sum of evolution kernels for an l-parton state and ∆n is the respective Sudakov factor. We
define the parton-shower cutoff as tc. This parton shower is based on the leading color approximation. It
describes the QCD evolution of processes with only a single color configuration at leading order particu-
larly well. Such reactions include the production of jets at e+e−-colliders or the production of Drell–Yan
lepton pairs at hadron colliders. Processes with a more complicated color structure at the leading order
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Figure 1: Transverse momentum spectrum of the tt̄ pair (left) and pT -dependent forward–backward asym-
metry (right). We compare the MC@NLO prediction (red) and the parton-shower result (blue).
Hard remainder terms have been set to zero in the MC@NLO simulation, while the parton shower
has been reweighted with the local K-factor B̄(A)/B in order to make the two results comparable.
Uncertainty bands stem from varying the scale of strong couplings in the resummation.

typically pose a problem for any type of parton shower, as the coherent emission of soft gluons can only be
approximated by angular ordering [32, 33].

This problem is, to some extent, remedied by the implementation of the full-color MC@NLO technique as
proposed in [27]. We exemplify the corresponding effects on physical observables in Fig. 1. The left panel
shows that including full color coherence in the first emission has no substantial impact on observables like
the transverse momentum of the tt̄ pair. However, the right panel shows that it strongly affects the prediction
for the pT -dependent forward–backward asymmetry.

This effect is very different from a typical parton shower uncertainty. To exemplify this, we also show the
effect of changing the scale at which the strong coupling is evaluated in the parton shower. Such a variation
easily generates different transverse momentum spectra, but it does not affect the asymmetry, as can be
seen by comparing the size of the red and blue bands in the left and right panels of Fig. 1. Both bands were
generated by varying the scale in the range

√
1/2 kT . . .

√
2 kT .

Similar statements hold for the choice of the momentum mapping, although they apply only within reason.
Appendix A explains how the asymmetry is generated in a parton shower based on Catani-Seymour dipole
factorization. If the assumption is relaxed that the recoil partner of the splitting parton is the color partner
in the large-Nc limit, then the prediction for the asymmetry will change. This has already been demonstrated
in [12] using the PYTHIA parton shower.

It should be stressed again that we only include the correct color insertion operators for the first emission,
all subsequent branchings are generated in the standard shower approximation. Nevertheless, it is not
unreasonable to assume that the overall picture remains for a complete full color evolution, as pT,tt̄ is largely
generated by the first emission.

3 Combination of the zero and one jet process

Most practically implemented methods for combining matrix elements and parton showers are based on
phase space slicing, with the soft part of the phase space populated by the parton shower, and the hard part
populated by matrix elements, either at leading or at next-to-leading order. The slicing parameter is called
the merging cut, Qcut. It is given in a variable referred to as the jet criterion, Q.

The first working technique to achieve a combination of multiple NLO calculations for reactions at a hadron
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collider was introduced in [19]. It is based on the ideas of the CKKW [34, 35] and CKKW-L algorithms [36,
37]. We briefly review this method here to set the stage for a discussion of its uncertainties.

3.1 The MEPS@NLO method

In order to turn the inclusive parton-level calculations into exclusive n-jet predictions, which are to be
combined, one needs to multiply them with no-emission probabilities, accounting for the fact that the
inclusive cross section must be preserved at NLO.

The exclusive contribution to O from a parton-level calculation yielding n additional jets compared to the
lowest multiplicity process reads [19]

〈O〉excl
n =

∫
dΦn Θ(Q(Φn)−Qcut) B̃(A)

n (Φn) F̃ (A)
n (µ2

Q, O ;<Qcut)

+

∫
dΦn+1 Θ(Q(Φn)−Qcut) Θ(Qcut −Q(Φn+1)) H̃(A)

n (Φn+1) F̃n+1(µ2
Q, O ;<Qcut) ,

(3.1)

where we have defined the generating functional of a truncated vetoed parton shower, F̃(< Qcut). This
parton shower may generate emissions at each point in a parton shower history which corresponds to the
matrix-element configuration at Φn.2 We describe the respective evolution kernel by summing over all
possible kernels for the intermediate steps:

K̃n(Φ1,n+1) = Kn(Φ1,n+1) Θ(tn − tn+1) +

n−1∑
i=0

Ki(Φ1,n+1) Θ(ti − tn+1) Θ(tn+1 − ti+1)
∣∣∣
t0=µ2

Q

. (3.2)

One can now restrict emissions to the appropriate region of phase space by replacing Ki(Φ1,n+1)→Ki(Φ1,n+1)
Θ(Qcut −Q(Φi,Φ1,n+1)). This implements the veto procedure. The corresponding generating functional of

the truncated and vetoed parton shower is determined by substituting K with K̃ in Eq. (2.6).

We have also defined modified NLO-weighted Born cross sections and hard remainder functions

B̃(A)
n (Φn) = Bn(Φn) + Ṽn(Φn) + I(S)

n (Φn) +

∫
dΦ1

[
D̃(A)
n (Φn,Φ1)−D(S)

n (Φn,Φ1)
]

H̃(A)
n (Φn+1) = Rn(Φn+1)− D̃(A)

n (Φn+1)

(3.3)

which are given in terms of the compound evolution kernel D̃
(A)
n ,

D̃(A)
n (Φn+1) = D(A)

n (Φn+1) Θ(tn−tn+1) +

n−1∑
i=0

Bn(Φn) Ki(Φ1,n+1) Θ(ti−tn+1) Θ(tn+1−ti+1)
∣∣∣
t0=µ2

Q

. (3.4)

The first term on the right-hand side of Eq. (3.4) resembles the resummed part of the real-emission correction
in the original MC@NLO (cf. Eq. (2.1)), while the second term is identical to the one in Eq. (3.2). It is
mandatory to implement color coherence in the first term, while it is optional in the second term, since
the evolution variable is bounded from below by tn. One finally obtains the generating functional for the
combined truncated vetoed parton shower plus MC@NLO, F̃ (A)(<Qcut), by replacing the evolution kernel
for the first step in F̃(<Qcut) with the compound kernel in Eq. (3.4).

While the structure of Eqs. (3.1)-(3.4) seems quite involved, their interpretation is rather simple: MC@NLO

itself is a modified subtraction method, which allows to correct for the mismatch between the parton shower
approximation and the full NLO calculation in the first emission step. As we encounter processes where
truncated parton showers can generate emissions, we have to take these emissions into account in the modified
subtraction. This leads to the definition of Eq. (3.3) and the compound evolution kernel, Eq. (3.4).

3.2 Theoretical uncertainties

The uncertainties associated with the above defined MEPS@NLO method fall into three categories: The first
are uncertainties related to the choice of renormalization and factorization scale. They occur in every NLO

2A detailed algorithm for identifying these parton shower histories is discussed in [36, 35].
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Figure 2: Systematic uncertainty due to variation of the merging cut (left) and due to the scale choice
(right). The dotted (dashed) lines in the left panel correspond to contributions from the zero
(one) jet MC@NLO. The two bands in the right panel depict results from different choices of
the functional form of the core scale, for more details see the main text. Each band has been
obtained by varying the respective default scale by factors of two.

calculation. The second are uncertainties due to the choice of parton shower parameters, which occur in
every parton shower simulation. A typical example is the choice of resummation scale, µ2

Q. The last, and
final uncertainty is related to the choice of the merging cut, Qcut, and the choice of the functional form of
jet criterion.3 We find that the variation associated with the choice of resummation scale is in most cases
smaller than the statistical uncertainty in our simulation. The other two types of uncertainties are discussed
in the following.

Merging uncertainties

The left panel of Fig. 2 displays the effect of varying Qcut in the range from 5 to 10 GeV. Effects on the
log pT,tt̄ spectrum are below 10%. Potential discontinuities in the transition from the zero to the one jet
domain are generated by differences between the tt̄ MC@NLO at finite transverse momentum and the tt̄+jet
MC@NLO. Out of the two predictions, the tt̄ MC@NLO is less accurate. Small discontinuities therefore
indicate that it still provides a good estimate of the tt̄+jet production rate at NLO. This means that we
can reliably compute the transverse momentum dependent asymmetry, except for the first bin, where the
prediction is formally still only LO accurate due to the large contribution from the tt̄ MC@NLO.

Note that we observe unitarity violations in our merging approach. A comprehensive analysis of the unitarity
constraint on the parton shower in the context of merging algorithms was presented recently [38], and a new
method has been proposed to restore the overall normalization of the inclusive event sample exactly [37].
Here, we follow a simpler approach, where unitarity violations may occur, but their impact on the total cross
section is beyond the order at which we claim our calculation to be exact [19].

Scale uncertainties

The right panel of Fig. 2 displays the uncertainty arising from a variation of renormalization and factorization
scales in the range 1/2µR/F . . . 2µR/F . The two different bands were generated by choosing the central scale
for the pp̄ → tt̄ “core” process in the simulation as either the invariant mass of the tt̄-system, or as twice
the product of four-momenta of the color-connected partons in the large-Nc limit of the “core” process. We
will refer to the latter scale choice as the “QCD” scale. It is described in detail in Appendix C.

3Strictly speaking this is not an uncertainty, as one would attempt to choose the parameters such that the phase-space
region of interest for experimental analyses is always fully covered by respective NLO parton-level calculations [34].
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Source AFB [%] AFB(mtt̄) [%] AFB(pT,tt̄) [%]

inclusive m < 450 GeV m > 450 GeV pT < 50 GeV pT > 50 GeV

PRD87 (2013) 092002 16.4± 4.7 8.4± 5.5 29.5± 6.7 − −

MEPS@NLO, µ = µQCD 8.5 +0.5
−0.5 6.1 +0.2

−0.1 12.7 +1.1
−0.6 9.5 +0.7

−0.0 −3.4 −0.8
−0.1

MEPS@NLO, µ = mtt̄ 4.8 +0.7
−0.3 3.1 +0.8

+0.1 7.9 +0.5
−1.1 5.8 +0.8

−0.4 −7.2 +0.5
−0.4

MEPS@LO, µ = µQCD 15.0 +1.9
−1.4 11.0 +1.4

−1.1 22.2 +2.3
−2.0 16.6 +2.2

−1.6 −1.1 +1.7
−1.2

MEPS@LO, µ = mtt̄ 8.2 +0.9
−0.8 5.9 +0.6

−0.6 12.5 +1.3
−1.2 9.9 +1.1

−1.1 −7.9 +0.6
−0.6

NLO pp̄→ tt̄ 6.0 4.1 9.3 7.0 −11.1

Table 1: Top quark forward–backward asymmetry at the parton level. We compare experimental data from
CDF [5], results from an NLO parton-level pp̄→ tt̄ calculation obtained with MCFM [10, 4] (last
row) and predictions in the NLO and LO merging schemes from SHERPA. The set of uncertainties
next to all SHERPA predictions has been determined by varying renormalization and factorization
scales in the range from 1/2 (upper) to 2 (lower). We give predictions at the parton level for both
of the central scale choices discussed in Sec. 3.2.

Fig. 2 shows that both, the variation of the scale prefactor (leading to the uncertainty bands) and the
variation of the functional form of the core scale (leading to the solid/dashed central histograms) have
less impact on the predictions from the MEPS@NLO method than they have on predictions from leading–
order merging (MEPS@LO). It is interesting to find this effect in an observable like the forward–backward
asymmetry, where a large fraction of the QCD uncertainties are canceled due to taking the ratio between
two predictions.

4 AFB results

We now present our AFB results generated with the previously described techniques. We employ the leading-
order matrix element generators AMEGIC++ [39] and COMIX [40] in conjunction with the automated dipole
subtraction provided in SHERPA [41] and the implementation of the Binoth–Les Houches interface [26] to
obtain parton-level events at next-to-leading order. Virtual matrix elements for tt̄ and tt̄+jet are provided
by GOSAM [21]. We use a parton shower based on Catani–Seymour dipole factorization [31, 42] and the
related MC@NLO generator [27, 43] to generate events at the parton shower level.

We use SHERPA version 2.0.0, which includes the modifications described in Sec. 2. Parameters are set to their
default values, except for the choice of PDF. We use the MSTW2008 NLO PDF set for MEPS@NLO and the
MSTW2008 LO set for MEPS@LO, both with their corresponding parametrization of the strong coupling [44].
Top quark decays, multiple interactions and hadronization are not simulated, since we compare our results
to data from the CDF collaboration which have been corrected to the parton level.

We have validated our parton-level calculations by checking inclusive cross sections for tt̄+jets against values
in the literature [3]. Tests for individual phase-space points are reported in Appendix B. We also verified
the consistency of our results for a number of differential distributions in inclusive tt̄ production.

4.1 Inclusive asymmetries

Table 1 lists the inclusive forward–backward asymmetry, as well as the asymmetries arising after simple
cuts on the invariant mass of the top-quark pair and its transverse momentum. These cuts separate the
threshold and boosted region in the case of mtt̄, and the Sudakov and hard-pT region in the case of pT,tt̄.
We present results for both the MEPS@NLO and the MEPS@LO methods and compare them to data from
the CDF collaboration [5], and to a fixed-order calculation for the asymmetry evaluated at scale ŝ using
MCFM [10, 4].
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Figure 3: Top quark forward–backward asymmetry in dependence on the transverse momentum (top),
the absolute of the rapidity separation, ∆y,tt̄ ≡ |yt − yt̄| (bottom left), and the invariant mass
(bottom right) of the tt̄ system. MC@NLO zero plus one jet merged predictions – together
with their uncertainty bands – are shown for both of the scale choices studied in this work,
cf. Sec. 3.2. The comparison is against CDF background subtracted data (top right panel) and
against parton-level corrected data (bottom panels) [5]. The top left panel shows parton-level
results.

The largest contribution to the overall uncertainty of our predictions arises from µR/F variation – those from
other sources are by and large negligible. We observe a sizable reduction of scale uncertainties when going
from LO to NLO merging, which was already noted in Sec. 3.2. At the same time, however, the central
values of AFB decrease and therefore the discrepancy with the CDF data increases. It should be stressed
that the MEPS@LO results for AFB have to be interpreted with caution. The lack of important higher-order
corrections in their calculation, and the correspondingly large scale uncertainties, point to an agreement
with experimental data that is rather accidental. Signs of an incomplete, only qualitative description are
also given by the larger spread between the central values associated with the different functional forms of
the core scale. Moreover, the discrepancy, in particular for the lowest pT bin in AFB(pT,tt̄) poses a problem,
as can be seen in Fig. 2.

The disentanglement of the soft and hard regime can be easily achieved in terms of pT,tt̄. It would therefore
be interesting to obtain independent measurements for the two different transverse momentum regions,
preferably for an even lower cut. Due to the formal NLO accuracy of the MEPS@NLO result for pT,tt̄ >
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50 GeV we expect a better agreement with data. This is in fact confirmed in Fig. 3

4.2 Differential asymmetries

Figure 3 summarizes our results for the differential asymmetries. We compare our best predictions, those
obtained with MEPS@NLO, against the measured distributions for AFB in dependence on the pair transverse
momentum, the pair mass and the absolute rapidity difference between the top quarks. For all predictions,
we show uncertainty bands, which have been obtained from respectively varying µR/F and µQ scales by

factors of two and
√

2, and the merging cut, Qcut, from 5 GeV to 10 GeV where we used Qcut = 7 GeV for
the central curve. The individual uncertainties are added in quadrature. They are dominated by the µR/F

variations. Parton-level to particle-level corrections for the comparison with the background subtracted data
on AFB(pT,tt̄) have been computed with SHERPA in MC@NLO mode.

We find good agreement with the CDF data for AFB(pT,tt̄). This is an important result, since we obtain this
quantitative agreement in two very different phase-space domains driven by different physics phenomena:
multiple soft and virtual parton emission in the so-called Sudakov region and hard parton radiation for larger
pair transverse momenta. The prediction based on the QCD scale choice, which we discussed in Sec. 3.2,
gives a slightly better description in the medium pair-pT range. In both cases we observe excellent agreement
in the first pT bin, as a result of relying on the subleading-color improved MC@NLO Sudakov exponents.

In the other two observables considered here, the Sudakov region is spread out over the entire range of the
measurement. This leads to an increase of AFB for larger values of mtt̄ and ∆y,tt̄. Both core scale choices,
µQCD and mtt̄, yield predictions, which reproduce the linear rise but remain below the data. Once more, the
results obtained using the QCD scale lie closer to the data, and well in the 2σ range of the given experimental
uncertainty. Note that the asymmetry dependence on these observables will particularly benefit from the
application of O(25%) electroweak corrections, which have not yet been included in Fig. 3.

5 Conclusions

We have analyzed the top quark forward–backward asymmetry at the Tevatron collider using a combination
of tt̄ and tt̄+jet calculations at the next-to-leading order in QCD, merged with a parton shower.

The asymmetry as measured by the CDF and DØ collaborations still remains a puzzle. While our simulations
describe its transverse momentum dependence well, the rapidity and mass dependence still show some
discrepancies. More accurate QCD+EW predictions are paramount to clarify whether what was measured
can be described within the Standard Model, or whether new physics models are needed. There is also hope
that measurements at the LHC may bring some more insight, although the current situation still suffers
from a lack of analyzed data [45].

However, a number of interesting points remain: firstly, we have achieved a consistent description of both,
the Sudakov region of the pT,tt̄ spectrum and the high pT,tt̄ domain. The transverse momentum dependent
forward–backward asymmetry provides a first non-trivial test of this method. The fact that it is well described
by our simulations indicates the potential of the MEPS@NLO technique. Secondly, we demonstrated in a
thorough analysis that the application of the MEPS@NLO technique leads to more stable predictions than
the MEPS@LO method. It should thus be preferred in experimental analyses. Thirdly, we showed that
including subleading color terms in the first emission of the tt̄ MC@NLO has substantial impact on the
prediction for the asymmetry. This effect cannot simply be subsumed under the standard parton-shower
uncertainties. The fact that the difference between MC@NLO and MEPS@NLO predictions is small indicates
that the feature remains in a parton shower with full color dependence. Fourthly, we showed that there is a
substantial dependence on the functional form of the scale, which is used for the tt̄ production process. This
dependence is reduced in the MEPS@NLO method compared to the MEPS@LO method, but it indicates
that there is still room for explaining the discrepancy with experiments by QCD+EW corrections at higher
orders.

In summary, we have moved one step closer to obtaining an accurate inclusive prediction for top-quark pair
production at the particle level using state-of-the-art Monte Carlo techniques. We used the publicly available
programs SHERPA and GOSAM, which makes the results easily reproduceable and accessible for experiments.

We have performed our calculations at the parton shower level, not including top-quark decays. Including
these decays is important to predict lepton asymmetries and their correlation with the top quark asymmetry
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more reliably, see for example Refs. [46]. This analysis is beyond the scope of the present publication, and
it will be left to future investigation.
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A IF/FI dipole splitting kinematics and their implications on AFB

In this appendix we will prove that for a parton shower based on CDST dipole factorization [31] P−+ is
larger than P+−, as found by numerical analysis in [12].

Let us start with the case of initial-state splittings, where the top quark plays the role of the spectator
parton. Denoting the initial and final state momenta before the splitting as p̃ai and p̃k, we can construct
the momentum of the top quark after splitting using the variables ui and xik,a of [30] as

pk = (1− ui) p̃k + ui

(
1− xik,a
xik,a

− 2m2
k

Q2 −m2
k

)
p̃ai − k⊥ , (A.1)

where k⊥ is the transverse component, perpendicular to both, p̃k and p̃ai. This means, in particular, that
k⊥ can be neglected when analyzing the change of rapidity of the top quark in the splitting process.

We can now easily compute the rapidity difference for the top quark before and after the splitting:

∆yt =
1

2
ln

(
1 +

ui
1− ui

(
1− xik,a
xik,a

− 2m2
k

Q2 −m2
k

)
p̃+
ai

p̃+
k

)
(A.2)

As Q2 < 0, the argument of the logarithm is always larger than one, and therefore ∆yt is positive. This
means the top quark is always pushed in the direction of the momentum of the initial-state quark while the
anti-top is pushed in the direction of the momentum of the initial-state anti-quark. The same is true for
the case of final-state emissions off the top quark with an initial-state spectator, as kinematics are defined
identically.

At the Tevatron collider, the dominant source of quarks is the proton beam, while the dominant source of
antiquarks is the anti-proton beam. Therefore, the initial-final and final-initial splittings lead to P−+ > P+−.

Final-state splittings with final-state spectator and initial-state splittings with initial-state spectator do not
generate asymmetries, i.e. P−+ = P+−. Therefore, our argument is complete.

Note that the two different schemes for momentum mapping, which were compared in [47, 42], have similar
behavior with respect to the generation of the asymmetry. This was shown in a detailed numerical analysis
in [12]. It can easily be explained by the fact that both schemes show a drag of the top towards larger
rapidity due to the color connection with the initial-state quark.

It was also shown in [12] that a very different momentum mapping can generate very different asymmetry
predictions. This is due to the fact that assumptions about the recoil partner being the color-connected
parton in the splitting were relaxed. It is conceivable that, in a momentum mapping where the recoil is
compensated symmetrically by both initial state quarks, the parton shower does not generate an additional
asymmetry at all. Whether or not this is the more viable physics model remains to be verified by experiments.
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dd̄→ tt̄g

SHERPA + GOSAM Numbers from [3] Universal IR singularity

Born 0.5790368001550917 · 10−4 0.5790368001550936 · 10−4

c̃−2 −5.666666666666674 −5.666666666667982 −5.666666666666667
c̃−1 −0.7420525970833627 −0.7420525970851204 −0.7420525970837827
c̃0 4.912061786537501 4.912061774385727
c0 0.2435672441163395 0.2435672439083931

gg → tt̄g

SHERPA + GOSAM Numbers from [3] Universal IR singularity

Born 0.656684336270973 · 10−3 0.656684336270977 · 10−3

c̃−2 −8.999999999999995 −8.999999999455426 −9.000000000000002
c̃−1 4.272315663799295 4.272315664361962 4.272315663817603
c̃0 16.13909120795238 16.13909126125360
c0 0.5295183443224957 0.5295183452346090

Table 2: Numerical results for the benchmark-point comparison with [3]. The first column contains the
numbers obtained with the code for the virtual amplitude generated by GOSAM. In the second
column we report the numbers given in [3] converted to our normalization. The last column con-
tains the coefficients of the poles conform to the universal singular behavior derived by CDST [30].
They are computed using an implementation contained in the code for virtual amplitudes.

B Virtual corrections from GOSAM

The virtual amplitudes are generated using the GOSAM [21] package, which generates code for the com-
putation of one-loop integrands. The one-loop amplitudes are then evaluated at runtime by means of the
integrand reduction [23] based program SAMURAI [22] and the tensor integral library GOLEM95 [24]. Scalar
one-loop integrals are calculated by OneLOop [48].

We validated the virtual amplitudes from GOSAM with the benchmark points given in [3], finding full
agreement. Since we use a different normalization compared to [3] we define coefficients c̃i (i = −2,−1, 0)
from the coefficients ci given in Eq. (A.3) of [3] as follows:

c̃−2 =
c−2
αs

2π

, c̃−1 =
c−1
αs

2π

, c̃0 =
c0
αs

2π

+
π2

6
c̃−2 with αs ≡ αs(mt) = 0.1075205492734706 . (B.1)

In Tab. 2 we then report the details of the comparison listing all Born numbers and coefficients, which we
found in our calculation.

C Color-flow inspired scale choice

In order to quantify the dependence of AFB on renormalization and factorization scales, we propose to use
two different functional forms of the scale, where one is insensitive and the other is sensitive to rapidity. For
the former, we select mtt̄, while for the latter we select a color-flow inspired scale. We call this the “QCD”
scale for brevity.

The color flow in qq̄ → tt̄ / q̄q → tt̄ subprocesses is unique, hence the QCD scale is identified as

µ2
QCD(qq̄ → tt̄) = 2 pqpt = m2

t − t ,
µ2

QCD(q̄q → tt̄) = 2 pqpt = m2
t − u .

(C.1)

In the gg → tt̄ subprocess we assign color connections according to the method used in [33], extended to the
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case with massive final-state quarks. The QCD scale is therefore chosen as

µ2
QCD(gg → tt̄) =


m2
t − t w ∝

u−m2
t

t−m2
t

+
m2
t

m2
t − t

(
4 t

t−m2
t

+
m2
t

s

)
with weight

m2
t − u w ∝

t−m2
t

u−m2
t

+
m2
t

m2
t − u

(
4u

u−m2
t

+
m2
t

s

) . (C.2)

Because of the symmetric initial state, m2
t − t and m2

t − u are selected with equal probability.
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