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Abstract
Online accelerator optimization is generally a multi-

variant nonlinear problem with considerable noise which
require efficient and robust algorithms. In this study we
evaluate the viability of several optimization algorithms
and demonstrate the strength of the recently proposed
RCDS method for online application with both simulations
and experiments.

INTRODUCTION
The performance of an accelerator depends on the coop-

eration of all its subsystems which in turn may consist of
many components that are individually controlled. For best
performance, ideally the subsystems and components are
monitored and the optimal target values of the monitors are
known, and, if the monitors deviate from the target values,
a deterministic procedure can be taken to make corrections.
Orbit correction is an example of this ideal scenario.

However, in some cases the diagnostics cannot provide
sufficient information to guide the move of the knobs to-
ward the target. One example is the steering of the beam
in a transport line prior to injection into a storage ring. The
launching angle and position of the injected beam are usu-
ally not very well determined with the transport line BPMs
because they are too close to the last few steering magnets.
It is also possible that the necessary diagnostics do not exist
at all.

In other cases the ideal target of a subsystem itself may
be unknown or not very well known, or there does not exist
an effective way to relate the knobs to the target. An exam-
ple is the optimization of the nonlinear dynamics of stor-
age rings with harmonic sextupoles. There is no direct way
to determine the desired parameter adjustment for the har-
monic sextupoles to compensate the discrepancies between
the model and the real machine caused by calibration errors
of the sextupole magnets and nonlinear components in the
other magnets. The fact that the nonlinear motion detected
by BPMs is usually weak and is plagued by the nonlinear
response of the BPMs themselves makes it very challeng-
ing to calibrate lattices with a response-matrix approach.

When there is no direct method to predict the desired
changes to the knobs, we usually tune the machine manu-
ally by turning the knobs to improve machine performance
such as output power, injection efficiency, beam lifetime,
or luminosity,etc, depending on the application. This ap-
proach can be automated, as was done in Ref. [1], which
employed the Nelder-Mead simplex method and iterative
1-dimensional scans.
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Automated tuning is basically a multi-variable optimiza-
tion problem. It differs from usual optimization problems
in that the function values contain noise. In this study we
attempted to explore optimization algorithms that are suit-
able for online application. We proposed an algorithm that
is effective in a noisy environment. Simulation and experi-
mental studies were conducted to demonstrate the strength
of this algorithm [2].

GENERAL CONSIDERATIONS AND THE
RCDS METHOD

Two basic requirements for an online optimization algo-
rithm are high efficiency and robustness. High efficiency
means that it is able to find the optimum with as few func-
tion evaluations as possible. Robustness in this context
means the algorithm can find the optimum despite noise
in measured function values (and occasional function value
outliers) and that the algorithm behaves properly under ma-
chine failures.

One candidate algorithm is an iterative parameter scan
that basically automates the manual approach. At each iter-
ation parameters are scanned within a specific range while
the other parameters are fixed at the previous best values.
This method may be inefficient because each scan gains
only a small amount if the downhill direction is not lined
up with the unit vector [3]. Another candidate is Pow-
ell’s conjugate direction method [3, 4], which is an itera-
tive line search algorithm that updates the search direction
set to make an efficient search. It also employs brack-
eting and an advanced line optimizer (golden section or
quadratic interpolation). A third candidate we considered
is the well known Nelder-Mead simplex method [3, 5]. We
also included multi-objective genetic algorithms (MOGA)
for comparison even though they may not be promising
candidates for online optimization since usually it takes
many function evaluations for genetic algorithms to work.

The algorithm we propose is called robust conjugate di-
rection search (RCDS) [2]. It combines Powell’s conju-
gate direction method with a new line optimizer that is ro-
bust against random noise and occasional outliers. The line
optimizer first brackets the minimum (for a minimization
problem) by going both directions along the line until hit-
ting the boundary of the valid parameter region or finding a
solution whose objective function value is higher than the
present minimum by a significant amount as compared to
the noise level. It then evaluates extra points within the
bracketed zone for global sampling. Finally the sample
points are fitted to a parabola from which the line minimum
is determined.
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COMPARISON OF ALGORITHMS IN
SIMULATION

The candidate algorithms are applied to two realistic ac-
celerator optimization problems in simulation for a com-
parison of performance. The two problems are coupling
correction of the SPEAR3 ring and optimization of the
SPEAR3 Booster-to-SPEAR (BTS) transport line optics.

Coupling correction

The goal of coupling correction in a storage ring is to
minimize the vertical emittance caused by vertical disper-
sion inside dipole magnets and linear horizontal to verti-
cal coupling, both of which can be mitigated with skew
quadrupole magnets.

SPEAR3 have 13 skew quadrupole magnets for coupling
correction. Since beam loss is usually dominated by Tou-
schek scattering, we can use the beam loss rate (or lifetime)
as an indirect measure of vertical emittance. In the simu-
lation, errors are seeded to 42 skew quadrupoles (including
the 13 that are used for correction) in the lattice. The verti-
cal emittance is computed with the code Accelerator Tool-
box [6]. The coupling ratio when the 13 correcting skew
quadrupoles are turned off is 0.9%, which corresponds to a
loss rate of 0.6 mA/min for a 500 mA beam. The loss rate
is calculated according to the coupling ratio, with random
noise seeded through beam current, which is assumed to
have an rms uncertainty ofσI = 0.03 mA. The loss rate
evaluated with the change of beam current over an interval
of 6 seconds corresponds to a 0.06 mA/min rms uncertainty
in the loss rate. Increasing the interval reduces the noise
level.

We applied Powell’s method, the simplex method,
NSGA-II [7] and RCDS to this problem several runs with
noise or without noise. The evolution of the best solution
are shown in Figure 1. The initial solution for Powell’s
method is the all-zero solution. This solution is also seeded
to the initial NSGA-II population and is one initial vertex
of the simplex method. The initial conjugate direction set
of the RCDS algorithm is obtained by singular value de-
composition of the Jacobian matrix of the orbit response
matrix (ORM) with respect to the 13 skew quadrupoles.
This makes convergence much faster than starting from the
unit vectors (not shown).

With noise, both the simplex method and Powell’s
method perform poorly. This is especially true for Pow-
ell’s method. This is understandable because the original
Powell’s method uses a line optimizer that is very sensi-
tive to noise. The simplex method fails to work when the
noise affects the comparison results of the objectives on
the simplex vertices. Without noise the simplex method
works nicely. The convergence of Powell’s method with-
out noise would be much faster if the initial conjugate di-
rection set derived from the ORM Jacobian matrix is used.
The NSGA-II method converges slowly, with or without
noise. And a detailed look of the population shows that
the solutions which are favored by noise (i.e., noise makes
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Figure 1: Evolution of best solution for Powell’s method,
simplex method, NSGA-II and RCDS.

their objectives smaller) unfairly dominate the population
and prevents convergence. The RCDS method, however,
demonstrates good convergence with or without noise.

Figure 2 compares the evolution of the coupling ratio of
the best solution during the courses of the candidate algo-
rithms. The coupling ratio has no noise added in and is
hence a true measure of the quality of the solutions. Also
shown is the IMAT method which uses the robust line op-
timizer of the RCDS method but its direction set is fixed
as the unit vectors. Clearly the conjugate direction set ap-
proach is the reason for fast convergence and the robust line
optimizer leads to the ability to steer through noise.
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Figure 2: Comparison of the coupling ratio of the best so-
lution for various algorithms.

Transport line optics
A second simulation problem is matching the BTS optics

to the SPEAR3 ring. The last six quadrupole magnets in
the BTS line are used to modify the optics functions at the
injection point. Injection optics matching for the horizon-
tal plane is illustrated in Figure 3. For the demonstration
purpose we intentionally reduced the dynamic aperture of
SPEAR3 to 12.5 mm in the simulation. Only particles that
are inside the ellipse and to the left side of the septum line
will be captured.

The injection efficiency is calculated by counting the
number of surviving particles among 1000 particles that
are randomly generated according to the optics functions,
including the dispersion effect. Because of the finiteness
of the total particles, the injection efficiency has a random



noise level of 1.6%. The left plot in Figure 3 shows the sit-
uation for the initial, present BTS optics with a simulated
injection efficiency of 61.7%, while the right plot shows the
best solution found by RCDS for an injection efficiency of
85%.
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Figure 3: Optics match at the septum for the initial optics
(left) and the RCDS solution (right).

Figure 4 shows the injection efficiency of the best so-
lution for the algorithms. The same convergence behav-
ior is demonstrated for these algorithms. The RCDS and
IMAT methods are robust against noise while the former
converges fast due to the high efficiency of the conjugate
direction method. In this case the initial direction set is
from the SVD of the Jacobian matrix of the distribution
moments with respect to the six quadrupoles.
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Figure 4: The history of the best injection efficiency during
optimization for the various algorithms.

EXPERIMENTS
We have applied the RCDS method in experiments for

several optimization problems, including coupling correc-
tion, kicker bump matching for SPEAR3 and injection
beam steering for BTS.

The coupling correction problem is almost the same
as the simulation problem discussed in the previous sec-
tion. The ring is filled to 500 mA and maintains that level
with frequent fill at 5-min interval. The beam loss rate
is measured by observing the beam current change over
a 6-second interval. The noise level is found to be 0.04
mA/min. Figure 5 shows the history of the objective of
all evaluated solution during an experiment with the RCDS
method which started from the all-zero solution. The final
loss rate was higher than that of the solution found with the
orbit response matrix method.

The goal of kicker bump matching is to minimize the
orbit disturbance of the injection kick bump to the stored
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Figure 5: Beam loss rate of all evaluated solutions.

beam after injection. SPEAR3 has three injection kick-
ers. The kick amplitude, kick pulse delay and width of
the two side kickers K1 and K3 are varied. Also varied are
strengths of two skew quadrupoles inside the kick bump.
The orbit disturbance is measured by a turn-by-turn BPM.
The objective function is the sum of the horizontal and ver-
tical rms orbit of 100 turns after the kick. In experiments
the RCDS method reduced the orbit oscillation amplitude
to below 50µm for the low emittance lattice with less than
100 evaluations. Figure 6 shows the history of the objective
for the optimization of the low alpha lattice.
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Figure 6: Kicker bump matching experiment with RCDS
for the low-alpha lattice.

CONCLUSION
Simulation and experiments demonstrated that the

RCDS method we proposed is suitable for experimental op-
timization of accelerators or other complex systems.
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