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The recent BaBar measurements of the γγ∗ → π0 transition form factor show spectacular

deviation from perturbative QCD prediction for large space-like Q2 up to 34GeV2. When

plotted against Q2, Q2F (Q2) shows steady increase with Q2 in contrast with the flat Q2

behavior predicted by perturbative QCD, and at 34GeV2 is more than 50% larger than the

QCD prediction. Stimulated by the BaBar measurements, we revisit our previous paper on

the cancellation of anomaly effects in high energy processes Z0 → π0γ, e+e− → π0γ and

apply our results to the γ∗γ → π0 transition form factor measured in the e+e− → e+e−π0

process with one highly virtual photon. We find that, the transition form factor F (Q2)

behaves as (m
2

Q2 )× (ln(Q2/m2))2 and produces a striking agreement with the BaBar data for

Q2F (Q2) with m = 132MeV which also reproduces very well the CLEO data at lower Q2.

PACS numbers: 11.40.Ha 12.38.Bx 13.66.Bc

The γ∗γ → π0 transition form factor at large momentum transfer Q2 which could be measured

in Z0 → π0γ decay, in high energy e+e− → π0γ or in e+e− → e+e−π0 collisions [1] where one of the

photon is highly virtual has been the subject of studies using the quark parton picture of hadrons for

hard exclusive processes since the earlier days of perturbative QCD. The interest in this transition

form factor lies in the fact that it is one of the simplest quantities to compute in QCD and relatively

easy to measure. At Q2 = 0, it is given by the two-photon π0 decay governed by the Adler-Bell-

Jackiw triangle chiral anomaly [2–4] which gives correctly the decay rate. At large Q2, short-

distance operator expansion(OPE) [5] or perturbative QCD [6–8] predicts F (Q2) ∼ 2 fπ/Q
2 (we

use the convention fπ = 93MeV in this paper). The earlier CLEO data [9] give values for F (Q2) up

to Q2 = 8GeV2 somewhat below the perturbative QCD(pQCD) prediction, though, with a possible

rise for Q2 F (Q2) above 2.5GeV2 . Recently, the BaBar Collaboration has produced measurements

for the transition form factor from 4 to 34 GeV2 [10] which show spectacular deviation from the

perturbative QCD prediction as seen from the data for Q2 F (Q2) which rise steadily with Q2 in

contrast with the rather flat behavior predicted by pQCD and is more than 50% above the QCD
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prediction at 34GeV2. There are also measurements by CELLO [11] up to 2.5GeV2 which are

shown in [9, 10] As mentioned in [10, 12], recent calculations [13, 14] using the light-cone sum rules

method at next-to-leading order with various forms for the pion distribution amplitude, seem to

obtain values for the transition form factor higher than the asymptotic limit of [6, 7], but with

very different Q2 behavior than the BaBar data for Q2 < 15GeV2 and are below the BaBar data

for Q2 in the range from 20 to 40 GeV2 [10, 12]. A more recent work [15] seems to obtain results

consistent with the BaBar data for Q2 > 15GeV2 with a very broad pion distribution amplitude.

Most of these calculations use the short-distance OPE of Lepage-Brodsky [6, 7] to obtain the pion

distribution amplitude, but, in the case of the γ∗ → γπ0 transition form factor with one virtual

photon with large q2, the short-distance expansion parameter ω = −2p · q/q2 = 1 (p, q being the

pion and virtual photon momentum, respectively), which is large and the calculation of Lepage

and Brodsky for fixed but large Q2 cannot be trusted because the corrections are important as

mentioned in [16].

Without further questioning the validity of the perturbative QCD prediction [17–19] which

is based on the quark parton picture of the pion, one could already consider the role of chiral

anomaly for processes involving a pion and highly virtual photons and the radiative decays of

gauge bosons like Z0 → π0γ or W± → π±γ decays [20]. In a previous paper [21, 22], we showed

that, for these processes, from the modified PCAC equation due to the Adler-Bell-Jackiw anomaly,

the quark-parton contribution to the axial current divergence given by the triangle graph cancels

the anomaly term resulting in the suppression of the Z0 → π0γ decay amplitude as well as the

γ∗ → γπ0 transition form factor measured in e+e− → π0γ . We also showed that for Q2 large

as in Z0 → π0γ decay or in e+e− → π0γ process with a highly virtual photon, the amplitude

behaves like (ln(Q2/m2))2/Q2, and a similar behavior for space-like Q2. The quantity Q2 F (Q2) is

found to rise with Q2 as (ln(Q2/m2))2. This can be seen from the ln(Q2/m2)/Q2 behavior at large

Q2 of the absorptive part of the triangle graph contribution to the divergence of the axial vector

current matrix element < π0|∂µAµ|γ∗ γ >. Hence the (ln(Q2/m2))2/Q2 behavior for the γ∗γ → π0

transition form factor. This is one of the main differences between the chiral anomaly approach

and the perturbative QCD quark parton approach to the γ∗γ → π0 transition form factor. In the

chiral anomaly approach, the triangle graph gives us the absorptive and the dispersive part, while

the quark parton approach based on short-distance operator expansion gives us only the real part

as given by the tree graph at the lowest order in perturbative QCD.

Our calculation of the Adler-Bell-Jackiw triangle anomaly contribution to the γ∗γ → π0 tran-

sition form factor and similar calculations later on [23, 24] are done at a time when few data on
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the transition form factors at large Q2 are available [9, 11]. Now that the Babar data are available

over a large range of large momentum transfer Q2, it is relevant to compare data with the anomaly

contribution, considering the fact that, in pQCD the γ∗γ → π0 transition form factor depends on

the pion distribution which is not known to a good accuracy at present. For this reason, in this

paper, we apply our previous analysis of the anomaly effects in Z0 → π0γ to the γ∗γ → π0 transi-

tion form factor at space-like Q2 . Using the generalized Goldberger-Treiman relation to relate the

quark mass in the triangle graph to the quark-pion Yukawa coupling g, with m = g fπ, as in the

linear sigma-model [25, 26], we show that the BaBar data can be reproduced with m = 132MeV

or g =
√
2, consistent with the (ln(Q2/m2))2/Q2 behavior.

We begin by first recalling, for convenience, our derivation of the anomaly contribution to Z0 →
π0γ in [21]. Similar to the Z0 → π0γ decay, the γ∗γ → π0 amplitude, M =< π0(p)|T |γ∗(q)γ(k) >
in the reaction e+e− → e+e−π0 has the form ǫµ(q)ǫν(k)N

µν(q, k) with:

Nµν(q, k) = e2F (q, k)Y µν , Y µν = ǫµναβqαkβ. (1)

where p is the produced pion momentum in the final state (p = q+k), F (q, k) in the following, will

be written as F (Q2), the form factor in the kinematic region of the BaBar measurement, with the

virtual photon with momentum q space-like (q2 = −Q2 < 0) while the photon with momentum k is

almost on the mass-shell (k2 ≃ 0) . As with the derivation of the two-photon π0 decay amplitude,

we start with the modified PCAC equation due to the Adler-Bell-Jackiw triangle anomaly in the

presence of the electromagnetic interactions. The divergence of the axial vector current associated

with π0 becomes:

∂µA
µ = fπm

2
πφ+ S

e2

16π2
ǫαβγδF

αβF γδ (2)

with Fµν the usual electromagnetic field strength tensor and S are the sum of the squares of the

charges and colors of quark contributing to the anomaly, which takes the value S = 1/2 [2]. Taking

the matrix element of the l.h.s of Eq. (2), and seperating the π0 pole term from the continuum, as

previously shown [21], we arrive at the expression for the γ∗γ → π0 amplitude:

Nµν =
1

fπ

(

pτ R̃
µντ (q, k)− S

e2

2π2
Y µν

)

(3)

where R̃µντ (q, k) is the triangle graph (the direct coupling between the three currents) or the con-

tinuum contribution to the axial vector current matrix element < 0|Aµ|γ∗γ > defined as Rµντ (q, k):

Rµντ (q, k) = R̃µντ (q, k)− fπ
pτNµν(q, k)

p2 −m2
π

(4)
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As shown in [2, 27], gauge invariance and Bose symmetry tell us that the divergence pτR
µντ (q, k)

is in general proportional to q2 and k2 and does not vanish when one or both photons are off mass-

shell. Only when both photons are real(q2 = 0, k2 = 0) that pτR
µντ (q, k) is O(p2) and becomes

negligible. One can then apply Eq. (3) to π0 → γγ and finds that it is given by the anomaly [2–4].

For highly virtual photon as in the present γ∗γ → π0 transition form factor, we will assume, as

in [20], that R̃µντ (q, k) is given by the triangle graph. From the expression given in [27], we find,

assuming equal mass for u, d quarks in the triangle graph:

pτ R̃
µντ (q, k) = e2S

(

2mP (q, k) +
1

2π2

)

Y µν (5)

where

P (q, k) =
m

2π2

∫ 1

0
dx

∫ 1−x

0

dy

D
(6)

and

D = k2y(1− y) + q2x(1− x)− 2q · kxy −m2 (7)

The quark mass m in the triangle graph is taken as a parameter to set the scale for the high energy

limit, similar to the quark mass parameter used in the calculation of e+e− → qq̄ processes at high

energy, where the asymptotic limit is reached when Q2 ≫ m2 and the quark-parton picture is valid

and the m2/Q2 term in the cross section σ(e+e− → hadrons) can be neglected.

When both photons are real (q2 = 0, k2 = 0), from Eq. (6), we get:

2mP (q, k) = − 1

2π2
+O(p2) (8)

which implies that the r.h.s of Eq. (5) is O(p2) in agreement with our previous remark that

pτ R̃
µντ (q, k) = O(p2). For our transition form factor with time-like virtual photon Q2 = s, with

s > 4m2, we have, as given in [21]:

2mP (q, k) =
1

2π2

(

m2

s

)

K(m2, s) (9)

where

K(m2, s) =

(

ln
1 + ρ

1− ρ
− iπ

)2

, ρ =
√

1− 4m2/s, s > 4m2 (10)

For space-like q, with q2 = −Q2 (s = −Q2), with s < 0, by analytic continuation, the function

K(m2, s) becomes real and is given by:

K(m2, Q2) =

(

ln
ρ+ 1

ρ− 1

)2

, ρ =
√

1 + 4m2/Q2 (11)
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Using Eq. (9) for 2mP (q, k) and Eq. (5) for the divergence pτ R̃
µντ (q, k), we arrive at the final

expression for γ∗γ → π0 amplitude:

Nµν =
1

fπ

e2

2π2
S

(

m2

Q2
K(m2, Q2)

)

Y µν (12)

We note also that the term 2mP (q, k) in Eq. (5) can be obtained directly from the triangle

graph with the axial vector current replaced by the direct pion-quark vertex with the γ5 Yukawa

coupling g = m/fπ as in the linear sigma model [25, 26] and PCAC is imposed on the pion-quark

vertex . This is an equivalent method to obtain the γ∗γ → π0 amplitude for large Q2 without

having to go through the proof of anomaly cancellation [28]. The triangle graph with pion-quark

vertex also gives us the term 2mP (q, k) for the π0 → γγ decay amplitude, as shown in Eq. (8).

For S = 1/2, the scalar transition form factor F (q, k) is given by:

F (q, k) =
1

fπ

1

4π2
m2

s
K(m2, s) (13)

and for the space-like γ∗γ → π0 transition form factor, at large Q2 ≫ m2, the dominant term in

Eq. (13) is

F (Q2) =
1

fπ

1

4π2
m2

Q2

(

ln
Q2

m2

)2

(14)

to be compared with the transition form factor for real photon(our normalization is the same as

in [29])

F (q2 = 0, k2 = 0, p2 = 0) = −
(

1

4π2fπ

)

(15)

We emphasize that our results Eqs. (9–15) are exact calculations and the result for the transition

form factor given in Eq. (14) is valid for large Q2 ( Q2 ≫ m2), including its Q2 → ∞ limit.

This result, the (ln(Q2/m2))2 rise for Q2 F (Q2) which has been obtained in [21], are obtained

later in [23, 24]. Ref. [23] obtains the anomaly contribution from the PCAC equation for the matrix

element of the axial vector current between the photons, while Ref. [24] equates the divergence of

the axial vector current two-photon matrix element with its pion pole terms. In our calculation,

the quark mass parameter is taken as a dynamical(constituent) quark mass. The reason why we

take constituent quark mass is also emphasized in [23, 24]. In fact as argued in Ref. [23], because

of the presence of the Nambu-Goldstone pion pole term in the PCAC equation, the divergence

of the axial vector current should also be non-vanishing in the limit of vanishing current quark

mass, to cancel the longitudinal term generated by the pion pole term, as in the derivation of the

Goldberger-Treiman relation for the pion-nucleon coupling constant
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As shown in Fig. (1), our prediction for the quantity Q2F (Q2) form = 132MeV fits very well the

CLEO and BaBar data. The agreement with the BaBar data is striking, as our predicted transition

form factor depends on only one parameter, the effective mass for quark in the triangle graph . We

note that recent works with various models for the pion distribution mentioned above [13, 15] seem

unable to obtain the rise of Q2F (Q2) for Q2 > 20GeV2 as the BaBar measurements. Our value for

the effective quark mass is consistent with the high energy behavior of the e+e− → hadrons cross

section for which the ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) is constant for s above a

few GeV2.

Q^2*F(Q^2) in GeV

CLEO

BABAR

0.1

0.15

0.2

0.25

0.3

Q
^2

*F
(Q

^2
)(

G
eV

)

5 10 15 20 25 30 35 40
Q^2(GeV^2)

FIG. 1: Chiral anomaly prediction(solid line) for Q2F (Q2) compared with the BaBar and CLEO measured

values and the large Q2 pQCD prediction (horizontal dash line) of [6]

In conclusion, we have shown that chiral anomaly effects produce a (m2/Q2)(ln(Q2/m2))2 be-

havior for the γγ∗ → π0 transition form factor at Q2 ≫ m2 in contrast with the 2fπ/Q
2 behavior

given by perturbative QCD. It is remarkable that our simple expression for the transition form

factor is able to explain the CLEO and BaBar data. Our prediction for the rise of Q2F (Q2) at

higher space-like Q2 could be confirmed with further measurements. Similar behavior is expected

for the time-like transition form factor and could be seen in e+e− → π0γ, as in e+e− → η(′)γ for

which the time-like transition form factor has been measured by CLEO at Q2 = 14.2GeV2 [30] and

is found to be close to the corresponding space-like values [12], and by BaBar at Q2 = 112GeV2

[31]. So, if chiral anomaly is indeed the cause of the rise like (ln(Q2/m2))2 of Q2F (Q2), then, the

pion might very well, for γγ∗ → π0 process at high energies, behave like a Nambu-Goldstone boson,
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like the Adler zero in low-energy ππ scatterings and in ψ′ → J/ψππ decay which are obtained from

chiral symmetry constrains.

Note added. After the completion of this paper, we were informed of the papers by Dorokhov

[32, 33] in which similar results are obtained using the triangle graph with pion-quark coupling

given in [34].
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